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S1.	Examples	of	images	used	for	model	development		

	
Figure	S1.	Representative	example	image	from	the	UWI-TV-Troumaca	dataset.	Image	credit:	

Javid	Collins	(2021)	for	The	UWI	Seismic	Research	Centre.			

	

	

	
Figure	S2.	Representative	example	image	from	the	UWI-TV-Troumaca	dataset.	Image	credit:	

Javid	Collins	(2021)	for	The	UWI	Seismic	Research	Centre.			

	

	

	



	
Figure	S3.	Representative	example	images	from	the	GOV-	Richmond	dataset.	Image	credit:	

Damage	Assessment	Team,	the	Government	of	St	Vincent	and	the	Grenadines	Ministry	of	

Transport,	Works,	Lands	and	Surveys,	and	Physical	Planning	(2021).	

	

	
Figure	S4.	Representative	example	images	from	the	SRC-	Richmond	dataset.	Image	credit:	Richard	

Robertson	(2021)	for	The	UWI	Seismic	Research	Centre.	

	

	



	
Figure	S5.	Representative	example	images	from	the	SRC-	Owia	dataset.	Image	credit:	Richard	

Robertson	(2021)	for	The	UWI	Seismic	Research	Centre.	

	

	

S2.	Image	labelling		
	

To	 train	models	 for	building	 localisation	 and	 two	 levels	 of	 damage	 classification	we	 labelled	

2,811	 image	 frames.	 In	 total	 49,173	 building	 bounding	 boxes	 were	 drawn	 around	 ~2,000	

individual	buildings	(with	some	buildings	being	present	 in	multiple	 images).	Bounding	boxes	

were	drawn	by	a	team	of	five	including	the	lead	author,	and	all	boxes	were	checked	by	the	lead	

author.	Boxes	were	drawn	to	fit	the	buildings	closely	and	minimise	background	information.	In	

areas	where	buildings	are	close	together,	off-nadir	images	may	include	parts	of	other	buildings.		

Nevertheless,	this	was	not	considered	an	issue	since	deep	learning	models	for	object	localisation	

will	quickly	learn	to	ignore	background	pixels	(Bouchard	et	al.,	2022).	

	

In	some	images	tarpaulins	can	be	seen	partially	or	fully	covering	roofs	(~30	buildings).	These	

were	potentially	placed	to	cover	damage	that	occurred	during	the	eruption,	including	corrosion	

due	 to	 prolonged	 presence	 of	 tephra	 on	 metal	 roofs	 or,	 holes	 generated	 by	 nails	 lifted	 out	

through	 sub-optimal	 cleaning	 approaches	 (VM	 personal	 communication).	 Alternatively,	

tarpaulins	may	have	been	placed	as	a	preventative	measure	to	help	shed	tephra	(e.g.,	Ambae	



Vanuatu,	Jenkins	et	al.,	2024).	Erring	on	the	conservative	side,	we	considered	buildings	with	a	

tarpaulin	to	be	damaged;	we	assessed	the	severity	of	the	damage	for	each	building	based	on	the	

level	of	visible	deformation.	We	assigned	buildings	with	a	tarpaulin	and	no	visible	deformation	

to	the	moderately	damaged	class	and	those	with	a	tarpaulin	and	visible	deformation	to	the	major	

damage	class.		

	

	

Table	S1.	The	approximate	number	of	buildings	covered	by	 the	UAV	data	 for	each	 location	and	

dataset.	Number	was	approximated	by	overlaying	the	UAV	track	with	building	footprints	obtained	

from	Open	Street	Map	and	does	not	consider	the	off-nadir	angle	of	the	drone.	For	Richmond	there	

are	no	OSM	buildings	overlapping	with	the	SRC	UAV	track	(missing	from	OSM).		

