Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-317-2023
https://doi.org/10.5194/nhess-23-317-2023
Research article
 | 
26 Jan 2023
Research article |  | 26 Jan 2023

Quantifying unequal urban resilience to rainfall across China from location-aware big data

Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei

Related authors

Anomalies of dwellers' collective geotagged behaviors in response to rainstorms: a case study of eight cities in China using smartphone location data
Jiawei Yi, Yunyan Du, Fuyuan Liang, Tao Pei, Ting Ma, and Chenghu Zhou
Nat. Hazards Earth Syst. Sci., 19, 2169–2182, https://doi.org/10.5194/nhess-19-2169-2019,https://doi.org/10.5194/nhess-19-2169-2019, 2019
Short summary
AN IMPROVED DEM CONSTRUCTION METHOD FOR MUDFLATS BASED ON BJ-1 SMALL SATELLITE IMAGES: A CASE STUDY ON BOHAI BAY
D. Wu, Y. Du, F. Su, W. Huang, and L. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1871–1878, https://doi.org/10.5194/isprs-archives-XLII-3-1871-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1871-2018, 2018
Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly
J. Yi, Y. Du, Z. He, and C. Zhou
Ocean Sci., 10, 39–48, https://doi.org/10.5194/os-10-39-2014,https://doi.org/10.5194/os-10-39-2014, 2014
A clustering analysis of eddies' spatial distribution in the South China Sea
J. Yi, Y. Du, X. Wang, Z. He, and C. Zhou
Ocean Sci., 9, 171–182, https://doi.org/10.5194/os-9-171-2013,https://doi.org/10.5194/os-9-171-2013, 2013

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023,https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023,https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Comparison of machine learning techniques for reservoir outflow forecasting
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022,https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022,https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022,https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary

Cited articles

Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., and Rockström, J.: Social-Ecological Resilience to Coastal Disasters, Science, 309, 1036–1039, https://doi.org/10.1126/science.1112122, 2005. 
Aerts, J. C. J. H., Botzen, W. J. W., Emanuel, K., Lin, N., de Moel, H., and Michel-Kerjan, E. O.: Evaluating Flood Resilience Strategies for Coastal Megacities, Science, 344, 473–475, https://doi.org/10.1126/science.1248222, 2014. 
Ambelu, A., Birhanu, Z., Tesfaye, A., Berhanu, N., Muhumuza, C., Kassahun, W., Daba, T., and Woldemichael, K.: Intervention pathways towards improving the resilience of pastoralists: A study from Borana communities, southern Ethiopia, Weather Clim. Extrem., 17, 7–16, https://doi.org/10.1016/j.wace.2017.06.001, 2017. 
Bertilsson, L., Wiklund, K., de Moura Tebaldi, I., Rezende, O. M., Veról, A. P., and Miguez, M. G.: Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning, J. Hydrol., 573, 970–982, https://doi.org/10.1016/j.jhydrol.2018.06.052, 2019. 
Brusberg, M. D. and Shively, R.: Building drought resilience in agriculture: Partnerships and public outreach, Weather Clim. Extrem., 10, 40–49, https://doi.org/10.1016/j.wace.2015.10.003, 2015. 
Download
Short summary
Human activities across China show a similar trend in response to rains. However, urban resilience varies significantly by region. The northwestern arid region and the central underdeveloped areas are very fragile, and even low-intensity rains can trigger significant human activity anomalies. By contrast, even high-intensity rains might not affect residents in the southeast.
Altmetrics
Final-revised paper
Preprint