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S1. Examples of images used for model development

Figure S1. Representative example image from the UWI-TV-Troumaca dataset. Image credit:

Javid Collins (2021) for The UWI Seismic Research Centre.

Figure S2. Representative example image from the UWI-TV-Troumaca dataset. Image credit:

Javid Collins (2021) for The UWI Seismic Research Centre.



Figure S3. Representative example images from the GOV- Richmond dataset. Image credit:
Damage Assessment Team, the Government of St Vincent and the Grenadines Ministry of

Transport, Works, Lands and Surveys, and Physical Planning (2021).

Figure S4. Representative example images from the SRC- Richmond dataset. Image credit: Richard

Robertson (2021) for The UWI Seismic Research Centre.



Figure S5. Representative example images from the SRC- Owia dataset. Image credit: Richard

Robertson (2021) for The UWI Seismic Research Centre.

S2.Image labelling

To train models for building localisation and two levels of damage classification we labelled
2,811 image frames. In total 49,173 building bounding boxes were drawn around ~2,000
individual buildings (with some buildings being present in multiple images). Bounding boxes
were drawn by a team of five including the lead author, and all boxes were checked by the lead
author. Boxes were drawn to fit the buildings closely and minimise background information. In
areas where buildings are close together, off-nadir images may include parts of other buildings.
Nevertheless, this was not considered an issue since deep learning models for object localisation

will quickly learn to ignore background pixels (Bouchard et al., 2022).

In some images tarpaulins can be seen partially or fully covering roofs (~30 buildings). These
were potentially placed to cover damage that occurred during the eruption, including corrosion
due to prolonged presence of tephra on metal roofs or, holes generated by nails lifted out
through sub-optimal cleaning approaches (VM personal communication). Alternatively,

tarpaulins may have been placed as a preventative measure to help shed tephra (e.g., Ambae



Vanuatuy, Jenkins et al., 2024). Erring on the conservative side, we considered buildings with a
tarpaulin to be damaged; we assessed the severity of the damage for each building based on the
level of visible deformation. We assigned buildings with a tarpaulin and no visible deformation
to the moderately damaged class and those with a tarpaulin and visible deformation to the major

damage class.

Table S1. The approximate number of buildings covered by the UAV data for each location and
dataset. Number was approximated by overlaying the UAV track with building footprints obtained
from Open Street Map and does not consider the off-nadir angle of the drone. For Richmond there
are no OSM buildings overlapping with the SRC UAV track (missing from OSM).

Location SRC GOV
Chateaubelair 933 284
Fancy 240
Fitzhughes
SandyBay 183 310
Tourama 178
Belmont 18
London 71 66
Point 70
Rabacca dry river 15
Orange Hill 12
Owia 273
Richmond 29

Troumaca




S3. Model selection

For each of the three tasks in our tephra fall building damage assessment approach (building
localisation, classification 1 and classification 2) we ran a series of experiments with the goal of
iterating towards the best model. This involved training and evaluating models with different
image preprocessing approaches, CNN architectures, and combinations of hyperparameters.
One experiment consisted of three replicates of a given combination of these aspects. Three
replicates were conducted since the stochastic nature of the training process can cause models
to converge at slightly different points (Aggarwal, 2018). For each experiment the replicate with
the highest evaluation metric was the one compared against the other experiments. In the

following we provide details on the experiments conducted for each task and present the results.

$3.1. Building localisation

S3.1.1. Method

For building localisation, we used the cutting edge two-stage object detector Faster R-CNN (Ren
etal. 2017). Faster R-CNN is an improvement on the Fast R-CNN algorithm proposed by Girshick,
(2015). The improvement comprises an initial region proposal network (RPN) which speeds up
performance. In Faster R-CNN, image feature maps are extracted by passing the input image
through a pretrained backbone CNN. The RPN then utilises these features to generate proposals
for potential object-containing areas, this is achieved by tiling a set of anchor boxes of assorted
sizes across the extracted feature maps. The resulting region proposals are subsequently
processed by the Fast R-CNN module, which includes a classifier that is used to determine the
probability of the proposal containing an object, and a regressor that is used for adjusting the

proposal box positions.

