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Abstract. In the wake of a volcanic eruption, the rapid as-
sessment of building damage is paramount for effective re-
sponse and recovery planning. Uncrewed aerial vehicles,
UAVs, offer a unique opportunity for assessing damage af-
ter a volcanic eruption, with the ability to collect on-demand
imagery safely and rapidly from multiple perspectives at high
resolutions. In this work, we established a UAV-appropriate
tephra fall building damage state framework and used it to
label ∼ 50000 building bounding boxes around ∼ 2000 in-
dividual buildings in 2811 optical images collected during
surveys conducted after the 2021 eruption of La Soufrière
volcano, St Vincent and the Grenadines. We used these la-
belled data to train convolutional neural networks (CNNs)
for (1) building localisation (average precision equals 0.728)
and (2) damage classification into two levels of granular-
ity: no damage vs. damage (F1 score= 0.809) and moder-
ate damage vs. major damage (F1 score= 0.838) (1 is the
maximum obtainable for both metrics). The trained models
were incorporated into a pipeline along with all the necessary
image processing steps to generate spatial data (a georefer-
enced vector with damage state attributes) for rapid tephra
fall building damage mapping. Using our pipeline, we as-
sessed tephra fall building damage for the town of Owia,
finding that 22 % of buildings that received 50–90 mm of
tephra accumulation experienced at least moderate damage.
The pipeline is expected to perform well across other vol-

canic islands in the Caribbean where building types are simi-
lar, though it would benefit from additional testing. Through
cross-validation, we found that the UAV look angle had a
minor effect on the performance of damage classification
models, while for the building localisation model, the per-
formance was affected by both the look angle and the size
of the buildings in images. These observations were used to
develop a set of recommendations for data collection dur-
ing future UAV tephra fall building damage surveys. This is
the first attempt to automate tephra fall building damage as-
sessment solely using post-event data. We expect that incor-
porating additional training data from future eruptions will
further refine our model and improve its applicability world-
wide. To facilitate continued development and collaboration
all trained models and the pipeline code can be downloaded
from GitHub.

1 Introduction

Tephra fall produced by explosive volcanic eruptions can
have detrimental effects on buildings, which in turn affects
the ability for a community to recover and rehabilitate. These
effects range from surface-level issues such as corrosion of
metal roofs (e.g. Rabaul, Papua New Guinea; Blong, 2003a)
or damage to non-structural components (e.g. gutters: Am-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4586 E. Tennant et al.: Automating tephra fall building damage assessment using deep learning

bae, Vanuatu; Jenkins et al., 2024) through to complete build-
ing collapse (e.g. Pinatubo, Philippines; Spence et al., 1996).

After, or during, an eruption, the collection of empirical
data detailing the damage incurred is critical to guide the
planning and implementation of response and recovery ef-
forts. This involves estimation of damages and losses, which
are needed to determine the necessary funding for repair or
reconstruction, along with an assessment of building func-
tionality, which can inform temporary housing requirements.
In addition to its use in post-disaster recovery, the collec-
tion of damage data is key to the development of vulnerabil-
ity models (Deligne et al., 2022), which relate hazard inten-
sity to damage (e.g. Spence et al., 2005; Wilson et al., 2014;
Williams et al., 2020) and can be used to provide information
about resilient construction practises and/or for pre-event im-
pact assessments.

Post-event building damage assessments usually consist
of ground surveys, whereby the amount of damage to each
building is described using a quantitative or qualitative dam-
age state (e.g. Spence et al., 1996; Blong, 2003a; Jenkins et
al., 2013, 2015; Hayes et al., 2019; Meredith et al., 2022).
However, tephra fall damage can extend tens or even hun-
dreds of kilometres away from a volcano (Spence et al.,
2005), meaning that comprehensive ground-based damage
assessments can be both time-consuming and costly. Further-
more, the uncertainty that is often associated with the end of
an eruption may prevent the safe completion of a ground-
based damage assessment before tephra is remobilised by
winds and rain. This lag between the event itself and the com-
pletion of a damage assessment can hinder recovery efforts
and compromise the accuracy of data collected for the devel-
opment of forecasting models.

Given the need for, but also the challenges associated
with, conducting post-event building damage assessments
quickly, approaches that use remotely sensed (RS) data, ei-
ther optical or synthetic aperture radar (SAR) imagery, have
been developed in volcanology (e.g. Jenkins et al., 2013;
Williams et al., 2020; Lerner et al., 2021; Biass et al.,
2021; Meredith et al., 2022) and operationally by emergency
management services (e.g. International Charter “Space and
Major Disasters”, Copernicus Emergency Management Ser-
vice, ARIA (Advanced Rapid Imaging and Analysis) system;
Yun et al., 2015). The use of optical imagery largely con-
sists of visual inspection, which may be influenced by im-
age resolution and is prone to subjectivity (Novikov et al.,
2018). Furthermore, visual inspection of satellite optical im-
agery can still be time-consuming without crowd sourcing
(e.g. Ghosh et al., 2011) and is constrained by satellite re-
currence intervals and cloud cover. Automated SAR-based
methods (e.g. Yun et al., 2015) are not limited by cloud
cover, but they may lack the resolution required for building-
level damage assessment (30 m for damage proxy maps gen-
erated from Sentinel data using the ARIA system; https://
aria-share.jpl.nasa.gov/20210409-LaSoufriere_volcano, last
access: 21 January 2024).

To our knowledge, only one study attempts to automate
the assessment of building damage from volcanic hazards
(Wang et al., 2024). In contrast, attention has been given
to more commonly occurring hazards such as earthquakes
and hurricanes, with the development of both mono-temporal
(post-event imagery only) and multi-temporal (images taken
at different times) approaches (Table 1). Early approaches
at automation with optical imagery used image processing
methods, often focusing on identifying changes in pixel val-
ues between pre- and post-event imagery (e.g. Bruzzone and
Fernàndez Prieto, 2000; Ishii et al., 2002; Zhang et al., 2003).
Image processing methods are susceptible to user biases,
such as the choice of thresholds that equate to distinct lev-
els of damage severity or damage states, and may require
recalibration when applied to a new dataset. As a result, im-
age processing methods were succeeded by the application
of traditional machine learning algorithms that use “hand-
crafted” image features. These features are observable prop-
erties that can be extracted from the image such as shape,
colour, texture and statistical properties of the image (e.g. Li
et al., 2015; Anniballe et al., 2018; Lucks et al., 2019; Naito
et al., 2020). The success of a given machine learning ap-
proach is dependent on the selection of the best features for
the job; for example, a texture-based feature might be good
for classifying buildings as damaged or not damaged due to
an increased number of edges in damaged buildings but less
useful for a task such as differentiating between building roof
types where the difference in textures between the classes is
less significant. Deep learning, in particular the use of con-
volutional neural networks (CNNs), removes this need for
feature selection. A CNN is a network of layers comprising
filters which are small matrices of values. When an image
is passed through the network, at each layer the filters are
convolved with the output from the previous layer to create
a new representation of the image that is progressively more
abstract with depth in the network. This process reduces the
image’s original spatial dimensions X and Y while increas-
ing the number of channels, facilitating classification. Dur-
ing network training the filter values (known as weights) are
optimised to reduce the loss between the predicted label for
the image and the true label. Through this training a CNN
learns the features of the images that are useful for classifi-
cation. For a detailed background on deep learning, see Ag-
garwal (2018).

Thus far, deep learning models have been developed
for optical image sets for hurricanes (Y. Li et al., 2019;
Dung Cao and Choe, 2020; Pi et al., 2020; Cheng et al., 2021;
Khajwal et al., 2023), earthquakes (Nex et al., 2019; Xu et al.,
2019; Duarte et al., 2018; Moradi and Shah-Hosseini, 2020),
wildfires (Galanis et al., 2021), volcanic hazards (Wang et
al., 2024) and models that have been proposed for multiple
hazards (e.g. Gupta and Shah, 2020; Weber and Kané, 2020;
Shen et al., 2021; Bouchard et al., 2022) (Table 1). However,
building damage caused by different hazards looks very dif-
ferent (e.g. damage caused by vertical loading from volcanic
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Table 1. A non-exhaustive list of works using deep learning on optical imagery for building damage assessment. Studies use different scores
to evaluate performance: F1 scores are in italics, mean average precision scores are underlined, and accuracy scores are in bold. For all
scores, 1 represents a perfect model. A detailed explanation of the scores used for evaluation is provided in Sect. 2.3.3.