	
Location	 SRC	 GOV	

Chateaubelair	 933	 284	

Fancy	 240	 	

Fitzhughes	 	 	

SandyBay	 183	 310	

Tourama	 178	 	

Belmont	 18	 	

London	 71	 66	

Point	 70	 	

	 Rabacca	dry	river	 15	 	

Orange Hill	 12	 	

Owia	 273	 	

Richmond	 	 29	

Troumaca	 	 	

 
	
	
	
	
	
	
	
	
	
	
	
	
	



S3.	Model	selection	
	

For	each	of	the	three	tasks	in	our	tephra	fall	building	damage	assessment	approach	(building	

localisation,	classification	1	and	classification	2)	we	ran	a	series	of	experiments	with	the	goal	of	

iterating	towards	the	best	model.	This	involved	training	and	evaluating	models	with	different	

image	 preprocessing	 approaches,	 CNN	 architectures,	 and	 combinations	 of	 hyperparameters.	

One	 experiment	 consisted	of	 three	 replicates	 of	 a	 given	 combination	of	 these	 aspects.	 Three	

replicates	were	conducted	since	the	stochastic	nature	of	the	training	process	can	cause	models	

to	converge	at	slightly	different	points	(Aggarwal,	2018).	For	each	experiment	the	replicate	with	

the	 highest	 evaluation	 metric	 was	 the	 one	 compared	 against	 the	 other	 experiments.	 In	 the	

following	we	provide	details	on	the	experiments	conducted	for	each	task	and	present	the	results.		

	

S3.1.	Building	localisation		

S3.1.1.	Method	

For	building	localisation,	we	used	the	cutting	edge	two-stage	object	detector	Faster	R-CNN	(Ren	

et	al.	2017).	Faster	R-CNN	is	an	improvement	on	the	Fast	R-CNN	algorithm	proposed	by	Girshick,	

(2015).	The	improvement	comprises	an	initial	region	proposal	network	(RPN)	which	speeds	up	

performance.	 In	Faster	R-CNN,	 image	 feature	maps	are	extracted	by	passing	 the	 input	 image	

through	a	pretrained	backbone	CNN.	The	RPN	then	utilises	these	features	to	generate	proposals	

for	potential	object-containing	areas,	this	is	achieved	by	tiling	a	set	of	anchor	boxes	of	assorted	

sizes	 across	 the	 extracted	 feature	 maps.	 The	 resulting	 region	 proposals	 are	 subsequently	

processed	by	the	Fast	R-CNN	module,	which	includes	a	classifier	that	is	used	to	determine	the	

probability	of	the	proposal	containing	an	object,	and	a	regressor	that	is	used	for	adjusting	the	

proposal	box	positions. 

 
Image	preprocessing	
 
To	reduce	Faster	R-CNN	detector	training	and	implementation	time	we	split	full-sized	images	

(1920	 x	 1080	 or	 4056	 x	 3040)	 into	 overlapping	 blocks	 and	 resized	 them.	 We	 conducted	

experiments	using	two	different	block	overlap	proportions	(20%	and	50%)	and	four	different	

block	sizes:	4502,	5502	and	6502	pixels,	and	a	mixed	block	size.	Block	sizes	were	chosen	as	a	

tradeoff	between	meeting	the	required	input	dimensions	of	the	backbone	CNN	(224	x	224	pixels)	

without	significant	loss	of	resolution	through	shrinking	and,	 limiting	the	number	of	buildings	

that	 were	 dissected.	 The	mixed	 block	 size	 was	 developed	 based	 on	 the	 observation	 that	 in	



London	SRC,	Orange	Hill	SRC,	all	 the	GOV	datasets	and	Chateaubelair	UWI	datasets	buildings	

appear	 much	 smaller	 than	 in	 the	 other	 sets	 (Section	 S4).	 For	 the	 image	 sets	 with	 ‘smaller’	

buildings	we	split	the	full-sized	images	into	blocks	of	224	x	224	pixels	directly,	(as	opposed	to	

splitting	into	boxes	of	4502/5502	/6502	and	resizing)	leading	to	what	we	term	‘mixed	block	size’	

experiments.	We	also	looked	at	the	effect	of	removing	very	small	boxes	from	the	data	since	small	

objects	(<32	x	32	pixels)	are	notoriously	hard	to	detect	(Lin	et	al.,	2014).	To	increase	variety	in	

the	training	data	we	applied	data	augmentation	consisting	of	random	flipping	along	the	X	axis,	

scaling	 between	 0.5-1.5	 times	 the	 original	 image,	 and	 random	colour	jitters	 (hue=0.05,	

saturation=0.2,	brightness=	0.3);	these	were	chosen	to	represent	realistic	variations	that	can	be	

expected	in	future	data.	