Image preprocessing

To reduce Faster R-CNN detector training and implementation time we split full-sized images
(1920 x 1080 or 4056 x 3040) into overlapping blocks and resized them. We conducted
experiments using two different block overlap proportions (20% and 50%) and four different
block sizes: 4502, 5502 and 6502 pixels, and a mixed block size. Block sizes were chosen as a
tradeoff between meeting the required input dimensions of the backbone CNN (224 x 224 pixels)
without significant loss of resolution through shrinking and, limiting the number of buildings

that were dissected. The mixed block size was developed based on the observation that in



London SRC, Orange Hill SRC, all the GOV datasets and Chateaubelair UWI datasets buildings
appear much smaller than in the other sets (Section S4). For the image sets with ‘smaller’
buildings we split the full-sized images into blocks of 224 x 224 pixels directly, (as opposed to
splitting into boxes of 450%2/5502% /65072 and resizing) leading to what we term ‘mixed block size’
experiments. We also looked at the effect of removing very small boxes from the data since small
objects (<32 x 32 pixels) are notoriously hard to detect (Lin et al.,, 2014). To increase variety in
the training data we applied data augmentation consisting of random flipping along the X axis,
scaling between 0.5-1.5 times the original image, and random colour jitters (hue=0.05,
saturation=0.2, brightness= 0.3); these were chosen to represent realistic variations that can be

expected in future data.

Model training

In all experiments the backbone CNN used in the Faster R-CNN detector was ResNet50 trained
on the ImageNet dataset. To understand if better performance could be achieved using a model
that had already ‘seen’ the building images before, we also conducted experiments using the best
model out of the classification experiments as the backbone. The full UAV imagery dataset
consists of images acquired at different viewing angles, the SRC dataset consists of buildings
viewed from nadir, while the GOV and UWI sets include very off nadir imagery. To understand if
a better model could be obtained by separating the data based on viewing angle, we
experimented with the development of models for only the SRC portion or only the GOV and UWI
(combined) portions of the dataset. In all models we used stochastic gradient descent as the
optimizer, and an initial learning rate of 0.001. Stochastic gradient descent is a widely used
optimizer, while the learning rate was determined through preliminary analysis. To avoid
overfitting models to the training data, we used early stopping with a patience of five iterations,
meaning that when the loss calculated during training starts to increase, training is stopped. We
used five anchor boxes based on tests that showed the performance was not improved by using
any more, while the time taken to train was greatly increased. The optimum anchor box
dimensions were calculated by performing K-means clustering on the bounding boxes in the

training data.



S$3.1.2. Results

Results from localisation experiments evaluated on the validation data are shown in Table S2
sorted by average precision from high to low. APs ranged from 0.295 to 0.701. The best
experiment (AP of 0.701) used a block size of 550 x 550, with blocks resized to meet the size of
the backbone CNN, with an overlap of 50%; no pretraining was conducted and very small boxes

were removed from the data.

We found that block size had an impact on model performance: experiments with the smallest
block size (450 x 450) had the poorest performance, in general the 550-block size produced
better results. The removal of very small boxes (< 32 x 32 pixels) from the data had a large effect
on the results, all experiments with these boxes removed were at the top of the table, while
experiments that did not remove the small boxes were at the bottom (Table S2). For both the
550 and 650 block sizes, experiments trained and evaluated on only the SRC data had a higher
AP than the equivalent experiment trained and evaluated on all three datasets, while the
experiments trained and evaluated on the UWI and GOV data had a lower AP than both. Larger
block overlap (50 % as opposed to 20%) produced higher AP for the 550 and 650-block size.

Table S2. Experiments conducted for building localisation using the Faster R-CNN object detector
sorted from high to low by the average precision. For each experiment three models were trained

and evaluated, the model that produced the maximum average precision is presented in the table.

Row | Block | Mixed | Block Block | Pretrained | Remove All Max F1
id size | block | overlap | resized on best boxes < | training/ Average | score
size classifier | 32x32 | UWI&GOV/ | Precision
SRC
1 550 N 50% Y N Y all 0.701 0.669
2 550 N 20% Y N Y all 0.700 0.668
3 550 N 20% Y Y Y all 0.700 0.642
4 650 N 50% Y N Y all 0.691 0.654
5 650 N 20% Y N Y all 0.678 0.670
6 650 N 20% Y Y Y all 0.667 0.528
7 650 Y 20% Y Y Y all 0.660 0.620
8 550 N 50% Y Y Y all 0.654 0.668
9 550 N 20% Y Y Y all 0.651 0.644
10 550 Y 20% Y N Y all 0.643 0.639