Study Hazard Number of Pre-disaster Data Building Damage
damage imagery type localisation classification
classes

Y. Li et Hurricane 2 No Airborne 0.448
al. (2019)

Weber and Multi 4 Yes Satellite 0.835 0.697
Kané (2020) (xBD)

Dung Cao and Hurricane 2 No Satellite – 0.972
Choe (2020)

Pi et al. (2020) Hurricane 2 No UAV, 0.745 (UAV)
airborne 0.807 (airborne)

Cheng et al. Hurricane 5 No UAV 0.656 0.610
(2021)

Galanis et al. Wildfire 2 No Satellite 0.981
(2021)

Gupta and Shah Multi 4 Yes Satellite 0.840 0.740
(2020) (xBD)

Shen et al. Multi 4 Yes Satellite 0.864 0.782
(2021) (xBD)

Bouchard et al. Multi 2 Yes Satellite 0.846 0.709
(2022) (xBD)

Khajwal et al. Hurricane 5 No Ground, – 0.650
(2023) airborne

Singh and Multi 5 No Satellite 0.880
Hoskere,
(2023)

Wang et al. Volcanic 4 Yes Satellite 0.868 0.783
(2024) tephra

tephra fall vs. ground shaking from an earthquake). These
observable differences mean that an optical-imagery multi-
hazard damage classification model that performs consis-
tently well across the different hazards is not yet achievable.
Therefore, distinct models tailored for specific hazards are
required (Nex et al., 2019; Bouchard et al., 2022). It follows
that models may also benefit from being regionalised, given
the differences in building typologies (construction material
and styles) that can also affect the observable damage (Nex
et al., 2019).

Many of the approaches for automating building dam-
age assessment use both pre- and post-event imagery (Ta-
ble 1), which makes the task more straightforward since any
changes to the pre-event imagery can be considered dam-
age. However, pre-event imagery at a high enough resolution
is not always available in post-disaster scenarios. The au-
tomated assessment of building damage from volcanic haz-

ards using only post-event optical imagery has not yet been
achieved in part due to the absence of the large datasets that
are needed in order to train models. The 2021 eruption of
La Soufrière volcano, St Vincent and the Grenadines, pro-
vided unprecedented circumstances allowing for the collec-
tion of high-resolution uncrewed aerial vehicle (UAV) im-
agery enabling the development of fully automated models
that can assess tephra fall building damage from post-event
data only. With their growing ubiquity and low cost, UAVs
have become an increasingly useful tool during and after vol-
canic eruptions (e.g. Andaru and Rau, 2019; Gailler et al.,
2021; Román et al., 2022). UAVs offer a distinct advantage
over satellite imagery because they can be scheduled at any
point; they do not suffer from cloud obscuring the images as
they fly at relatively low altitude; and they capture imagery
from multiple perspectives, which may lead to an increased
ability to capture damage information. In this study we used
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UAV optical imagery collected after the 2021 eruption of
La Soufrière volcano to develop a methodology for tephra
fall building damage assessment. The main contributions of
our work are three-fold:

1. We have devised a UAV-appropriate building damage
state framework, laying the foundation for future UAV
tephra fall building damage surveys.

2. We have developed a deep learning pipeline that con-
sists of all trained models and image processing steps
to rapidly output spatial damage data that can facili-
tate prompt, post-event response and recovery and en-
able data collection prior to further changes by natural
or human processes (tephra clean-up).

3. Imagery used in this work is diverse in terms of the
flight altitude, time of acquisition after the event and
UAV vantage point. We have conducted extensive test-
ing to understand the best practises for building damage
surveys and to create a series of recommendations for
the collection of future UAV surveys for building dam-
age assessment.

The 2020–2021 eruption of La Soufrière volcano in
St Vincent

La Soufrière is an active stratovolcano standing at
1220 m a.s.l. (above sea level) on the island of St Vincent.
On 27 December 2020 a thermal anomaly was detected in-
side the summit crater by the NASA Fire Information for Re-
source Management System (FIRMS). This was confirmed
by the Soufrière Monitoring Unit to be caused by a new
dome growing within the crater. Dome growth continued for
3 months until 9 April 2021, when, following 2 d of height-
ened seismic activity and lava effusion rate, the ongoing ef-
fusive eruption of La Soufrière entered an explosive phase
(Joseph et al., 2022). Between 9–22 April, a total of 32 dis-
tinct explosions occurred, with the tallest plumes reaching
heights of up to 15 km above the vent (Joseph et al., 2022).
Throughout this explosive phase, tephra blanketed the island,
resulting in a total deposit thickness of up to 16 cm in coastal
communities to the north of the island (Cole et al., 2023)
(Fig. 1).

The explosive phase was anticipated, and an evacuation
order was issued on 8 April 2021 for the ∼ 16000 resi-
dents in the northern part of the island (Joseph et al., 2022).
As a result, there were no reported fatalities directly at-
tributable to the eruption; nevertheless, the overall damage
to infrastructure services and physical assets was estimated
at XCD 416.07 million (equivalent to USD 153.29 million)
(PDNA, 2022). Approximately 63 % of this monetary im-
pact was borne by the housing sector. In St Vincent, residen-
tial buildings are typically single-story, detached structures,
with the majority in the more impacted north of the island
(census districts of Chateaubelair, Georgetown and Sandy

Bay; Fig. 1) constructed using concrete and blocks (84 %
in Chateaubelair, 74 % in Georgetown, 50 % in Sandy Bay)
with metal sheet roofs (90 %–92 % of all buildings in these
areas) (SVG population and housing census, 2012).

2 Method

After the 2021 eruption of La Soufrière three UAV optical-
imagery datasets were collected to assess the extent of the
damage. These were collected by different parties at separate
times after the eruption. All UAV survey locations are shown
in Fig. 1, and representative examples of images can be found
in Sect. S1 of the Supplement.

2.1 Dataset description

2.1.1 Dataset 1: April–May 2021 (UWI-TV)

Collected by UWI-TV, the multimedia channel of the Uni-
versity of the West Indies at the request of the UWI Seismic
Research Centre (SRC), this dataset consists of video footage
for Chateaubelair, Fitz Hughes, Troumaca and Sandy Bay ac-
quired with a frame rate of 30 frames per second (fps) and a
resolution of 1920× 1080 pixels. Flight paths were not pro-
grammed, and the vantage point varies between at nadir (di-
rectly above buildings) and very off nadir (showing the sides
of buildings). Images do not contain GPS positioning or alti-
tudes and were not manually georeferenced.

2.1.2 Dataset 2: 12–14 May 2021 (GOV)

This dataset was collected by the Government of St Vin-
cent and the Grenadines Ministry of Transport, Works, Lands
and Surveys, and Physical Planning for the purpose of as-
sessing the eruption impact. This dataset consists of video
footage for Chateaubelair, London, Richmond and Sandy
Bay acquired with a frame rate of 30 fps and a resolution of
1920×1080 pixels. Buildings are imaged from an at-nadir to
off-nadir vantage point at ∼ 200 m above the ground. Build-
ings are lower resolution in this dataset when compared to
the other two. Images contain GPS positioning and altitudes.

2.1.3 Dataset 3: August–September 2021 (SRC)

This is the most extensive dataset, collected by SRC for the
purpose of assessing eruption impact. It consists of pho-
tos and videos for Belmont, Chateaubelair, Fancy, London
(video only), Orange Hill (video only), Owia, Point, Rabacca
(video only), Richmond, Sandy Bay and Tourama. Videos
were acquired with a frame rate of 30 fps and have a resolu-
tion of 1920×1080 pixels, while photos are 4056×3040 pix-
els. Flight paths were programmed to follow a linear swath-
like trajectory. Buildings are captured from nadir between
55–290 m above the ground. Images contain GPS position-
ing and altitudes.

Nat. Hazards Earth Syst. Sci., 24, 4585–4608, 2024 https://doi.org/10.5194/nhess-24-4585-2024



E. Tennant et al.: Automating tephra fall building damage assessment using deep learning 4589

Figure 1. The island of St Vincent with UAV survey locations included in this work labelled and marked in black. Tephra isopachs (Cole et al.,
2023) mark lines of constant total tephra thickness. Building footprints are marked in pink, data source: © OpenStreetMap contributors 2024.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0. Coordinate reference system: WGS 84 (EPSG:4326).

