Articles | Volume 23, issue 10
https://doi.org/10.5194/nhess-23-3285-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3285-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
Xabier Blanch
CORRESPONDING AUTHOR
Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, 01062 Dresden, Germany
RISKNAT Research Group, Geomodels Research Institute, Universitat de Barcelona, 08028 Barcelona, Spain
Marta Guinau
RISKNAT Research Group, Geomodels Research Institute, Universitat de Barcelona, 08028 Barcelona, Spain
Anette Eltner
Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, 01062 Dresden, Germany
Antonio Abellan
Centre for Research on the Alpine Environment (CREALP), Sion, CH1950 Valais, Switzerland
Related authors
Hanne Hendrickx, Melanie Elias, Xabier Blanch, Reynald Delaloye, and Anette Eltner
Earth Surf. Dynam., 13, 705–721, https://doi.org/10.5194/esurf-13-705-2025, https://doi.org/10.5194/esurf-13-705-2025, 2025
Short summary
Short summary
This study presents a novel AI-based method for tracking and analysing the movement of rock glaciers and landslides, key landforms in high mountain regions. By utilising time-lapse images, our approach generates detailed velocity data, uncovering movement patterns often missed by traditional methods. This cost-effective tool enhances geohazard monitoring, providing insights into environmental drivers, improving process understanding, and contributing to better safety in alpine areas.
Oliver Grothum, Lea Epple, Anne Bienert, Xabier Blanch, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2291, https://doi.org/10.5194/egusphere-2025-2291, 2025
Short summary
Short summary
Soil erosion threatens landscapes worldwide, and understanding how surfaces change over time is key to addressing this issue. We developed a new camera-based system that automatically captures and analyzes daily surface changes on a hillside over several years. Triggered by rain and a clock, the system showed how weather and farming impact the land. Our method offers a powerful way to monitor surface changes and can help improve predictions and solutions for soil erosion.
Xabier Blanch, Jens Grundmann, Ralf Hedel, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2025-724, https://doi.org/10.5194/egusphere-2025-724, 2025
Short summary
Short summary
This study presents a low-cost, automated system for monitoring river water levels using cameras and AI. By combining AI-based image analysis with photogrammetry, it accurately measures water levels in real-time, even in challenging conditions. Tested over 2.5 years at four sites, it achieved high accuracy (errors of 1.0–2.3 cm) and processed over 219,000 images. Its resilience makes it ideal for flood detection and water management in remote areas.
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Hanne Hendrickx, Melanie Elias, Xabier Blanch, Reynald Delaloye, and Anette Eltner
Earth Surf. Dynam., 13, 705–721, https://doi.org/10.5194/esurf-13-705-2025, https://doi.org/10.5194/esurf-13-705-2025, 2025
Short summary
Short summary
This study presents a novel AI-based method for tracking and analysing the movement of rock glaciers and landslides, key landforms in high mountain regions. By utilising time-lapse images, our approach generates detailed velocity data, uncovering movement patterns often missed by traditional methods. This cost-effective tool enhances geohazard monitoring, providing insights into environmental drivers, improving process understanding, and contributing to better safety in alpine areas.
Lea Epple, Oliver Grothum, Anne Bienert, and Anette Eltner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-380, https://doi.org/10.5194/essd-2025-380, 2025
Preprint under review for ESSD
Short summary
Short summary
The present study offers a unique, nested, high-resolution dataset that captures soil surface changes every 20 seconds during rainfall events, as well as over seasonal variations, across a range of spatial scales – plot, slope, and catchment. These data collected over a period of 3.5 years was facilitated by a camera-based approach. This open-access resource assists scientists in evaluating and refining existing models, improving process understanding, and training artificial intelligence.
Anette Eltner, David Favis-Mortlock, Oliver Grothum, Martin Neumann, Tomáš Laburda, and Petr Kavka
SOIL, 11, 413–434, https://doi.org/10.5194/soil-11-413-2025, https://doi.org/10.5194/soil-11-413-2025, 2025
Short summary
Short summary
This study develops a new method to improve the calibration and evaluation of models that predict soil erosion by water. By using advanced imaging techniques, we can capture detailed changes in the soil surface over time. This helps improve models that forecast erosion, especially as climate change creates new and unpredictable conditions. Our findings highlight the need for more precise tools to better model erosion of our land and environment in the future.