	

Model	training	
 
In	all	experiments	the	backbone	CNN	used	in	the	Faster	R-CNN	detector	was	ResNet50	trained	

on	the	ImageNet	dataset.	To	understand	if	better	performance	could	be	achieved	using	a	model	

that	had	already	‘seen’	the	building	images	before,	we	also	conducted	experiments	using	the	best	

model	 out	 of	 the	 classification	 experiments	 as	 the	 backbone.	 The	 full	 UAV	 imagery	 dataset	

consists	of	 images	acquired	at	different	viewing	angles,	 the	SRC	dataset	consists	of	buildings	

viewed	from	nadir,	while	the	GOV	and	UWI	sets	include	very	off	nadir	imagery.	To	understand	if	

a	 better	 model	 could	 be	 obtained	 by	 separating	 the	 data	 based	 on	 viewing	 angle,	 we	

experimented	with	the	development	of	models	for	only	the	SRC	portion	or	only	the	GOV	and	UWI	

(combined)	portions	of	 the	dataset.	 In	all	models	we	used	stochastic	gradient	descent	as	 the	

optimizer,	 and	 an	 initial	 learning	 rate	 of	 0.001.	 Stochastic	 gradient	 descent	 is	 a	widely	 used	

optimizer,	 while	 the	 learning	 rate	 was	 determined	 through	 preliminary	 analysis.	 To	 avoid	

overfitting	models	to	the	training	data,	we	used	early	stopping	with	a	patience	of	five	iterations,	

meaning	that	when	the	loss	calculated	during	training	starts	to	increase,	training	is	stopped.	We	

used	five	anchor	boxes	based	on	tests	that	showed	the	performance	was	not	improved	by	using	

any	 more,	 while	 the	 time	 taken	 to	 train	 was	 greatly	 increased.	 The	 optimum	 anchor	 box	

dimensions	were	calculated	by	performing	K-means	clustering	on	 the	bounding	boxes	 in	 the	

training	data.		

	



S3.1.2.	Results	

Results	from	localisation	experiments	evaluated	on	the	validation	data	are	shown	in	Table	S2	

sorted	 by	 average	 precision	 from	 high	 to	 low.	 APs	 ranged	 from	 0.295	 to	 0.701.	 The	 best	

experiment	(AP	of	0.701)	used	a	block	size	of	550	x	550,	with	blocks	resized	to	meet	the	size	of	

the	backbone	CNN,	with	an	overlap	of	50%;	no	pretraining	was	conducted	and	very	small	boxes	

were	removed	from	the	data.		

	

We	found	that	block	size	had	an	impact	on	model	performance:	experiments	with	the	smallest	

block	size	 (450	x	450)	had	 the	poorest	performance,	 in	general	 the	550-block	size	produced	

better	results.	The	removal	of	very	small	boxes	(<	32	x	32	pixels)	from	the	data	had	a	large	effect	

on	 the	 results,	 all	 experiments	with	 these	boxes	 removed	were	at	 the	 top	of	 the	 table,	while	

experiments	that	did	not	remove	the	small	boxes	were	at	the	bottom	(Table	S2).	For	both	the	

550	and	650	block	sizes,	experiments	trained	and	evaluated	on	only	the	SRC	data	had	a	higher	

AP	 than	 the	 equivalent	 experiment	 trained	 and	 evaluated	 on	 all	 three	 datasets,	 while	 the	

experiments	trained	and	evaluated	on	the	UWI	and	GOV	data	had	a	lower	AP	than	both.	Larger	

block	overlap	(50	%	as	opposed	to	20%)	produced	higher	AP	for	the	550	and	650-block	size.			

	

 
Table	S2.	Experiments	conducted	for	building	localisation	using	the	Faster	R-CNN	object	detector	

sorted	from	high	to	low	by	the	average	precision.	For	each	experiment	three	models	were	trained	

and	evaluated,	the	model	that	produced	the	maximum	average	precision	is	presented	in	the	table.		