For all three datasets, image frames were extracted from
the videos every 2 s, an interval chosen to reduce redundant
homogeneous images. This resulted in a total of 7956 image
frames. Due to the UAV surveying approach (i.e. hovering in
one place for a while) many near-identical images were gen-
erated. To avoid potentially biasing the training towards over-
represented buildings, we manually filtered out duplicate im-
ages. After filtering and the removal of images with no build-
ings present, the full combined dataset consisted of 2811 im-
age frames. We labelled all images by drawing bounding
boxes around each building present and storing the bound-
ing box positions. In total 49 173 building bounding boxes
were drawn around ∼ 2000 individual buildings (with some

buildings being present in multiple images). Given the ab-
sence of individual building location information, this num-
ber was approximated by overlaying Open Street Map build-
ing footprints with UAV GPS tracks where available. Bound-
ing boxes were drawn by a team of five including the lead
author, and all boxes were checked by the lead author. Each
box was then assigned one of three damage states, which are
described below. For consistency the damage states were as-
signed by the lead author. All labelling, modelling and anal-
ysis were conducted using MATLAB (The MathWorks Inc.,
2023).
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Figure 2. Example of the three damage states used in this work: no damage to minor damage, moderate damage and major damage.

2.2 Developing and applying a building damage state
framework

The first tephra fall building damage state framework was de-
veloped after the eruption of Pinatubo, Philippines, in 1991
(Spence et al., 1996) and was adapted from the macro seis-
mic intensity scale used to evaluate seismic damage (Karnik
et al., 1984). In the adapted framework damage ranges from
damage state (DS) 0 (DS0) – “no damage” – through to
DS5 – “complete roof collapse and severe damage to the
rest of the building”. Subsequent tephra fall building damage
state frameworks were modified from the work of Spence
et al. (1996) with changes in the wording made to reflect
the characteristics of the case study (Table 2). In the dam-
age state descriptions, damage to three critical aspects of a
building is described: the roof covering, the roof structure
and the vertical structure (Blong, 2003a; Hayes et al., 2019;
Jenkins et al., 2024). In our study, most images depict build-
ings from an at-nadir or close-to-nadir perspective, making
roof damage more discernible than damage to the vertical
structure. Thus, we generated a damage state framework that
is based on the proportion of observable damage to the roof,
as in the work of Williams et al. (2020). Our final frame-
work, which was developed over several iterations, classifies
building damage into three classes: no observable damage
to minor damage, moderate damage and major damage (Ta-
ble 3, Fig. 2). Damage states are deliberately generic so that
the range of possible damage to the range of different build-
ing types can be captured (Blong, 2003b). Our three classes
are respectively comparable to the DS0–1, DS2 and DS3–5

damage scales developed for ground surveys (Table 2). In the
frameworks presented in Table 2, DS1 describes light/minor
damage or superficial damage to non-structural components.
In our framework we included minor damage in the no dam-
age class since the difference between the two can be subtle
and not easily discernible through remote assessment. Fur-
thermore, buildings with minor damage are typically habit-
able and unlikely to require costly repairs; therefore, from
a response and recovery perspective, we considered them to
be better grouped with undamaged buildings. Our moderate
damage class requires damage to or collapse of up to 50 %
of the roof area, which closely fits with damage state 2 of
Blong (2003a), Hayes et al. (2019), and Jenkins et al. (2024).
The ground-based frameworks distinguish damage states 3
through 5 by increasing amounts of damage to the building
walls (Table 2). However, the quantity and severity of im-
pacted walls is not easy to differentiate in the majority of our
UAV images, which show buildings from a nadir or close-to-
nadir perspective. Therefore, in our framework, we grouped
these states together under “major damage”.

2.3 Model development

After labelling, we split the full combined image dataset
(2811 frames from the UWI-TV, GOV and SRC sets) into
train, validation and test sets (Fig. 3). Given that many im-
ages lacked GPS positions, we grouped images by location
to ensure independence among the sets. The partitioning was
chosen to include diversity in both the image sets (UWI-TV,
GOV, SRC) and the location, which affects the tephra fall
thickness. We aimed for a standard data split of 80 %, 10 %
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Table 2. A comparison of tephra fall building damage state frameworks available to date.

Pinatubo, Philippines, Rabaul caldera, Papua Calbuco, Chile, 2015 Manaro Vuoi, Ambae
1991 New Guinea, 1994 (Hayes et al., 2019) island, Vanuatu,
(Spence et al., 1996) (Blong, 2003a) 2017–2018

(Jenkins et al., 2024)

DS0 No damage No damage No damage

DS1 Light roof damage: Light damage: Minor damage to non- Light damage or
– Gutter damage. – Damage to gutters structural elements: damage to non-
– Few tiles and/or water tanks. – Damage to gutters. structural elements:
dislodged. – Cleanup required. – Few tiles dislodged. – Damage to gutters.

– Damage to fittings, e.g. – Damage to contents.
air-conditioning units – Dents or minor
and appliances. slumping in roof
– Damage to contents. cover.
– Dents in the roof
covering.

DS2 Moderate roof Moderate damage: Moderate damage but Moderate damage but
damage: – Bending or vertical structure and vertical structure and
– Bending or excessive damage to roof supports intact: roof supports intact:
excessive as much as half roof – As above. – As for DS1, plus:
deflection of roof sheeting and/or – Bending or excessive – Bending or excessive
sheeting or purlins. purlins. (e.g. perforation, damage (without
– No damage to – Damage to roof cracking) damage collapse) to up to half
principal roofing overhangs or (with or without of the roof covering.
supports. verandas. collapse) to up to half – Little or no damage to

– Slight roof of roof covering, e.g. roof support trusses
structural damage tiles, metal sheet. and rafters.
possible. – Little to no damage to – Damage to roof
– Interior requires principal roof supports, overhangs or
cleaning, repainting i.e. rafters or trusses. verandas.
and/or overhaul of – Damage to roof – Interior requires
electrical systems. overhangs or verandas. repair.
– Solar heater needs
replacing.

DS3 Severe roof damage Heavy damage: Severe damage to the Severe damage to the
and some damage to – Damage to roof roof and supports: roof and supports:
vertical structure: structure and some – As above. – As for DS2, plus:
– Severe damage or damage to walls. – Bending or excessive – Bending or excessive
partial collapse of – At least one wall (e.g. perforation, damage (with or
roof overhangs or damaged/misaligned. cracking) damage without collapse) to
verandas. – Collapse of part of (with or without more than half of the
– Severe ceiling collapse) to over half roof covering.
deformation of of roof covering. – Damage to any single
main roof sheeting. – Damage to any single principal roof
– Some damage to principal roof support and/or
roof supporting support and some some damage to
structure, columns, damage to walls. walls (less than half
trusses. – Severe damage or of walls affected).

partial collapse of – Severe damage or
roof overhangs or partial collapse of
verandas. roof overhangs or

verandas.
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Table 2. Continued.

Pinatubo, Philippines, Rabaul caldera, Papua Calbuco, Chile, 2015 Manaro Vuoi, Ambae
1991 New Guinea, 1994 (Hayes et al., 2019) island, Vanuatu,
(Spence et al., 1996) (Blong, 2003a) 2017–2018

(Jenkins et al., 2024)

DS4 Partial roof collapse Severe damage: Partial or total collapse Partial collapse of the
and moderate – Roof collapse and of the roof and roof and supports:
damage to rest of moderate to severe supports: – As for DS3, plus:
building: damage to rest of the – As above. – Collapse to less than
– Collapse of building. – Collapse of roof half of roof covering
sheeting but not – Failure of roof trusses covering and any and principal roof
truss. and supporting single principal roof support(s).
– Partial collapse of structure. support(s). – At least half of
sheeting and some – At least half of the – At least half of the external and/or
truss failure. external walls and/or external walls and/or internal walls
– Failure of internal walls internal walls deformed or
supporting deformed or deformed or collapsed.
structure. collapsed. collapsed.
– Moderate damage – For two-storey
to other parts of buildings, collapse of
building resulting external and internal
from roof collapse. walls of upper floor.

– Plumbing and other
services may be
damaged.