Oliver Grothum, Lea Epple, Anne Bienert, Xabier Blanch, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2291, https://doi.org/10.5194/egusphere-2025-2291, 2025
Short summary
Short summary
Soil erosion threatens landscapes worldwide, and understanding how surfaces change over time is key to addressing this issue. We developed a new camera-based system that automatically captures and analyzes daily surface changes on a hillside over several years. Triggered by rain and a clock, the system showed how weather and farming impact the land. Our method offers a powerful way to monitor surface changes and can help improve predictions and solutions for soil erosion.
Xabier Blanch, Jens Grundmann, Ralf Hedel, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2025-724, https://doi.org/10.5194/egusphere-2025-724, 2025
Short summary
Short summary
This study presents a low-cost, automated system for monitoring river water levels using cameras and AI. By combining AI-based image analysis with photogrammetry, it accurately measures water levels in real-time, even in challenging conditions. Tested over 2.5 years at four sites, it achieved high accuracy (errors of 1.0–2.3 cm) and processed over 219,000 images. Its resilience makes it ideal for flood detection and water management in remote areas.
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Pedro Alberto Pereira Zamboni, Hanne Hendrickx, Dennis Sprute, Holger Flatt, Muhtasimul Islam Rushdi, Florian Brodrecht, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 483–490, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, 2024
Melanie Elias, Steffen Isfort, Anette Eltner, and Hans-Gerd Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, 2024
Robert Krüger, Pierre Karrasch, and Anette Eltner
Geosci. Instrum. Method. Data Syst., 13, 163–176, https://doi.org/10.5194/gi-13-163-2024, https://doi.org/10.5194/gi-13-163-2024, 2024
Short summary
Short summary
Low-cost sensors could fill gaps in existing observation networks. To ensure data quality, the quality of the factory calibration of a given sensor has to be evaluated if the sensor is used out of the box. Here, the factory calibration of a widely used low-cost rain gauge type has been tested both in the lab (66) and in the field (20). The results of the study suggest that the calibration of this particular type should at least be checked for every sensor before being used.
O. Grothum, A. Bienert, M. Bluemlein, and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 163–170, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, 2023
R. Blaskow and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 45–50, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, 2023
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Lea Epple, Andreas Kaiser, Marcus Schindewolf, and Anette Eltner
SOIL Discuss., https://doi.org/10.5194/soil-2021-85, https://doi.org/10.5194/soil-2021-85, 2021
Revised manuscript not accepted
Short summary
Short summary
Intensified extreme weather events due to climate change can result in changes of soil erosion. These unclear developments make an improvement of soil erosion modelling all the more important. Assuming that soil erosion models cannot keep up with the current data, this work gives an overview of 44 models, their strengths and weaknesses and discusses their potential for further development with respect to new and improved soil and soil erosion assessment techniques.
A. Eltner, D. Mader, N. Szopos, B. Nagy, J. Grundmann, and L. Bertalan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 717–722, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, 2021
Cited articles
Abellán, A., Vilaplana, J. M., and Martínez, J.: Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain), Eng. Geol., 88, 136–148, https://doi.org/10.1016/j.enggeo.2006.09.012, 2006.
Abellán, A., Jaboyedoff, M., Oppikofer, T., and Vilaplana, J. M.: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, Nat. Hazards Earth Syst. Sci., 9, 365–372, https://doi.org/10.5194/nhess-9-365-2009, 2009.
Abellán, A., Calvet, J., Vilaplana, J. M., and Blanchard, J.: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring, Geomorphology, 119, 162–171, https://doi.org/10.1016/j.geomorph.2010.03.016, 2010.
Anderson, K., Westoby, M. J., and James, M. R.: Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences, Prog. Phys. Geog. Earth and Environment, 43, 163–173, https://doi.org/10.1177/0309133319837454, 2019.