 
Row	
id	

Block	
size	

Mixed	
block	
size	

Block	
overlap	

Block	
resized	

Pretrained	
on	best	
classifier	

Remove	
boxes	<	
32	x	32	

All	
training/	
UWI&GOV/	

SRC	

Max	
Average	
Precision	

F1	
score	

1	 550	 N	 50%	 Y	 N	 Y	 all	 0.701	 0.669	

2	 550	 N	 20%	 Y	 N	 Y	 all	 0.700	 0.668	

3	 550	 N	 20%	 Y	 Y	 Y	 all	 0.700	 0.642	

4	 650	 N	 50%	 Y	 N	 Y	 all	 0.691	 0.654	

5	 650	 N	 20%	 Y	 N	 Y	 all	 0.678	 0.670	

6	 650	 N	 20%	 Y	 Y	 Y	 all	 0.667	 0.528	

7	 650	 Y	 20%	 Y	 Y	 Y	 all	 0.660	 0.620	

8	 550	 N	 50%	 Y	 Y	 Y	 all	 0.654	 0.668	

9	 550	 N	 20%	 Y	 Y	 Y	 all	 0.651	 0.644	

10	 550	 Y	 20%	 Y	 N	 Y	 all	 0.643	 0.639	



11	 650	 N	 50%	 Y	 Y	 Y	 all	 0.643	 0.676	

12	 650	 Y	 20%	 Y	 N	 Y	 all	 0.637	 0.556	

13	 650	 Y	 20%	 Y	 N	 N	 SRC	 0.637	 0.604	

14	 650	 Y	 20%	 Y	 Y	 N	 GOV&UWI	 0.600	 0.660	

15	 550	 Y	 20%	 Y	 Y	 N	 SRC	 0.566	 0.585	

16	 550	 Y	 20%	 Y	 N	 N	 SRC	 0.560	 0.552	

17	 550	 Y	 20%	 Y	 N	 N	 all	 0.559	 0.591	

18	 650	 Y	 20%	 Y	 N	 N	 all	 0.550	 0.578	

19	 550	 Y	 20%	 Y	 Y	 N	 all	 0.541	 0.554	

20	 650	 Y	 20%	 Y	 Y	 N	 all	 0.520	 0.614	

21	 650	 Y	 20%	 Y	 Y	 N	 SRC	 0.517	 0.535	

22	 650	 Y	 20%	 Y	 N	 N	 GOV&UWI	 0.515	 0.608	

23	 650	 N	 20%	 N	 Y	 N	 all	 0.502	 0.506	

24	 550	 Y	 20%	 Y	 Y	 N	 GOV&UWI	 0.501	 0.578	

25	 550	 N	 20%	 N	 N	 N	 all	 0.487	 0.435	

26	 550	 N	 20%	 N	 Y	 N	 all	 0.472	 0.532	

27	 650	 N	 20%	 N	 N	 N	 all	 0.459	 0.532	

28	 650	 N	 50%	 Y	 Y	 N	 all	 0.449	 0.579	

29	 550	 Y	 20%	 Y	 N	 N	 GOV&UWI	 0.444	 0.581	

30	 650	 N	 50%	 Y	 N	 N	 all	 0.433	 0.53	

31	 450	 N	 20%	 N	 Y	 N	 all	 0.374	 0.477	

32	 450	 N	 20%	 Y	 N	 N	 all	 0.325	 0.481	

33	 450	 N	 20%	 N	 N	 N	 all	 0.320	 0.458	

34	 450	 N	 20%	 Y	 Y	 N	 all	 0.295	 0.464	
	
 
 
 
 
 
 
 
	
	
	
	
	
	
	
	



S3.2.	The	sieve	network	

S3.2.1	Method	
 
To	improve	the	performance	of	the	building	localisation	model	we	developed	a	sieve	network	

that	runs	as	an	add	on	to	the	Faster	R-CNN	building	detector.	Bounding	boxes	produced	by	the	

detector	are	passed	to	the	sieve	network	to	filter	out	detections	that	are	false	positives.	A	false	

positive	occurs	when	the	detector	predicts	a	bounding	box	that	does	not	have	an	overlapping	

labelled	building	(i.e.,	detects	a	building	when	there	is	not	one).		