DS5 Complete roof Collapse: Building collapse: Building collapse:
collapse and severe – Collapse of roof and – As above. – As for DS4, plus:
damage to the rest supporting external – Collapse of roof, – Collapse of roof,
of the building: walls over more than principal roof principal roof
– Collapse of roof 50 % of floor area of supports and/or supports and/or
and supporting building. supporting external supporting external
structure over – Internal walls walls over > 50 % of walls over more
more than 50 % collapsed. floor area of building. than half of floor
of roof area. – Damage to floor area of building.
– Partition walls and/or foundation.
destroyed. – Structure is
– External walls irreparable, not
destabilised. salvageable, beyond

economic repair.

and 10 % for training, validation and testing; however given
the above constraints, this produced a split of 80, 8 and 12
(considering the number of bounding boxes and not the num-
ber of images). These datasets were used to develop our ap-
proach for building damage assessment. In line with studies
shown in Table 1, we chose to split the damage assessment
task into two subtasks: (i) building localisation (i.e. identi-
fication of building bounding boxes within the images) and
(ii) damage classification. While it is possible to develop a
model that can simultaneously locate and classify buildings
with different levels of damage, model training under this
approach can take significantly more time and resources to
converge when compared to an approach that splits the tasks
(Bouchard et al., 2022). Furthermore, decoupling the two
tasks allows for greater flexibility; for example, if building

locations are already known, then only the classification can
be run, speeding up the remote assessment.

In machine learning, the performance of a model and its
optimal hyperparameters can be highly dependent on the
characteristics of the dataset used for training, and hyperpa-
rameters that work well for one dataset may not work well
for another. Therefore, it is common practice to optimise hy-
perparameters, model architectures and training strategies to
find the configuration that performs the best for a particular
problem. For building localisation and damage classification
we conducted a series of independent experiments using dif-
ferent image pre-processing approaches, CNN architectures
and combinations of hyperparameters with the aim of iter-
ating towards the best experimental set-up (model selection:
Sect. 3.1.1 and 3.2.1). Each experiment consisted of three
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Table 3. The damage state framework developed for our UAV optical-imagery dataset.

Damage state Description of the damage

No damage to – No visible damage or
minor damage – up to 10 % of the roof covering missing; and/or

– no roof or structural collapse; and/or
– visible damage to non-structural elements, e.g. gutters or
decorative elements (fascia).
– Comparable to DS0–1 (Table 2).

Moderate – Up to 50 % roof area damaged (evidence of bending) or
damage collapsed; may include light damage to vertical structure

(e.g. wooden slats above windows broken).
– Comparable to DS2 (Table 2).

Major damage – More than 50 % roof area damaged or collapsed; may
include damage to the vertical structure including total
building collapse.
– Comparable to DS3–5 (Table 2).

Figure 3. The number of bounding boxes of each damage state in each UAV imagery dataset (UWI-TV, GOV, SRC) for each of the locations
in this study. Imagery was divided into three groups: training, validation and testing. The division of datasets between the three groups
was chosen to incorporate diversity in the image sets (UWI-TV, GOV, SRC) whilst keeping images from the same location together and
maintaining an approximate split of 80 % training, 10 % validation and 10 % testing.

replicates of a given combination of these aspects. Repli-
cates were conducted since the stochastic nature of the train-
ing process can cause models to converge at slightly differ-
ent points (Aggarwal, 2018). For each experiment the repli-
cate with the highest evaluation metric was the one compared
against the other experiments.

Once we identified the best-performing experimental set-
up for each task, we conducted K-fold cross-validation on
the combined training and validation sets to understand
how the choice of these affects model performance (see
Sect. 3.1.3 and 3.2.2).

Following model selection and cross-validation we calcu-
lated the performance of the best model identified for each
task on the test set. Finally, to see if better performance could
be achieved with more data available for training, we re-
trained the models on the combined training and validation
data before evaluating on the test data (evaluation on the test
set: Sect. 3.1.3 and 3.2.3). All stages of model development,
including model selection, cross-validation and final evalu-
ation, are shown in Fig. 4, and more information about the
specific experiments conducted for model selection is given
in Sect. S3.
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Figure 4. A schematic showing the full methodology for (a) developing a model for building localisation; (b) developing a sieve network,
which acts as an add-on to the building localisation model; (c) developing a model for damage classification; and (d) the building damage
assessment pipeline developed in this work. The pipeline operates on an orthomosaic image (to be generated separately) and incorporates the
final trained models for building localisation and two stages of damage classification along with all the necessary processing steps to link the
models. Dataset locations referred to are Bl – Belmont, Ch – Chateaubelair, Fc – Fancy, Ftz – Fitz Hughes, Ldn – London, OH – Orange Hill,
Ow – Owia, Pt – Point, Rb – Rabacca, Rc – Richmond, SB – Sandy Bay, Tr – Tourama and Tm – Troumaca. Pipeline schematic generated
using https://app.diagrams.net/ (last access: 27 September 2024).

Past studies have trained deep learning algorithms on
georeferenced images (i.e. each pixel has a geographical
location attached) (Gupta and Shah, 2020; Shen et al.,
2021; Bouchard et al., 2022) and non-georeferenced images
(e.g. Y. Li et al., 2019; Pi et al., 2020; Cheng et al., 2021).
In this work we labelled the non-georeferenced images and
trained models on these. This was done firstly to preserve the
multiple viewing angles that we have of each building, with
each image counting as a different data point, and secondly
due to the absence of GPS locations on a large portion of the
dataset. In an operational context, spatial information must
be tied to the assessed damage. Therefore, beyond the cre-
ation of distinct models for each task, we designed a compre-
hensive, fully automated pipeline that integrates models for
building localisation and damage classification. Our pipeline

contains all the necessary processing steps to guide images
through the separate models, enabling them to operate on
a georeferenced orthomosaic image (to be generated sepa-
rately) or on non-georeferenced images. When applied to an
orthomosaic image, the output from the pipeline is a georef-
erenced vector dataset that can readily be plotted in a GIS to
generate damage maps.

In Sect. 4 we apply the pipeline to assess building dam-
age in Owia, St Vincent, which received 50–90 mm of tephra
fall during the 2020–2021 eruption (Fig. 1). Owia was se-
lected out of the three possible test set locations (Fig. 3) due
to its large size and the existence of GPS locations that en-
abled the generation of a georeferenced orthomosaic image;
for this we used Agisoft’s Metashape software. To compare
the assessed building damage with tephra thickness, we used
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the TephraFits code (Biass et al., 2019) to identify the theo-
retical maximum accumulation using the isopachs from Cole
et al. (2023). This maximum accumulation and the isopachs
were interpolated using cubic splines, and the surface was
exported at a resolution of 10 m to provide a tephra thickness
value for each building.

2.3.1 Building localisation

For building localisation, we used the cutting edge two-stage
object detector Faster R-CNN (Ren et al., 2017). When ap-
plied to a test image containing the relevant objects, Faster
R-CNN outputs the positions within the image (X, Y , width
and height in pixels) of bounding boxes containing the ob-
ject and a confidence score for each box. As per customary
practice (Zou et al., 2019) we used a confidence of > 0.5,
meaning that only boxes with confidence greater than this
are output.

For object detection, to reduce model training and infer-
ence time, full-sized images were split into image blocks.
Experiments conducted as part of building localisation model
selection included variations in block size and the propor-
tion of block overlap, along with the development of sepa-
rate models for images captured with different viewing an-
gles, training for only the SRC portion of the dataset (images
mostly at nadir) and the combined UWI-TV–GOV portion
(images mostly off nadir). A total of 34 experiments were
conducted to include all credible combinations of the var-
ied hyperparameters and to find the best experimental set-up
(Table S2).

To improve the performance of the building localisation
model we developed a sieve network that runs as an add-on
to the Faster R-CNN building detector. The sieve network re-
duces false positives which occur when the detector predicts
a bounding box that does not have an overlapping labelled
building (i.e. detects a building when there is not one). More
details on its development are provided in Sect. S3.2.

2.3.2 Damage classification

We chose to divide building damage classification into two
separate classifications: Classifier 1 distinguishes between
“no damage to minor damage” vs. the combined classes of
“moderate damage” and “major damage”, while Classifier 2
further differentiates between “moderate damage” and “ma-
jor damage”. A hierarchical approach to classification has
been found to be effective when the number of samples is
limited or classes are unbalanced (D. Li et al., 2019; An et al.,
2021). We conducted experiments separately for Classifiers 1
and 2. Experiments consisted of fine-tuning two different
pre-trained CNNs to determine which was better and should
be used in the final models for each classifier: ResNet50 (He
et al., 2015) trained on the ImageNet dataset (Deng et al.,
2009) and GoogLeNet (Szegedy et al., 2015) trained on the
places365 dataset (López-Cifuentes et al., 2019). Fine-tuning

is a common approach to computer vision tasks where suffi-
ciently large, labelled datasets are not available for the task at
hand (typically hundreds of thousands of images are needed;
Aggarwal, 2018). During fine-tuning, the high-level features
that were learnt during the initial training on the large dataset
can be leveraged for the new task. In addition to the different
pre-trained CNNs used, experiments also considered differ-
ent ways of balancing the number of images for each dam-
age state class (oversampling the minority class, undersam-
pling the majority class and no balancing). When applied to
a test building image, the trained classifier outputs the high-
est probability class and the associated probability. A total of
15 experiments were conducted for each of the classification
tasks. For each experiment three replicates were conducted,
each consisting of a grid search to find the best combination
of learning rate, batch size and L2 regularisation. For more
information on this see Sect. S3.3.