11 650 N 50% Y Y Y all 0.643 0.676
12 650 Y 20% Y N Y all 0.637 0.556
13 650 Y 20% Y N N SRC 0.637 0.604
14 650 Y 20% Y Y N GOV&UWI 0.600 0.660
15 550 Y 20% Y Y N SRC 0.566 0.585
16 550 Y 20% Y N N SRC 0.560 0.552
17 550 Y 20% Y N N all 0.559 0.591
18 650 Y 20% Y N N all 0.550 0.578
19 550 Y 20% Y Y N all 0.541 0.554
20 650 Y 20% Y Y N all 0.520 0.614
21 650 Y 20% Y Y N SRC 0.517 0.535
22 650 Y 20% Y N N GOV&UWI 0.515 0.608
23 650 N 20% N Y N all 0.502 0.506
24 550 Y 20% Y Y N GOV&UWI 0.501 0.578
25 550 N 20% N N N all 0.487 0.435
26 550 N 20% N Y N all 0.472 0.532
27 650 N 20% N N N all 0.459 0.532
28 650 N 50% Y Y N all 0.449 0.579
29 550 Y 20% Y N N GOV&UWI 0.444 0.581
30 650 N 50% Y N N all 0.433 0.53
31 450 N 20% N Y N all 0.374 0.477
32 450 N 20% Y N N all 0.325 0.481
33 450 N 20% N N N all 0.320 0.458
34 450 N 20% Y Y N all 0.295 0.464




S3.2. The sieve network

S$3.2.1 Method

To improve the performance of the building localisation model we developed a sieve network
that runs as an add on to the Faster R-CNN building detector. Bounding boxes produced by the
detector are passed to the sieve network to filter out detections that are false positives. A false
positive occurs when the detector predicts a bounding box that does not have an overlapping

labelled building (i.e., detects a building when there is not one).

The dataset used for training and evaluating the sieve network consists of randomly cropped
background samples from full sized images in the training and validation sets. Samples were
cropped from each of the datasets, and samples containing buildings were removed until 100
no-building samples were achieved for each dataset. These samples were supplemented with an
additional 10% targeted image samples on the observation that trained detectors were
mistakenly detecting cars and boats. For the building dataset we stochastically sampled the
equivalent number (n=990 train, 660 validation) from the building images. Experiments for the
sieve network were conducted using two different CNN architectures (ResNet50 and
GoogleNet), and by undertaking a grid search to find the best hyperparameter combination
(learning rate, batch size, and L2 regularisation). A total of five experiments were conducted,

each consisting of three replicates.

Experiments for the sieve network consisted of fine-tuning two different pretrained CNNs to
determine which was better and should be used in the final model: ResNet50 (He et al., 2015)
trained on the ImageNet dataset (Deng et al. 2009), and GoogleNet (Szegedy et al., 2015) trained
on the places365 dataset (Lopez-Cifuentes et al,, 2019). For each experiment we conducted a
grid search for the best hyperparameters: learning rate (0.0001, 0.001, 0.01, 0.1), which controls
the size of the steps taken during optimisation, batch size (32, 64, 128), which is the number of
images passed to the network at a time, and L2 regularisation (0.00001, 0.0001, 0.001, 0.01),
which is a regularization technique used to prevent overfitting. This meant that each experiment
involved training models for all 48 possible hyperparameter combinations (4x3x4). Dropout is
another regularization technique that can be employed to prevent models from overfitting to the

training data. For ResNet50 experiment IDs 1:4 we tested dropout probabilities of 0, 0.2, 0.4, 0.6.



S3.2.2 Results

All trained sieve networks achieved macro and class F1 scores that were > 0.973 (Table S3). The
best performing experiment had a dropout of 0.6. The experiment that used the GoogleNet

architecture had the poorest performance out of the five.

Table S3. Experiments conducted for the sieve network, a small network designed as an add on to
the Faster R-CNN object detector. Experiments are sorted from high to low by the F1 macro score.
For each experiment three models were trained and evaluated, the model that produced the

maximum average precision is presented in the table.