	

The	dataset	used	for	training	and	evaluating	the	sieve	network	consists	of	randomly	cropped	

background	samples	 from	full	sized	 images	 in	 the	 training	and	validation	sets.	Samples	were	

cropped	from	each	of	the	datasets,	and	samples	containing	buildings	were	removed	until	100	

no-building	samples	were	achieved	for	each	dataset.	These	samples	were	supplemented	with	an	

additional	 10%	 targeted	 image	 samples	 on	 the	 observation	 that	 trained	 detectors	 were	

mistakenly	 detecting	 cars	 and	 boats.	 For	 the	 building	 dataset	we	 stochastically	 sampled	 the	

equivalent	number	(n=990	train,	660	validation)	from	the	building	images.	Experiments	for	the	

sieve	 network	 were	 conducted	 using	 two	 different	 CNN	 architectures	 (ResNet50	 and	

GoogleNet),	 and	 by	 undertaking	 a	 grid	 search	 to	 find	 the	 best	 hyperparameter	 combination	

(learning	rate,	batch	size,	and	L2	regularisation).	A	total	of	 five	experiments	were	conducted,	

each	consisting	of	three	replicates.	

	

Experiments	 for	 the	sieve	network	consisted	of	 fine-tuning	 two	different	pretrained	CNNs	 to	

determine	which	was	better	and	should	be	used	in	the	final	model:	ResNet50	(He	et	al.,	2015)	

trained	on	the	ImageNet	dataset	(Deng	et	al.	2009),	and	GoogleNet	(Szegedy	et	al.,	2015)	trained	

on	the	places365	dataset	(López-Cifuentes	et	al.,	2019).	For	each	experiment	we	conducted	a	

grid	search	for	the	best	hyperparameters:	learning	rate	(0.0001,	0.001,	0.01,	0.1),	which	controls	

the	size	of	the	steps	taken	during	optimisation,	batch	size	(32,	64,	128),	which	is	the	number	of	

images	passed	to	the	network	at	a	time,	and	L2	regularisation	(0.00001,	0.0001,	0.001,	0.01),	

which	is	a	regularization	technique	used	to	prevent	overfitting.	This	meant	that	each	experiment	

involved	training	models	for	all	48	possible	hyperparameter	combinations	(4x3x4).	Dropout	is	

another	regularization	technique	that	can	be	employed	to	prevent	models	from	overfitting	to	the	

training	data.	For	ResNet50	experiment	IDs	1:4	we	tested	dropout	probabilities	of	0,	0.2,	0.4,	0.6.		

	



S3.2.2	Results	

	

All	trained	sieve	networks	achieved	macro	and	class	F1	scores	that	were	>	0.973	(Table	S3).	The	

best	 performing	 experiment	 had	 a	 dropout	 of	 0.6.	 The	 experiment	 that	 used	 the	 GoogleNet	

architecture	had	the	poorest	performance	out	of	the	five.		

	

Table	S3.	Experiments	conducted	for	the	sieve	network,	a	small	network	designed	as	an	add	on	to	

the	Faster	R-CNN	object	detector.	Experiments	are	sorted	from	high	to	low	by	the	F1	macro	score.	

For	 each	 experiment	 three	 models	 were	 trained	 and	 evaluated,	 the	 model	 that	 produced	 the	

maximum	average	precision	is	presented	in	the	table.		