2.3.3 Model evaluation metrics

For building localisation Faster R-CNN experiments, we
evaluated performance using the average precision (AP) at
an intersection over union (IoU) threshold of 0.5 and the
F1 score. AP, a common metric for evaluating object detec-
tion (Zou et al., 2019), measures how often the detector gets
it right (true positives, TPs) vs. wrong (false positives, FPs,
and false negatives, FNs). A TP occurs when a predicted
box overlaps a labelled box by more than 50 % (IoU > 0.5),
an FP when there is no overlapping labelled box and an
FN when the detector misses a labelled box. When the de-
tector is run on a test image, a confidence score is output for
each predicted box (0–1). Once the trained detector has been
run over the full test set, the precision (TP/TP+FP) and re-
call (TP/TP+FN) are calculated at different confidence score
thresholds, and the area underneath the resulting precision–
recall curve represents the precision (P ). AP depicts the
trade-off between precision and recall and provides an over-
all measure of detection performance. AP values range be-
tween 0–1, where a higher value indicates a better perfor-
mance.

For building localisation, the F1 score was calculated at
IoU and confidence thresholds of 0.5. The F1 score is calcu-
lated as F1 = 2× (precision× recall)/(precision+ recall). To
evaluate the performance of classification models, we used
the macro F1 score, which is the unweighted mean of the
F1 scores calculated for each of the classes. Similarly to
the AP, values of the F1 score range between 0–1, where a
higher value indicates a better performance.
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3 Results

3.1 Building localisation

3.1.1 Model selection

The five experiments with the highest average precision are
shown in Table 4, with the full list of experiments provided
in Table S2. Average precisions across the 34 experiments
ranged from 0.295 to 0.701 (Tables 4 and S2). We found that
block size played an important role in model performance;
out of the 34 experiments conducted, the top three used a
block size of 550× 550 pixels, which was the middle of the
sizes tested (450, 550, 650). We observed that models trained
on the full dataset performed better than models trained sep-
arately for the nadir (SRC) and off-nadir imagery sets (UWI-
TV and GOV sets combined) (Tables 4 and S2).

All trained sieve networks achieved macro and class
F1 scores that were > 0.973 (Table S3). The sieve networks’
efficacy at improving building localisation is demonstrated
by comparing the results of the best detector when applied to
the validation dataset pre-sieving (Table 4, Row ID 1) with
the post-sieving results. Prior to sieving there were a large
number of false positive detections, resulting in a precision
of 0.588, and after sieving these were reduced and the preci-
sion increased to 0.695 (Table 5).

3.1.2 Cross-validation

A cross-validation was conducted for the single best-
performing building localisation model (without the sieve
network) to understand how the choice of training and valida-
tion data affects performance. Analysing performance varia-
tions across different testing datasets can then inform recom-
mendations for future data collection strategies (see Sect. 6).

We found that the performance of the selected object de-
tector varied depending upon the location (Fig. 5a) or im-
agery dataset (Fig. 5b) used for testing. For models tested on
different locations, average precisions that are in line with
the AP achieved on the full validation set (0.701) were ob-
tained for Point and Fancy (Fig. 5a). The lowest AP val-
ues were for London (0.063) and Fitz Hughes (0.187). The
standard deviation (SD) (Fig. 5) shows the variability in per-
formance between the three replicates that were trained for
each test, which arises due to the stochastic nature of the
training process. For models tested on the different imagery
datasets individually the AP was low, with a mean value
across all datasets of < 0.2 (Fig. 5b). For all three locations
(Chateaubelair, Sandy Bay, London), AP for models evalu-
ated on the SRC dataset was lower than for the UWI-TV or
GOV datasets.

3.1.3 Evaluation on the test set

Evaluation of the best detection model on the test set, which
consists of completely unseen data from Owia, Richmond

and Troumaca (Fig. 3), produced an AP value that is the same
as the value for the validation data (0.701) (Table 6). To un-
derstand if a better model could be achieved with more data
available for training, we combined the training and valida-
tion data and used this to retrain the best experimental set-
up for the detector. Evaluation of the retrained model on the
test set resulted in an average precision increase from 0.701
to 0.751 for the non-sieved detector and from 0.668 to 0.728
for the sieved detector, showing that having more data avail-
able for training produced a better model (Table 6).

While the AP is higher for the retrained detector without
the sieve, the addition of the sieve network creates a better
balance between the precision and recall which is reflected
in the higher F1 score (Table 6). For the present application
equal importance is given to (1) making correct predictions
about building locations and (2) identifying as many build-
ings as possible. Consequently, striking the balance between
precision and recall is crucial. We therefore selected the re-
trained detector plus sieve network as the final building lo-
calisation model and the model that is incorporated into the
damage assessment pipeline (Table 6).

3.2 Damage classification

3.2.1 Model selection

The five experiments with the highest macro F1 score are
shown in Table 7, with the full lists provided in Tables S4
and S5. For Classifier 1, macro F1 scores across all 15 ex-
periments ranged from 0.753 to 0.836, while for Classifier 2
scores ranged from 0.776 to 0.810 (Tables 7, S4 and S5).
Models trained to differentiate between the no damage to mi-
nor damage and damaged classes performed better for the no
damage to minor damage class, while those trained to differ-
entiate between moderate and major damage performed bet-
ter for the major damage class (Table 7). The best-performing
models for both classifiers used the ResNet50 architecture
rather than GoogLeNet with an unbalanced dataset. For Clas-
sifier 1 the best model had F1 = 0.962 for the no dam-
age to minor damage class and F1 = 0.710 for the damaged
class, while for Classifier 2 the moderate damage class had
F1 = 0.770 and major damage F1 = 0.851.

3.2.2 Cross-validation

A cross-validation was conducted for both of the single best-
performing models for Classifiers 1 and 2 identified through
model selection. As was the case for the best building locali-
sation model, this was done to understand how the choice of
training and validation datasets affected model performance
and to understand how our model might perform on a new
dataset.

The performance of Classifier 1 for the no damage to
minor damage class is consistent across the distinct loca-
tions and datasets used for evaluation with mean F1 scores
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Table 4. Hyperparameters for the five experiments with the highest average precision conducted for building localisation, ordered by average
precision. The full table consisting of all 34 experiments is provided in the supplementary material. Columns marked with “1” contain yes/no
(Y/N) information. In the “training dataset” column, a signifies all of SRC, UWI-TV and GOV.

Row Block Mixed Block Block Training Max F1
ID size block overlap resized1 dataset average score

size1 precision

1 550 N 50 % Y a 0.701 0.669
2 550 N 20 % Y a 0.700 0.668
3 550 N 20 % Y a 0.700 0.642
4 650 N 50 % Y a 0.691 0.654
5 650 N 20 % Y a 0.678 0.670

Figure 5. Cross-validation of the best experimental set-up for building localisation models which are trained to predict building box positions
within the image. (a) The effect of changing the location used as the test set on detector average precision (AP) and (b) the effect of changing
the imagery dataset (UWI-TV, GOV, SRC) used as the test set on AP. (b) For the cross-validation of the imagery dataset, models are trained
on all data from that location excluding the location used for testing as indicated by the bar. For London there are data from the GOV dataset;
however the number of images in the SRC dataset is insufficient for training, so no bar is shown for GOV. The AP shown is the mean value
from three trained models with the same set-up, while the error bars show the standard deviation. Dashed black lines show the mean AP
value across all cross-validation trained models; dashed red lines show the best AP from the experiments (0.701; Table 4).

Table 5. Comparing the performance of the best building localisa-
tion model when applied to the validation dataset before and after
running the results through the sieve network.

Precision Recall F1

Best detector pre-sieving 0.588 0.776 0.669
Best detector post-sieving 0.695 0.730 0.712

between 0.913–0.983 for locations and 0.898–0.976 for
datasets (Fig. 6). For the damaged class there is more vari-
ety in the performance across the locations and datasets used
for evaluation. The mean F1 scores for the separate locations
range from 0.588 (Fitz Hughes) to 0.779 (Tourama), while
for the different datasets the range is 0.393 (London SRC) to
0.745 (Sandy Bay SRC).