Artese, S., Lerma, J. L., Zagari, G., and Zinno, R.: The survey, the representation and the structural modeling of a dated bridge, in: Proceedings of the ARQUEOLÓGICA 2.0, Computer Graphics, Cultural Heritage and Innovation, Universitat Politècnica València, https://doi.org/10.4995/arqueologica8.2016.3559, 2016.
Attard, L., Debono, C. J., Valentino, G., and Di Castro, M.: Tunnel inspection using photogrammetric techniques and image processing: A review, ISPRS J. Photogramm., 144, 180–188, https://doi.org/10.1016/j.isprsjprs.2018.07.010, 2018.
Bartonek, D. and Buday, M.: Problems of creation and usage of 3D model of structures and theirs possible solution, Symmetry, 12, 1–13, https://doi.org/10.3390/SYM12010181, 2020.
Bertin, S., Friedrich, H., Delmas, P., Chan, E., and Gimel'farb, G.: Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation, ISPRS J. Photogramm., 101, 193–208, https://doi.org/10.1016/j.isprsjprs.2014.12.019, 2015.
Birien, T. and Gauthier, F.: Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management, Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023, 2023.
Blanch, X.: DSLR System (Tajo de San Pedro) point cloud viewer, Sketchfab [data set], https://skfb.ly/o7QEX (last access: 13 October 2023), 2021a.
Blanch, X.: HRCam System (Puigcercós) point cloud viewer, Sketchfab [data set], https://skfb.ly/o7QvV (last access: 13 October 2023), 2021b.
Blanch, X.: Developing Advanced Photogrammetric Methods for Automated Rockfall Monitoring. Doctoral dissertation, Universitat de Barcelona, http://hdl.handle.net/2445/189157 (last access: 13 October 2023), 2022.
Blanch, X.: xabierblanch/DSLR-System: v1.0.5 (publication), Zenodo [code], https://doi.org/10.5281/zenodo.7962814, 2023a.
Blanch, X.: High-resolution images from stationary cameras of the Puigcercós cliff in Spain, in Natural Hazards and Earth System Sciences (NHESS), Zenodo [data set], https://doi.org/10.5281/zenodo.10010562, 2023b.
Blanch, X., Abellan, A., and Guinau, M.: Point Cloud Stacking: A Workflow to Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras, Remote Sens., 12, 1240, https://doi.org/10.3390/rs12081240, 2020.
Blanch, X., Eltner, A., Guinau, M., and Abellan, A.: Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras, Remote Sens., 13, 1460, https://doi.org/10.3390/rs13081460, 2021.
Blanch, X., Guinau, M., Eltner, A., and Abellan, A.: A Cost-Effective Image-Based System for 3d Geomorphic Monitoring: An Application to Rockfalls, SSRN [preprint], https://doi.org/10.2139/ssrn.4489458, 23 June 2023.
Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology, ISPRS J. Photogramm., 68, 121–134, https://doi.org/10.1016/j.isprsjprs.2012.01.006, 2012.
Brunier, G., Fleury, J., Anthony, E. J., Gardel, A., and Dussouillez, P.: Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach, Geomorphology, 261, 76–88, https://doi.org/10.1016/J.GEOMORPH.2016.02.025, 2016.
Buckley, S. J., Howell, J. A. A., Enge, H. D. D., and Kurz, T. H. H.: Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations, J. Geol. Soc. London, 165, 625–638, https://doi.org/10.1144/0016-76492007-100, 2008.
Castellazzi, G., D'Altri, A. M., Bitelli, G., Selvaggi, I., and Lambertini, A.: From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure, Sensors, 15, 18360–18380, https://doi.org/10.3390/s150818360, 2015.
Cook, K. L.: An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection, Geomorphology, 278, 195–208, https://doi.org/10.1016/j.geomorph.2016.11.009, 2017.
Cook, K. L. and Dietze, M.: Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points, Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, 2019.
Eltner, A. and Schneider, D.: Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images, Photogrammetric Record, 30, 279–299, https://doi.org/10.1111/phor.12115, 2015.