	

	

Row	
ID	 Architecture		 Dropout	 F1	building	 F1	background	 F1	macro	

1	 ResNet50	 0.6	 0.978	 0.977	 0.977	

2	 ResNet50	 0.4	 0.977	 0.976	 0.977	

3	 ResNet50	 0	 0.975	 0.975	 0.975	

4	 ResNet50	 0.2	 0.976	 0.974	 0.975	

5	 GoogleNet	 0	 0.973	 0.973	 0.973	

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
 
 
 
 



S3.3.	Building	damage	classification	

S3.3.1.	Method	
Building	 damage	 classification	 was	 split	 into	 two	 stages	 that	 were	 trained	 and	 evaluated	

separately,	Classification	1:	No	damage-minor	damage	vs	combined	moderate	and	major	damage	

and	Classification	2:	Moderate	damage	vs	Major	Damage.	As	with	experiments	conducted	for	the	

sieve	 network,	 damage	 classification	 experiments	 consisted	 of	 fine-tuning	 two	 different	

pretrained	CNNs	to	determine	which	was	better	and	should	be	used	in	the	final	model	for	each	

classifier:	ResNet50	(He	et	al.,	2015)	trained	on	the	ImageNet	dataset	(Deng	et	al.	2009),	and	

GoogleNet	(Szegedy	et	al.,	2015)	trained	on	the	places365	dataset	(López-Cifuentes	et	al.,	2019).		

 
Image	preprocessing	
 
Building	bounding	boxes	were	cropped	from	the	full-sized	images	and	sorted	by	damage	state	

into	folders.	Zero	padding	was	added	to	each	cropped	building	image	before	resizing	to	meet	the	

input	dimensions	of	the	CNNs	(224	x	224	pixels).	To	remove	redundant	duplicates,	we	cleaned	

each	damage	state	folder	in	the	training	and	validation	sets	by	passing	each	sample	through	the	

ImageNet	 trained	 ResNet50	 network	 to	 extract	 the	 features.	 We	 then	 calculated	 the	 cosine	

similarity	 coefficient	 between	 each	 image	 and	 all	 other	 images	 in	 the	 folder.	 Images	with	 a	

coefficient	>	0.9,	a	threshold	that	was	chosen	based	on	visual	inspection,	were	considered	near	

identical	and	were	removed.	Using	this	approach	altered	the	split	of	boxes	between	the	datasets	

to	74%	train,	12%	validation,	and	13%	test.	The	same	data	augmentations	were	applied	to	the	

images	used	for	the	classification	experiments	as	for	the	detection	experiments.	

	

Model	training		
 
Class	imbalance	exists	in	our	dataset,	which	contains	many	more	samples	of	the	Not	damaged-	

minor	damage	class	(n	=	~41k)	than	it	does	the	moderate	and	major	damage	classes	(n	=	~8k).	

This	has	been	shown	to	influence	model	training	as	models	will	preferentially	learn	the	majority	

class	 (Johnson	 and	 Khoshgoftaar	 2019).	 To	 address	 the	 class	 imbalance,	 we	 performed	

experiments	where	we	either	oversampled	 the	minority	 class	 or	undersampled	 the	majority	

class.	 As	 with	 the	 experiments	 conducted	 for	 the	 sieve	 network,	 for	 each	 experiment	 we	

conducted	a	grid	search	for	the	best	hyperparameters:	learning	rate	(0.0001,	0.001,	0.01,	0.1),	

batch	size	(32,	64,	128),	and	L2	regularisation	(0.00001,	0.0001,	0.001,	0.01).	This	meant	that	

each	 experiment	 involved	 training	models	 for	 all	 48	 possible	 hyperparameter	 combinations	



(4x3x4)	to	find	the	combination	that	produced	the	highest	macro	F1	score	on	the	validation	data.	

We	tested	dropout	probabilities	of	0.2,	0.4,	0.6	for	a	set	of	ResNet50	experiments.		

 

S2.3.2.	Results	
 
Macro	F1	scores	for	experiments	conducted	for	classifier	1	ranged	from	0.836-0.753	(Table	S3),	

the	best	performing	model	was	the	ResNet	architecture,	trained	on	an	unbalanced	dataset	with	

a	dropout	probability	of	40%.	This	produced	an	F1	score	of	0.962	for	the	Not	Damaged	class	and	

0.710	 for	 the	Damaged	class.	 In	all	experiments	 the	F1	scores	 for	 the	Not	Damaged	class	are	

higher	 than	 for	 the	 damaged	 class.	 We	 found	 that	 for	 Classifier	 1	 the	 ResNet	 architecture	

produced	the	top	seven	scores.	The	method	of	data	balancing	influenced	the	model	performance	

with	 the	 unbalanced	 dataset	 producing	 the	 best	 performance	when	 compared	 to	 equivalent	

experiments	with	either	over	or	under	sampling.	The	inclusion	of	dropout	for	a	given	experiment	

does	not	produce	a	result	that	 is	consistently	better	or	worse	than	in	the	absence	of	dropout	

(Table	S3).	