For Classifier 2, the moderate damage class is more sen-
sitive to the choice of location and dataset used for the eval-
uation than the major damage class (Fig. 6). For the differ-

ent locations the mean F1 score ranged from 0.583–0.974.
Similarly to Classifier 1, the location with the lowest mean
F1 score is Fitz Hughes, whereas the highest score was pro-
duced for Orange Hill. For the different datasets the range for
the moderate damage class is between 0.522–0.746.

For the major damage class F1 scores for the distinct
locations are between 0.728–0.933, while for the different
datasets the range is between 0.711–0.867.

3.2.3 Evaluation on the test set

Evaluation of the single best models for Classifier 1 and Clas-
sifier 2 on the unseen test set produced macro F1 scores that
were comparable to the scores for the validation set: 0.829 for
Classifier 1 and 0.791 for Classifier 2 (Table 8). For Classi-
fier 2, retraining the model on the combined training and test-
ing data increased the macro F1 score from 0.791 to 0.838,
whereas for Classifier 1 retraining produced a slightly lower
macro F1 score (0.809 compared to 0.829). Nevertheless, the
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Figure 6. Cross-validation for Classifiers 1 and 2. For rows 1 and 3 the best experimental set-up was retrained on all the data from locations
in the combined training and validation data and evaluated on the location shown. For rows 2 and 4 the best experimental set-up was retrained
on all the data from the location shown and evaluated on each dataset (UWI-TV, GOV, SRC) separately. Each training was conducted three
times, the value plotted is the mean, and the error bars show the standard deviation. Dashed black lines show the mean F1 score across all
cross-validation trained models; dashed red lines show the best F1 score for each class from the experiments (Table 6).
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Table 6. Comparison of the best building localisation models’ performance when evaluated on the validation and the test sets. AP is average
precision, P is precision, and R is recall. Retrain models are trained on the combined training and validation sets. Results for the final model
that is used in the damage assessment pipeline are in bold.

Validation set Test set

AP P R F1 AP P R F1

Detector 0.701 0.588 0.776 0.669 0.701 0.604 0.776 0.679
(0.5 conf)

Detector plus sieve 0.681 0.695 0.730 0.712 0.668 0.606 0.757 0.673
(0.5 conf)

Detector retrain 0.751 0.642 0.816 0.719

Detector retrain plus sieve 0.728 0.710 0.782 0.744

Table 7. The top five experiments conducted for each of the building damage classifiers, ordered by the macro F1 score. The full list
consisting of all 15 experiments for each classifier is provided in Tables S4 and S5.

Classifier 1

Row Architecture Class balancing: F1 no F1 F1
ID not balanced/ damage to damaged macro

undersampled/ minor
oversampled damage

1 Resnet50 Not 0.962 0.710 0.836
2 Resnet50 Not 0.960 0.696 0.828
3 Resnet50 Not 0.957 0.699 0.828
4 Resnet50 Not 0.962 0.692 0.827
5 Resnet50 Under 0.951 0.646 0.799

Classifier 2

Row Architecture Class balancing: F1 moderate F1 major F1
ID not balanced/ damage damage macro

undersampled/
oversampled

1 Resnet50 Not 0.770 0.851 0.810
2 GoogLeNet Over 0.737 0.848 0.793
3 Resnet50 Over 0.749 0.835 0.792
4 Resnet50 Not 0.749 0.835 0.792
5 Resnet50 Under 0.735 0.845 0.790

retrained model for Classifier 1 achieved a higher recall on
the damaged class than the non-retrained model. In an op-
erational setting it is desirable to correctly classify as many
of the damaged buildings as possible, since in our pipeline
these will be passed onto Classifier 2; therefore we took the
retrained models for both classifiers as the final models and
the models that are incorporated into the damage assessment
pipeline.

4 Application of the full damage assessment pipeline:
assessing tephra fall building damage in Owia

In this work we have developed separate models for building
localisation and two stages of damage classification. How-
ever, in an operational context models need to work sequen-
tially; this led to the development of our damage assessment
pipeline (outlined in Fig. 4d). The pipeline operates on an
orthomosaic image and outputs a georeferenced vector set,
with the following attributes (in italics) for each building that
is detected: detection (box confidence score), ClassPred_1
(output class from Classifier 1, damaged or no damage to
minor damage), ClassProb_1 (the probability of that class),
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Table 8. Comparison of the best damage classification models’ performance when evaluated on the validation and the test sets. P is precision,
and R is recall. Retrain models are trained on the combined training and validation sets. Results for the final models that are used in the
damage assessment pipeline are in bold.

Validation set Test set

No damage to minor No damage to minor
damage Damaged damage Damaged

P R F1 P R F1 F1 P R F1 P R F1 F1
macro macro

Classifier 1 0.950 0.976 0.962 0.793 0.643 0.710 0.836 0.891 0.940 0.915 0.809 0.689 0.744 0.829
Classifier 1 retrain 0.899 0.894 0.896 0.717 0.728 0.722 0.809

Moderate damage Major damage Moderate damage Major damage

Classifier 2 0.769 0.660 0.770 0.852 0.825 0.851 0.810 0.903 0.663 0.765 0.730 0.927 0.817 0.791
Classifier 2 retrain 0.861 0.809 0.834 0.817 0.866 0.841 0.838

ClassPred_2 (output class from Classifier 2, moderate dam-
age or major damage; this is only run if Classifier 1 outputs
damage), ClassProb_2 (the probability of the class output by
Classifier 2) and damageState (the final damage state).

The tephra fall building damage map shown in Fig. 7a was
produced by overlaying the georeferenced vector that was
output by the pipeline with the orthomosaic image in QGIS.
Our remote damage assessment pipeline identified 442 build-
ings. Of these, 78 % (N = 343) were classified as having no
damage to minor damage, 9 % (N = 40) as having moder-
ate damage and 13 % (N = 59) as having major damage. We
observed that the two upper tephra fall thickness bins (70–
80 and 80–90 mm) both had a higher proportion of build-
ings with major damage compared to the lower thickness
bins (Fig. 7b and c), indicating a correlation between tephra
fall thickness and building damage, though it is not very pro-
nounced. These findings are discussed in Sect. 5.3.

The full pipeline took 1 h to run on a standard 16 GB RAM
2021 MacBook Pro with an M1 Pro chip. Most of the infer-
ence time was attributed to the building localisation module
in the pipeline, which may be bypassed if building footprints
are already available. When only the classifiers were run, the
time taken to run was reduced to < 5 min.

5 Discussion

In this work we have developed models for building local-
isation and two levels of damage classification for build-
ing damage resulting from tephra fall. Our final models
demonstrate strong performance for both building locali-
sation (AP= 0.728; F1 = 0.744) and damage classification
(Classifier 1, F1 = 0.809; Classifier 2, F1 = 0.838). De-
spite using post-event imagery only, which makes the task
more challenging than approaches using multi-temporal im-
agery, our results are comparable to existing optical-imagery
building damage assessments developed for various haz-
ards that use both mono-temporal and multi-temporal images

(F1 scores are between 0.656–0.868 for building localisation
and 0.650–0.981 for damage classification; Table 1).

5.1 Building localisation

Through running our building localisation experiments we
found that the pre-processing of images before detector train-
ing (particularly the block size) significantly influenced de-
tector performance. The block sizes tested were chosen as
a trade-off between reducing image size sufficiently to re-
duce computational cost and retaining a large enough size
such that buildings were not dissected unnecessarily. Given
that the optimum block size was the middle size of the
range tested, we are confident that this balance was achieved.
Cross-validation results demonstrated variability in average
precision (AP) for models trained on different locations and
imagery datasets (UWI-TV, GOV, SRC) (Sect. 3.1.2; Fig. 5).
Deep learning models are known to perform well when the
data they are evaluated on have similar characteristics to the
data they were trained on, although they have more diffi-
culty when working with “out-of-distribution” samples (Ben-
David et al., 2010). Given the relatively consistent building
typology across locations (most buildings observed are de-
tached single storey buildings with either a gable or hip-
shaped metal sheet roof; a lesser proportion have flat concrete
roofs), the differences in AP are likely due to observable vari-
ations in UAV altitude, off-nadir angles, tephra thicknesses
and varying training sample sizes.