Eltner, A. and Sofia, G.: Structure from motion photogrammetric technique, Dev. Earth Surf. Process., 23, 1–24, https://doi.org/10.1016/B978-0-444-64177-9.00001-1, 2020.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Feurer, D. and Vinatier, F.: Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information, ISPRS J. Photogramm., 146, 495–506, https://doi.org/10.1016/j.isprsjprs.2018.10.016, 2018.
Gabrieli, F., Corain, L., and Vettore, L.: A low-cost landslide displacement activity assessment from time-lapse photogrammetry and rainfall data: Application to the Tessina landslide site, Geomorphology, 269, 56–74, https://doi.org/10.1016/j.geomorph.2016.06.030, 2016.
Giacomini, A., Thoeni, K., Santise, M., Diotri, F., Booth, S., Fityus, S., and Roncella, R.: Temporal-Spatial Frequency Rockfall Data from Open-Pit Highwalls Using a Low-Cost Monitoring System, Remote Sens., 12, 2459, https://doi.org/10.3390/rs12152459, 2020.
Gili, J. A., Moya, J., Corominas, J., Crosetto, M., and Monserrat, O.: Past, present and future monitoring at the vallcebre landslide (Eastern pyrenees, spain), Appl. Sci. (Switzerland), 11, 1–22, https://doi.org/10.3390/app11020571, 2021.
Giordan, D., Allasia, P., Dematteis, N., Dell'Anese, F., Vagliasindi, M., and Motta, E.: A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment, Sensors, 16, 1750, https://doi.org/10.3390/s16101750, 2016.
Giordan, D., Luzi, G., Monserrat, O., and Dematteis, N.: Remote Sensing Analysis of Geologic Hazards, Remote Sens. (Basel), 14, 4818, https://doi.org/10.3390/rs14194818, 2022.
Gómez-Gutiérrez, Á., De Sanjosé-Blasco, J. J., Lozano-Parra, J., Berenguer-Sempere, F., and De Matías-Bejarano, J.: Does HDR pre-processing improve the accuracy of 3D models obtained by means of two conventional SfM-MVS software packages? The case of the corral del veleta rock glacier, Remote Sens., 7, 10269–10294, https://doi.org/10.3390/rs70810269, 2015.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1, 1999.
Hadhri, H., Vernier, F., Atto, A. M., and Trouvé, E.: Time-lapse optical flow regularization for geophysical complex phenomena monitoring, ISPRS J. Photogramm., 150, 135–156, https://doi.org/10.1016/j.isprsjprs.2019.02.007, 2019.
Hendrickx, H., Le Roy, G., Helmstetter, A., Pointner, E., Larose, E., Braillard, L., Nyssen, J., Delaloye, R., and Frankl, A.: Timing, volume and precursory indicators of rock- and cliff fall on a permafrost mountain ridge (Mattertal, Switzerland), Earth Surf. Proc. Landf., 47, 1532–1549, https://doi.org/10.1002/esp.5333, 2022.
Hereward, H. F. R., Facey, R. J., Sargent, A. J., Roda, S., Couldwell, M. L., Renshaw, E. L., Shaw, K. H., Devlin, J. J., Long, S. E., Porter, B. J., Henderson, J. M., Emmett, C. L., Astbury, L., Maggs, L., Rands, S. A., and Thomas, R. J.: Raspberry Pi nest cameras: An affordable tool for remote behavioral and conservation monitoring of bird nests, Ecol. Evol., 11, 21, https://doi.org/10.1002/ece3.8127, 2021.
Hiller, C., Walter, L., Helfricht, K., Weisleitner, K., and Achleitner, S.: Flood Flow in a Proglacial Outwash Plain: Quantifying Spatial Extent and Frequency of Inundation from Time-Lapse Imagery, Water, 14, 590, https://doi.org/10.3390/w14040590, 2022.