	

For	Classifier	2	the	macro	F1	scores	ranged	from	0.810-0.776	(Table	S4),	the	maximum	score	

was	achieved	using	the	ResNet50	architecture	with	an	unbalanced	dataset	and	no	dropout.	This	

produced	an	F1	score	of	0.770	for	the	Moderate	damaged	class	and	0.851	for	the	Major	damaged	

class.	 In	 all	 experiments	 the	 F1	 scores	 for	 the	 Major	 damage	 class	 are	 higher	 than	 for	 the	

Moderate	damage	class,	however	the	difference	between	the	classes	is	consistently	lower	than	

for	 Classifier	 1.	Unlike	 for	 Classifier	 1	 there	 is	 no	 consistency	 in	 the	 effect	 of	 data	 balancing	

method	on	the	results.	 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table	S4.	Experiments	conducted	for	building	damage	classification	1	which	classifies	buildings	as	

Not/minor	 damaged	 or	 Damaged.	 Each	 experiment	 consists	 of	 a	 grid	 search	 comprising	 48	

simulations	with	 various	 combinations	 of	 learning	 rate,	mini	 batch	 size	 and	 L2	 regularization	

hyperparameters.	For	each	of	the	48	combinations	three	models	were	trained	and	evaluated,	the	

model	 that	 produced	 the	maximum	Macro	 F1	 score	was	 saved	 to	 be	 compared	with	 the	 other	

combinations.	The	results	shown	are	the	highest	Macro	F1	scores	for	each	experiment.	Results	are	

ordered	from	high	to	low	by	the	Macro	F1	score.	

Classifier	1	

Row	
ID	 Architecture	

Class	
balancing:	

	Not	
Balanced/	
under-
sampled/	

over-sampled	

Dropout	 F1	Not	
Damaged	

F1	
Damaged	

F1	
Macro	

1	 Resnet50	 not	 0.4	 0.962	 0.710	 0.836	

2	 Resnet50	 not	 0	 0.960	 0.696	 0.828	

3	 Resnet50	 not	 0.6	 0.957	 0.699	 0.828	

4	 Resnet50	 not	 0.2	 0.962	 0.692	 0.827	

5	 Resnet50	 under	 0	 0.951	 0.646	 0.799	

6	 Resnet50	 over	 0.2	 0.950	 0.643	 0.795	

7	 Resnet50	 over	 0.4	 0.943	 0.646	 0.795	

8	 GoogleNet	 not	 0	 0.952	 0.633	 0.792	

9	 Resnet50	 under	 0.6	 0.945	 0.634	 0.789	

10	 Resnet50	 under	 0.2	 0.940	 0.634	 0.787	

11	 Resnet50	 under	 0.4	 0.940	 0.634	 0.787	

12	 GoogleNet	 over	 0	 0.941	 0.63	 0.786	

13	 Resnet50	 over	 0	 0.946	 0.623	 0.784	

14	 Resnet50	 over	 0.6	 0.937	 0.623	 0.782	

15	 GoogleNet	 under	 0	 0.925	 0.581	 0.753	

	

 
 
 



Table	S5.	Experiments	conducted	 for	building	damage	classification	2	which	classifies	damaged	

buildings	 into	Moderate	damage	and	Major	damage.	Each	experiment	consists	of	a	grid	 search	

comprising	 48	 simulations	with	 various	 combinations	 of	 learning	 rate,	mini	 batch	 size	 and	 L2	

regularization	hyperparameters.	For	each	of	the	48	combinations	three	models	were	trained	and	

evaluated,	the	model	that	produced	the	maximum	Macro	F1	score	was	saved	to	be	compared	with	

the	other	combinations.	The	results	shown	are	the	highest	Macro	F1	scores	for	each	experiment.	