The cross-validation AP was notably lower for the Lon-
don and Fitz Hughes datasets (Sect. 3.1.2). For the London
images (from SRC and GOV datasets) this is likely caused
by the smaller apparent size of buildings in these images
compared to the other locations due to the higher UAV al-
titude. Variations in object size within the training and test-
ing data have been found to affect the performance of deep
learning models developed for building localisation, with
models often performing better for objects that are the same
size as those in the training data (Nath and Behzadan, 2020;
Cheng et al., 2021; Bouchard et al., 2022). Fitz Hughes im-
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Figure 7. Application of our remote tephra fall building damage assessment pipeline to Owia, located in the north of St Vincent. (a) The
damage map produced by overlaying the spatial data generated by our pipeline onto the orthomosaic image; black lines are tephra isopachs
interpolated from Cole et al. (2023). (b) The proportion of damage states with increasing tephra thickness. (c) The proportion of tephra
thickness bins with increasing damage state. Coordinate reference system: WGS 84 (EPSG:4326). Satellite basemap © Google Maps 2024.

ages were all from the UWI-TV image dataset which con-
tributed just 17 % to the combined training and validation set
used for cross-validation. This dataset was collected closer
in time to the eruption; therefore as a whole had more tephra
on the ground than the SRC and GOV datasets, which af-
fects background colour. Furthermore, the UWI-TV dataset
viewed buildings mostly from an off-nadir perspective, while
the other datasets were predominantly nadir images. The ef-
fect of image background colour on localisation performance
is expected to be minor. Cheng et al. (2021) found that for
the same event localisation AP dropped from 65.6 to 63.3
when their model was tested on images containing build-
ings surrounded by vegetation compared to buildings with

an ocean backdrop, while Bouchard et al. (2022) suggested
that models quickly learn to ignore background pixels. On
the other hand, variation in off-nadir angles is a widely ac-
knowledged challenge of working with UAV or aerial images
(Cotrufo et al., 2018; Nex et al., 2019; Pi et al., 2020). Under-
representation of the mostly off-nadir UWI-TV images in the
training data may have impacted the model’s ability to recog-
nise such instances in the test data. During model develop-
ment we experimented with different models for the different
datasets (UWI-TV, GOV, SRC) but found that models devel-
oped on the combined dataset performed better than those de-
veloped on the separate datasets, and a combined model was
the one selected and used for cross-validation. Rather than
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suggesting that variations in off-nadir angle are not impor-
tant, this finding likely reflects the smaller size of the individ-
ual datasets compared to the combined datasets, meaning that
less information was available to learn from. The application
of sampling approaches like those used for the damage states
in the classification model development (over- or undersam-
pling) could have been applied to balance the data. How-
ever, the SRC dataset is much larger than either of the UWI-
TV and GOV sets (Fig. 3). Therefore we considered that
oversampling would introduce significant bias towards the
specific examples in the under-represented dataset, whereas
through undersampling we would lose a large amount of the
data that are available to learn from. Given these factors, we
did not use sampling approaches. Future work might con-
sider the application of generative AI algorithms such as gen-
erative adversarial networks (GANs) to expand the dataset
(e.g. Yi et al., 2018; Yorioka et al., 2020), although more
work needs to be done to quantify the diversity in the gener-
ated data.

The variability in cross-validation results for the build-
ing localisation model likely comes from a combination of
the above factors (differences in UAV altitude, off-nadir an-
gles, tephra thickness and varying training sample sizes) and
suggests that there was insufficient information in the train-
ing data for our detection models to perform well across the
range of characteristics present. This is supported by the in-
creased performance when the best localisation model was
retrained on the combined training and validation data. How-
ever, further investigation is required to separate the unique
effect of each aspect.

5.2 Damage classification

The final classification models achieved better performance
than the final localisation model with macro F1 scores
of 0.809 and 0.838 on the test data (Table 8). Cross-validation
showed that classification models were less sensitive than the
localisation model to the choice of datasets used for training
and evaluation (Sect. 3.2.2). We found that class-wise our
models performed better on the no damage to minor damage
class followed by the major damage class. This agrees with
other multi-class studies that have found the extremities of
the damage state scheme applied easier to classify than the
intermediate ones (Kerle et al., 2019; Valentijn et al., 2020).

5.3 Application of the full damage assessment pipeline:
assessing tephra fall building damage in Owia

The application of our remote damage assessment pipeline
to the town of Owia found that 22 % of buildings that re-
ceived tephra accumulation in the range of 50–90 mm ex-
perienced moderate damage or major damage. Within this
range, the relationship between tephra thickness and building
damage was not as pronounced as in other studies (Blong,
2003a; Hayes et al., 2019; Jenkins et al., 2024). This may

be attributed to the small geographic area and therefore
small range of tephra thicknesses considered in our appli-
cation when compared to other studies. In the damage as-
sessments of Blong (2003a), Hayes et al. (2019), and Jenk-
ins et al. (2024), buildings received ∼ 100 to 950 mm, trace
to 600 mm and trace to > 220 mm, respectively. Spence et
al. (1996) assessed building damage over a similarly narrow
range of tephra thicknesses to this work (∼ 150–200 mm)
and found that there was considerable variation in the level
of damage despite the majority of buildings having a metal
sheet roof. The spacing between the principal roof supports
(roof span) was found to be important for the amount of dam-
age observed, with long-span buildings experiencing higher
levels of damage than short-span ones (Spence et al., 1996).
There are limited long-span buildings in the Owia case study;
however additional characteristics such as construction style
and material, building layout, age, condition, height, and roof
pitch can all affect a building’s ability to withstand tephra
loading (Spence et al., 1996; Pomonis et al., 1999; Blong,
2003a; Jenkins et al., 2014). Variation in these characteris-
tics across Owia could be responsible for the observed varia-
tion in building damage over the narrow range of thicknesses
considered.

If we convert tephra thickness to loading, we can compare
the results of our assessment with existing relationships be-
tween tephra loading and damage for similar building types.
Using a density of 1500 kg m−2 (Cole et al., 2023) suggests
that a loading of at least 75–135 kg m−2 was applied to build-
ings for the range of thicknesses considered (50–90 mm).
Census data for Owia states that 90 % of buildings have metal
sheet roofs (SVG population and housing census, 2012), with
the remaining 8 % comprised of reinforced concrete roofs
and 2 % “other material”. Given the higher resistance of the
8 % of buildings with non-metal-sheet roofs in Owia, we
might expect vulnerability models developed for metal sheet
roofs to overestimate damage in the town. Fragility functions
developed for Indonesian style buildings with metal sheet
roofs (Williams et al., 2020) calculate a 48 %–80 % probabil-
ity of Owia buildings experiencing damage exceeding DS2,
higher than the 22 % experiencing moderate or major dam-
age in our study. Fragility curves for roof failure (major dam-
age) of old or poor-condition metal sheet roofs (Jenkins et
al., 2014) calculate that just over 10 % of buildings in Owia
would experience sufficient loading for roof collapse, com-
parable to the 13 % observed in our study. These compar-
isons highlight some of the challenges associated with using
vulnerability models developed for different locations. More-
over, they reiterate the need for the collection of both post-
event impact data and building typology information that can
be used to increase the amount of empirical data available for
vulnerability model development and allow regional vulner-
ability models to be developed for specific building types.

Like the studies presented in Table 1, our pipeline consists
of separate models for localisation and damage classification.
One of the benefits of this is that in locations where precise
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building location information is available for the assessment
area, the localisation step can be bypassed and only the clas-
sifiers run. This not only enhances overall performance but
also significantly reduces computation time. Furthermore, ei-
ther of the classifiers can be run independently and/or com-
bined with other damage assessment procedures; for exam-
ple, an initial SAR-based assessment (e.g. Yun et al., 2015;
Jung et al., 2016) could be followed with our Classifier 2 to
provide additional granularity to the severity of the damage
at a building level rather than a pixel level.

5.4 Generalisability to other locations

Our models have performed well for images collected on the
island of St Vincent where building typologies are relatively
consistent. We therefore expect that our models will perform
well in other locations with similar building types, such as the
other islands in the Lesser Antilles. This hypothesis should
be validated through further testing. In the absence of addi-
tional UAV datasets that include damaged buildings, testing
can be done by conducting pre-event surveys to test the per-
formance of the building localisation model and Classifier 1
for the no damage to minor damage class. While this is un-
able to assess the ability of our approach to classify damage,
it would provide some indication of performance following
an event in a new location.