How, P., Schild, K. M., Benn, D. I., Noormets, R., Kirchner, N., Luckman, A., Vallot, D., Hulton, N. R. J., and Borstad, C.: Calving controlled by melt-under-cutting: Detailed calving styles revealed through time-lapse observations, Ann. Glaciol., 60, 20–31, https://doi.org/10.1017/aog.2018.28, 2019.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194. https://doi.org/10.1007/s10346-013-0436-y, 2014.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O'Connor, J., and Rosette, J.: Structure from Motion Photogrammetry in Forestry: a Review, Current Forestry Reports, 5, 155–168, https://doi.org/10.1007/s40725-019-00094-3, 2019.
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., and Pedrazzini, A.: Use of LIDAR in landslide investigations: A review, Nat. Hazards, 61, 5–28, https://doi.org/10.1007/s11069-010-9634-2, 2012.
James, M. R. and Quinton, J. N.: Ultra-rapid topographic surveying for complex environments: The hand-held mobile laser scanner (HMLS), Earth Surf. Proc. and Landf., 39, 138–142, https://doi.org/10.1002/esp.3489, 2014.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application, J. Geophys. Res.-Earth Surf., 117, 1–17, https://doi.org/10.1029/2011JF002289, 2012.
James, M. R. and Robson, S.: Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery, ISPRS J. Photogramm., 97, 160–170, https://doi.org/10.1016/j.isprsjprs.2014.08.011, 2014a.
James, M. R. and Robson, S.: Mitigating systematic error in topographic models derived from UAV and ground-based image networks, Earth Surf. Proc. Landf., 39, 1413–1420, https://doi.org/10.1002/esp.3609, 2014b.
James, M. R., Robson, S., and Smith, M. W.: 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys, Earth Surf. Proc. Landf., 42, 1769–1788, https://doi.org/10.1002/esp.4125, 2017.
Khan, M. W., Dunning, S., Bainbridge, R., Martin, J., Diaz-Moreno, A., Torun, H., Jin, N., Woodward, J., and Lim, M.: Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-Streamed Time-Lapse Imagery, Remote Sensing, 13, 893, https://doi.org/10.3390/rs13050893, 2021.
Kneib, M., Miles, E. S., Buri, P., Fugger, S., McCarthy, M., Shaw, T. E., Chuanxi, Z., Truffer, M., Westoby, M. J., Yang, W., and Pellicciotti, F.: Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry, The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, 2022.
Kromer, R., Walton, G., Gray, B., Lato, M., and Group, R.: Development and Optimization of an Automated Fixed-Location Time Lapse Photogrammetric Rock Slope Monitoring System, Remote Sens., 11, 1890, https://doi.org/10.3390/rs11161890, 2019.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z), ISPRS J. Photogramm., 82, 10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Lenzano, M. G., Lannutti, E., Toth, C. K., Lenzano, L. E., and Lovecchio, A.: Assessment of ice-dam collapse by time-lapse photos at the Perito Moreno glacier, Argentina. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1, 211–217, https://doi.org/10.5194/isprsarchives-XL-1-211-2014, 2014.
Lenzano, M. G., Lannutti, E., Toth, C., Lenzano, L., Lo Vecchio, A., Falaschi, D., and Vich, A.: Analyzing the oscillations of the Perito Moreno Glacier, using time-lapse image sequences, Cold Reg. Sci. Technol., 146, 155–166, https://doi.org/10.1016/j.coldregions.2017.11.015, 2018.
Luhmann, T., Fraser, C., and Maas, H. G.: Sensor modelling and camera calibration for close-range photogrammetry, ISPRS J. Photogramm., 115, 37–46, https://doi.org/10.1016/j.isprsjprs.2015.10.006, 2016.
Mallalieu, J., Carrivick, J. L., Quincey, D. J., Smith, M. W., and James, W. H. M.: An integrated Structure-from-Motion and time-lapse technique for quantifying ice-margin dynamics, J. Glaciol., 63, 937–949, https://doi.org/10.1017/jog.2017.48, 2017.
McKean, J. and Roering, J.: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry, Geomorphology, 57, 331–351, https://doi.org/10.1016/S0169-555X(03)00164-8, 2004.
Meidow, J., Usländer, T., and Schulz, K.: Obtaining as-built models of manufacturing plants from point clouds, At-Automatisierungstechnik, 66, 397–405, https://doi.org/10.1515/auto-2017-0133, 2018.