RI(]))W Architecture Dropout F1 building F1 background F1 macro
1 ResNet50 0.6 0.978 0.977 0.977
2 ResNet50 0.4 0.977 0.976 0.977
3 ResNet50 0 0.975 0.975 0.975
4 ResNet50 0.2 0.976 0.974 0.975
5 GoogleNet 0 0.973 0.973 0.973




$3.3. Building damage classification

S$3.3.1. Method

Building damage classification was split into two stages that were trained and evaluated
separately, Classification 1: No damage-minor damage vs combined moderate and major damage
and Classification 2: Moderate damage vs Major Damage. As with experiments conducted for the
sieve network, damage classification experiments consisted of fine-tuning two different
pretrained CNNs to determine which was better and should be used in the final model for each
classifier: ResNet50 (He et al., 2015) trained on the ImageNet dataset (Deng et al. 2009), and
GoogleNet (Szegedy et al., 2015) trained on the places365 dataset (Lopez-Cifuentes et al., 2019).

Image preprocessing

Building bounding boxes were cropped from the full-sized images and sorted by damage state
into folders. Zero padding was added to each cropped building image before resizing to meet the
input dimensions of the CNNs (224 x 224 pixels). To remove redundant duplicates, we cleaned
each damage state folder in the training and validation sets by passing each sample through the
ImageNet trained ResNet50 network to extract the features. We then calculated the cosine
similarity coefficient between each image and all other images in the folder. Images with a
coefficient > 0.9, a threshold that was chosen based on visual inspection, were considered near
identical and were removed. Using this approach altered the split of boxes between the datasets
to 74% train, 12% validation, and 13% test. The same data augmentations were applied to the

images used for the classification experiments as for the detection experiments.

Model training

Class imbalance exists in our dataset, which contains many more samples of the Not damaged-
minor damage class (n = ~41k) than it does the moderate and major damage classes (n = ~8k).
This has been shown to influence model training as models will preferentially learn the majority
class (Johnson and Khoshgoftaar 2019). To address the class imbalance, we performed
experiments where we either oversampled the minority class or undersampled the majority
class. As with the experiments conducted for the sieve network, for each experiment we
conducted a grid search for the best hyperparameters: learning rate (0.0001, 0.001, 0.01, 0.1),
batch size (32, 64, 128), and L2 regularisation (0.00001, 0.0001, 0.001, 0.01). This meant that

each experiment involved training models for all 48 possible hyperparameter combinations



(4x3x4) to find the combination that produced the highest macro F1 score on the validation data.

We tested dropout probabilities of 0.2, 0.4, 0.6 for a set of ResNet50 experiments.

S2.3.2. Results

Macro F1 scores for experiments conducted for classifier 1 ranged from 0.836-0.753 (Table S3),
the best performing model was the ResNet architecture, trained on an unbalanced dataset with
a dropout probability of 40%. This produced an F1 score of 0.962 for the Not Damaged class and
0.710 for the Damaged class. In all experiments the F1 scores for the Not Damaged class are
higher than for the damaged class. We found that for Classifier 1 the ResNet architecture
produced the top seven scores. The method of data balancing influenced the model performance
with the unbalanced dataset producing the best performance when compared to equivalent
experiments with either over or under sampling. The inclusion of dropout for a given experiment
does not produce a result that is consistently better or worse than in the absence of dropout

(Table S3).

For Classifier 2 the macro F1 scores ranged from 0.810-0.776 (Table S4), the maximum score
was achieved using the ResNet50 architecture with an unbalanced dataset and no dropout. This
produced an F1 score of 0.770 for the Moderate damaged class and 0.851 for the Major damaged
class. In all experiments the F1 scores for the Major damage class are higher than for the
Moderate damage class, however the difference between the classes is consistently lower than
for Classifier 1. Unlike for Classifier 1 there is no consistency in the effect of data balancing

method on the results.



Table S4. Experiments conducted for building damage classification 1 which classifies buildings as
Not/minor damaged or Damaged. Each experiment consists of a grid search comprising 48
simulations with various combinations of learning rate, mini batch size and L2 regularization
hyperparameters. For each of the 48 combinations three models were trained and evaluated, the
model that produced the maximum Macro F1 score was saved to be compared with the other
combinations. The results shown are the highest Macro F1 scores for each experiment. Results are

ordered from high to low by the Macro F1 score.