Results	are	ordered	from	high	to	low	by	the	Macro	F1	score. 

Classifier	2	

Row	
ID	 Architecture	

Class	balancing:	
Not	Balanced/	

under-
sampled/	over-

sampled	

Dropout	 F1	Mod	
damage	

F1	Maj	
damage	 F1	Macro	

1	 Resnet50	 not	 0	 0.770	 0.851	 0.810	

2	 GoogleNet	 over	 0	 0.737	 0.848	 0.793	

3	 Resnet50	 over	 0	 0.749	 0.835	 0.792	

4	 Resnet50	 not	 0.4	 0.749	 0.835	 0.792	

5	 Resnet50	 under	 0.6	 0.735	 0.845	 0.790	

6	 Resnet50	 over	 0.2	 0.739	 0.8371	 0.788	

7	 GoogleNet	 under	 0	 0.742	 0.829	 0.7855	

8	 Resnet50	 under	 0.2	 0.735	 0.832	 0.784	

9	 Resnet50	 over	 0.4	 0.726	 0.842	 0.784	

10	 Resnet50	 under	 0.4	 0.730	 0.836	 0.783	

11	 Resnet50	 not	 0.6	 0.743	 0.822	 0.782	

12	 Resnet50	 over	 0.6	 0.731	 0.829	 0.78	

13	 Resnet50	 under	 0	 0.718	 0.839	 0.778	

14	 Resnet50	 not	 0.2	 0.715	 0.841	 0.778	

15	 GoogleNet	 not	 0	 0.729	 0.824	 0.776	

 
 
 
 
 
 
 
 



S4.	Cross	validation		
 
Once	 we	 identified	 the	 best	 performing	 experimental	 setup	 for	 each	 task	 through	 model	

selection,	we	conducted	K-fold	cross	validation	to	understand	how	the	choice	of	 training	and	

validation	data	affects	model	performance	(see	Section	3.1.3,	Section	3.2.2).	The	full	image	set	

consists	of	images	collected	by	three	different	parties	across	13	different	locations	on	the	island.	

To	 test	 the	robustness	of	our	models	 to	 location,	we	 trained	on	nine	out	of	 the	 ten	 locations	

present	in	the	combined	training	and	validation	sets	and	evaluated	each	model’s	performance	

on	 the	 remaining	 location.	 To	 test	 the	 robustness	 to	 the	 dataset,	 we	 trained	 models	 and	

evaluated	the	performance	for	each	of	the	three	locations	that	contain	images	from	more	than	

one	dataset	(e.g.,	Chateaubelair-GOV,	Chateaubelair-UWI-TV,	Chateaubelair-SRC)	separately.		

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
	
	
	
	



S5.	Bounding	box	sizes	
 
Bounding	box	sizes	were	notably	smaller	in	several	datasets	due	to	the	Uninhabited	Aerial	

Vehicle	altitude.	When	cropping	full	sized	images	into	blocks	we	experimented	with	a	variable	

size	crop	based	on	the	original	box	sizes.		

	

	
Figure	S6.	Box	plots	showing	the	distribution	of	bounding	box	sizes	(area)	in	a)	the	full-sized	images	

prior	to	cropping	into	image	blocks,	highlighted	in	yellow	are	the	datasets	where	bounding	boxes	

are	notably	smaller,	b)	in	the	extracted	image	blocks	used	for	training	and	evaluating	the	object	

detector	where	block	sizes	are	550	x	550	pixels	(resized	to	224	x	224)	for	all	data	subsets	besides	

those	highlighted	in	a.	These	sets	highlighted	in	a	were	cropped	to	224	x	224	pixels	directly.	C)	Full	

sized	images	were	cropped	to	blocks	of	650	x	650	and	resized	to	224,	for	data	subsets	highlighted	

images	were	cropped	to	224	x	224	directly.	For	each	box	the	red	horizontal	line	marks	the	median,	

and	the	bottom	and	the	top	of	the	blue	box	marks	the	25th	and	75th	percentiles	respectively.	Outliers	

are	marked	with	red	crosses.	

 