Nesbit, P. R. and Hugenholtz, C. H.: Enhancing UAV-SfM 3D model accuracy in high-relief landscapes by incorporating oblique images, Remote Sens., 11, 239, https://doi.org/10.3390/rs11030239, 2019.
Núñez-Andrés, M. A., Prades-Valls, A., Matas, G., Buill, F., and Lantada, N.: New Approach for Photogrammetric Rock Slope Premonitory Movements Monitoring, Remote Sens., 15, 293, https://doi.org/10.3390/rs15020293, 2023.
Roncella, R., Bruno, N., Diotri, F., Thoeni, K., and Giacomini, A.: Photogrammetric Digital Surface Model Reconstruction in Extreme Low-Light Environments, Remote Sens., 13, 1261, https://doi.org/10.3390/rs13071261, 2021.
Rowley, T., Ursic, M., Konsoer, K., Langendon, E., Mutschler, M., Sampey, J., and Pocwiardowski, P.: Comparison of terrestrial lidar, SfM, and MBES resolution and accuracy for geomorphic analyses in physical systems that experience subaerial and subaqueous conditions, Geomorphology, 355, 107056, https://doi.org/10.1016/j.geomorph.2020.107056, 2020.
Royán, M. J., Abellán, A., Jaboyedoff, M., Vilaplana, J. M., and Calvet, J.: Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR, Landslides, 11, 697–709, https://doi.org/10.1007/s10346-013-0442-0, 2014.
Santise, M., Thoeni, K., Roncella, R., Sloan, S. W., and Giacomini, A.: Preliminary tests of a new low-cost photogrammetric system, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W8, 229–236, https://doi.org/10.5194/isprs-archives-XLII-2-W8-229-2017, 2017.
Schwalbe, E. and Maas, H.-G.: The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences, Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, 2017.
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275, https://doi.org/10.1177/0309133315615805, 2015.
Stumpf, A., Malet, J. P., Allemand, P., Pierrot-Deseilligny, M., and Skupinski, G.: Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion, Geomorphology, 231, 130–145, https://doi.org/10.1016/j.geomorph.2014.10.039, 2015.
Sturzenegger, M., Yan, M., Stead, D., and Elmo, D.: Application and limitations of ground-based laser scanning in rock slope characterization, Proceedings of the 1st Canada-US Rock Mechanics Symposium – Rock Mechanics Meeting Society's Challenges and Demands, 1, 29–36, https://doi.org/10.1201/noe0415444019-c4, 2007.
Tarolli, P.: High-resolution topography for understanding Earth surface processes: Opportunities and challenges, Geomorphology, 216, 295–312, https://doi.org/10.1016/j.geomorph.2014.03.008, 2014.
Tonini, M. and Abellan, A.: Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R, Journal of Spatial Information Science, 8, 95–11, https://doi.org/10.5311/josis.2014.8.123, 2014.
Travelletti, J., Delacourt, C., Allemand, P., Malet, J. P., Schmittbuhl, J., Toussaint, R., and Bastard, M.: Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations, ISPRS J. Photogramm., 70, 39–55, https://doi.org/10.1016/j.isprsjprs.2012.03.007, 2012.
Van Veen, M., Hutchinson, I. D. J., Kromer, R., Lato, M., and Edwards, T.: Effects of sampling interval on the frequency - magnitude relationship of rockfalls detected from terrestrial laser scanning using semi-automated methods, Landslides, 14, 1579–1592, https://doi.org/10.1007/s10346-017-0801-3, 2017.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: `Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Wilkinson, M. W., Jones, R. R., Woods, C. E., Gilment, S. R., McCaffrey, K. J. W., Kokkalas, S., and Long, J. J.: A comparison of terrestrial laser scanning and structure-frommotion photogrammetry as methods for digital outcrop acquisition, Geosphere, 12, 1865–1880, https://doi.org/10.1130/GES01342.1, 2016.
Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, 2018.
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The...
Altmetrics
Final-revised paper
Preprint