Classifier 1
Class
balancing:
Row Not F1 Not F1 F1
Architecture Balanced/ Dropout
ID Damaged | Damaged | Macro
under-
sampled/
over-sampled
1 Resnet50 not 0.4 0.962 0.710 0.836
2 Resnet50 not 0 0.960 0.696 0.828
3 Resnet50 not 0.6 0.957 0.699 0.828
4 Resnet50 not 0.2 0.962 0.692 0.827
5 Resnet50 under 0 0.951 0.646 0.799
6 Resnet50 over 0.2 0.950 0.643 0.795
7 Resnet50 over 0.4 0.943 0.646 0.795
8 GoogleNet not 0 0.952 0.633 0.792
9 Resnet50 under 0.6 0.945 0.634 0.789
10 Resnet50 under 0.2 0.940 0.634 0.787
11 Resnet50 under 0.4 0.940 0.634 0.787
12 GoogleNet over 0 0.941 0.63 0.786
13 Resnet50 over 0 0.946 0.623 0.784
14 Resnet50 over 0.6 0.937 0.623 0.782
15 GoogleNet under 0 0.925 0.581 0.753




Table S5. Experiments conducted for building damage classification 2 which classifies damaged
buildings into Moderate damage and Major damage. Each experiment consists of a grid search
comprising 48 simulations with various combinations of learning rate, mini batch size and L2
regularization hyperparameters. For each of the 48 combinations three models were trained and
evaluated, the model that produced the maximum Macro F1 score was saved to be compared with
the other combinations. The results shown are the highest Macro F1 scores for each experiment.

Results are ordered from high to low by the Macro F1 score.

Classifier 2
Class balancing:
Row . Not Balanced/ F1 Mod F1 Maj
Architecture under- Dropout F1 Macro
ID damage damage
sampled/ over-
sampled

1 Resnet50 not 0 0.770 0.851 0.810
2 GoogleNet over 0 0.737 0.848 0.793
3 Resnet50 over 0 0.749 0.835 0.792
4 Resnet50 not 0.4 0.749 0.835 0.792
5 Resnet50 under 0.6 0.735 0.845 0.790
6 Resnet50 over 0.2 0.739 0.8371 0.788
7 GoogleNet under 0 0.742 0.829 0.7855
8 Resnet50 under 0.2 0.735 0.832 0.784
9 Resnet50 over 0.4 0.726 0.842 0.784
10 Resnet50 under 0.4 0.730 0.836 0.783
11 Resnet50 not 0.6 0.743 0.822 0.782
12 Resnet50 over 0.6 0.731 0.829 0.78
13 Resnet50 under 0 0.718 0.839 0.778
14 Resnet50 not 0.2 0.715 0.841 0.778
15 GoogleNet not 0 0.729 0.824 0.776




S4. Cross validation

Once we identified the best performing experimental setup for each task through model
selection, we conducted K-fold cross validation to understand how the choice of training and
validation data affects model performance (see Section 3.1.3, Section 3.2.2). The full image set
consists of images collected by three different parties across 13 different locations on the island.
To test the robustness of our models to location, we trained on nine out of the ten locations
present in the combined training and validation sets and evaluated each model’s performance
on the remaining location. To test the robustness to the dataset, we trained models and
evaluated the performance for each of the three locations that contain images from more than

one dataset (e.g., Chateaubelair-GOV, Chateaubelair-UWI-TV, Chateaubelair-SRC) separately.



S5. Bounding box sizes

Bounding box sizes were notably smaller in several datasets due to the Uninhabited Aerial
Vehicle altitude. When cropping full sized images into blocks we experimented with a variable

size crop based on the original box sizes.
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Figure S6. Box plots showing the distribution of bounding box sizes (area) in a) the full-sized images
prior to cropping into image blocks, highlighted in yellow are the datasets where bounding boxes
are notably smaller, b) in the extracted image blocks used for training and evaluating the object
detector where block sizes are 550 x 550 pixels (resized to 224 x 224) for all data subsets besides
those highlighted in a. These sets highlighted in a were cropped to 224 x 224 pixels directly. C) Full
sized images were cropped to blocks of 650 x 650 and resized to 224, for data subsets highlighted
images were cropped to 224 x 224 directly. For each box the red horizontal line marks the median,
and the bottom and the top of the blue box marks the 25t and 75t percentiles respectively. Outliers

are marked with red crosses.