To develop a model that is robust to the diverse building
types found across the world necessitates assembling diverse
datasets showcasing potential variations in building types
and the associated tephra fall damage. To our knowledge the
UAV datasets described in this work are the first of their kind.
However, the increasing utilisation of UAVs during and after
volcanic events suggests the possibility of the emergence of
more datasets in the years to come. Our model represents
a crucial initial step towards the operational implementation
of this approach globally. The compilation of global UAV
tephra fall building damage datasets will facilitate the ongo-
ing refinement of building damage assessment approaches,
including the one presented here. In pursuit of this objective,
our models stand ready for retraining as more data become
available. While our approach leverages images captured un-
der a spectrum of flight conditions (off-nadir angle, altitude,
flight trajectory), our investigation has both pinpointed spe-
cific conditions that are best suited for capturing building
damage, which are detailed in Sect. 6, and highlighted the
importance of consistency in data collection.

5.5 Improving model performance and future
perspectives

The advantages of acquiring additional UAV datasets both
before and after an event have been outlined in Sect. 5.4.
In addition to this, pre-event imagery can be used to con-
struct building inventories manually or using machine learn-
ing methods (e.g. Iannelli and Dell’Acqua, 2017; Gonzalez

et al., 2020; Meng et al., 2023). Prior to an eruption, infor-
mation about how the building typologies present will re-
spond under certain tephra loadings (i.e. the forecasted dam-
age state) can be obtained through the application of fragility
functions. This information could enhance our model by
serving as prior information that is updated with outputs from
our remote damage assessment using Bayesian statistics. A
similar approach has been suggested for updating the United
States Geological Survey’s (USGS) Prompt Assessment of
Global Earthquakes for Response (PAGER) system (Noh et
al., 2020). The framework provides a structured way of in-
corporating the PAGER-forecasted loss with the potentially
noisy and incomplete observations of loss in the early stages
of response.

Alternatively, with ample individual building inventory
data available, tailored damage classification models for spe-
cific building typologies could be developed and applied. The
rationale is that a model dedicated to a specific building type
is expected to outperform a generic multi-typology model.

In this work, we established a three-class damage state
framework. Existing frameworks that were developed for
ground-based tephra fall damage assessment split damage
into five damage state classes and one non-damage class
(Spence et al., 1996; Blong, 2003a; Hayes et al., 2019; Jenk-
ins et al., 2024); however in our preliminary analyses we
found that (1) in many images we were unable to confidently
apply a six-class scheme due to only being able to see one
side of the building and (2) there were not enough exam-
ples of each damage state class to be able to train a six-class
model. With the addition of future tephra fall building dam-
age datasets it may be possible to apply a finer-resolution
damage state framework that can provide more detail on the
observable damage. However, it is unlikely that the resolu-
tion of ground surveys can be achieved using optical im-
agery, since lower damage states are still difficult to resolve
even with very high-resolution images (Cotrufo et al., 2018).
Some studies have incorporated 3D point-cloud information
into analyses (Cusicanqui et al., 2018; Vetrivel et al., 2018).
While these approaches have shown potential and could po-
tentially be used to provide additional granularity to our dam-
age states, we opted against integrating point cloud analy-
ses into our model due to the considerably longer processing
times associated with such an approach. Longer processing
times would undermine the swift processing requirement in-
herent in our methodology.

5.6 Caveats

During the assignment of building damage states, uncer-
tainties arose, particularly concerning the interpretation of
tarpaulins and pre-existing damage. For tarpaulins, the am-
biguity arose from whether these were either strategically
placed prior to the eruption as preventative measures to cause
tephra to slide off the roof more easily or placed post-event
to cover damage caused by tephra fall. Additionally, in cer-
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tain instances, distinguishing between a collapsed roof and
a section of the building initially lacking roofing material –
possibly functioning as a walled storage area – proved chal-
lenging. Pre-existing damage not related to volcanic activity
or buildings that were under construction at the time of im-
age acquisition were considered as damaged and classified
accordingly. The presence of buildings under construction
at the time of image acquisition has been recognised as a
challenge in studies using mono-temporal imagery (Nex et
al., 2019; Cheng et al., 2021). Pre-event imagery would have
provided clarity on both of these matters; however this was
not available at high enough resolution for this region.

The majority of images used for training and evaluating
our models came from the SRC dataset, which was collected
several months after the eruption. As a result, the majority of
images do not have much tephra present. In an operational
context, to expedite the recovery process, data would ide-
ally be collected as quickly after the eruption as is safe to
do so; therefore more tephra would be present in the images.
Given the compound effects of variations in flight angle, im-
age lighting, resolution and also the presence of tephra, we do
not have enough information to test the effect of tephra thick-
ness on model performance, and caution should be taken
when using the model on data collected at different times
after the eruption.

6 Recommendations for UAV building damage
assessment data collection

In the future we advocate for the adoption of a standardised
protocol for data collection for the purpose of UAV damage
assessment. While our model was developed using a diverse
dataset, there were some disparities in performance across
distinct data types. Consequently, the standardisation of im-
age collection serves two purposes: (1) to allow the best
results to be achieved when implementing our models and
(2) to collect data that are rich in information useful for dam-
age assessment with the aim of working towards the devel-
opment of global datasets for tephra fall damage. For best
results we have the following recommendations:

– The bulk of our dataset was collected several months
after the eruption of La Soufrière; however, for gener-
ating a global dataset that can be used for response and
recovery, models should ideally be trained on images
collected shortly (days to weeks) after an event.

– Flight paths should be pre-programmed to ensure com-
prehensive coverage of the area and limit bias associ-
ated with over-representation of certain buildings. Ide-
ally two flights would be conducted with two sets of per-
pendicular flight lines to capture buildings from a differ-
ent perspective. GPS positioning should be enabled.

– A fixed altitude of 50–80 m above the ground should be
maintained where possible. This is appropriate to cap-

ture sufficient data for accurate damage classification
based on the established framework and strikes a bal-
ance between detailed information capture and overall
coverage. In mountainous areas this may not be achiev-
able for some UAV types, in which case a uniform
height should be maintained such that the size of build-
ings is consistent across image frames.

– We suggest a slightly off-nadir camera positioning (∼ 5-
15°), which is sufficient to capture any bending in the
roof that may not be captured from a nadir perspective.

– Overlap between images should be enough to generate
orthoimages; 80 % forward and 70 % lateral overlap is
sufficient.

In addition to the development of optimum post-event data
collection practises we advocate for the collection of pre-
event UAV datasets. Ideally, pre- and post-event imagery is
collected using the same flight paths, altitudes and camera
positioning. Pre-event datasets serve multiple purposes:

– They facilitate the creation of building inventories.

– They enable precise comparison of pre- and post-event
imagery, reducing uncertainty regarding initial building
conditions.

– They support the development of high-resolution
change-detection models, potentially yielding more ac-
curate results than relying solely on post-event imagery.

– They provide an opportunity for UAV pilots to gain
experience in capturing building datasets during “quiet
times”.

7 Conclusions

Following a large tephra fall event, building damage assess-
ment needs to be conducted rapidly for the purpose of re-
sponse and recovery and for the collection of data that can
be used to forecast building damage from future events.
By leveraging post-event optical imagery obtained after the
2021 eruption of La Soufrière volcano on the island of
St Vincent, as well as convolutional neural networks, we have
developed an automated tephra fall building damage assess-
ment pipeline. The pipeline incorporates models for build-
ing localisation and two distinct levels of damage classifi-
cation: distinguishing between no damage to minor damage
and damage, as well as between moderate and major damage,
which were trained and evaluated separately. When provided
with UAV optical imagery, our pipeline can rapidly generate
spatial building damage information. Our models perform
well for the St Vincent datasets and are anticipated to per-
form well in locations where building typologies are similar,
but this requires more testing to understand the limits of their
application.
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Model building localisation cross-validation results under-
score the influence of factors such as UAV altitude, off-nadir
angles, tephra thickness and training sample sizes on model
performance, while results show that damage classification
models were affected by these factors to a lesser extent. We
acknowledge the challenges posed by diverse datasets and
by limited data, and we propose a series of recommenda-
tions to guide the collection of future UAV building damage
datasets. In addition to the collection of post-event datasets
we advocate for the collection and incorporation of pre-event
datasets, which can be used to support the advancement of
change-detection models, to partially evaluate the models
presented here during quiescent times and to develop build-
ing inventories that can be used along with fragility functions
for forecasting building damage.

Our research marks a step forward in tephra fall build-
ing damage assessment, offering a versatile and effective
pipeline with the potential for regional applicability. As the
field of UAV-based damage assessment in volcanology con-
tinues to evolve, our work lays a foundation for further ad-
vancements, contributing to the resilience of communities in
the face of volcanic eruptions.
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