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Abstract. Disaster-relevant authorities could make unin-
formed decisions due to the lack of a clear picture of urban
resilience to adverse natural events. Previous studies have
seldom examined the near-real-time human dynamics, which
are critical to disaster emergency response and mitigation,
in response to the development and evolution of mild and
frequent rainfall events. In this study, we used the aggre-
gated Tencent location request (TLR) data to examine the
variations in collective human activities in response to rain-
fall in 346 cities in China. Then two resilience metrics, rain-
fall threshold and response sensitivity, were introduced to re-
port a comprehensive study of the urban resilience to rain-
fall across mainland China. Our results show that, on aver-
age, a 1 mm increase in rainfall intensity is associated with a
0.49 % increase in human activity anomalies. In the cities of
northwestern and southeastern China, human activity anoma-
lies are affected more by rainfall intensity and rainfall du-
ration, respectively. Our results highlight the unequal urban
resilience to rainfall across China, showing current heavy-
rain-warning standards underestimate the impacts of heavy
rains on residents in the northwestern arid region and the cen-
tral underdeveloped areas and overestimate impacts on resi-
dents in the southeastern coastal area. An overhaul of current
heavy-rain-alert standards is therefore needed to better serve
the residents in our study area.

1 Introduction

Heavy rains with intense precipitation have become more fre-
quent in the context of global climate changes (Myhre et al.,

2019; Ogie et al., 2018) and pose significant threats to urban
residents, mainly due to uncoordinated watershed manage-
ment and undersized infrastructures (Chan et al., 2018; De-
wan, 2015; Nahiduzzaman et al., 2015; Song et al., 2019).
China is frequently affected by urban flooding, particularly
in summer when the Asian monsoon brings heavy rains to
inland China. It is estimated that 55.15 million people were
affected by floods in China in 2017 alone and the direct
economic loss was approximately CNY 214 billion, which
significantly exceeds the impacts of the 2017 typhoon dis-
asters (5.879 million people, CNY 34.62 billion). In addi-
tion to threatening human daily activities and cities’ nor-
mal operation (Aerts et al., 2014; Grinberger and Felsenstein,
2016; Kasmalkar et al., 2020; Owrangi et al., 2014), the ever-
increasing rainstorms endlessly challenge cities’ flood resis-
tance capacity and relevant authorities’ real-time decisions
in response to such adverse events. Urban decision-makers
have learned that city management and planning would sig-
nificantly benefit from a better understanding of urban re-
silience (O’Sullivan et al., 2012; Bertilsson et al., 2019; de
Bruijn, 2004).

Urban resilience refers to the ability of an urban system
to prepare for, respond to, and recover from adverse events
(Ambelu et al., 2017; Hong et al., 2021; Liao, 2012; Meerow
et al., 2016). Biologists, psychologists, engineers, and geog-
raphers have all made their own contributions to urban re-
silience studies (Adger et al., 2005; Brusberg and Shively,
2015; Olsson et al., 2015; Ouyang et al., 2012; Poulin and
Kane, 2021; Shiferaw et al., 2014). Over the past 20 years,
geographers have heavily relied on satellite imagery to as-
sess disaster-related resilience as satellites have been provid-
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ing ever-increasing information about the Earth at a relatively
low cost (Mpandeli et al., 2019; Stefan et al., 2016; Tell-
man et al., 2021). For example, satellite-based emergency
mapping systems have been developed to monitor the in-
undation and recovery processes of the 2005 Switzerland
flood (Buehler et al., 2006); assess the damage, restoration,
and reconstruction induced by the 2010 Haiti earthquake
(Honey et al., 2010); and evaluate the changes in power sup-
ply before and after Hurricane Maria in 2017 (Román et al.,
2019). Emergency rescuers can use high-resolution images to
closely monitor ongoing natural disasters and coordinate dis-
aster relief. However, it is almost impossible to extract near-
real-time human dynamics over the evolution of a disaster
from satellite images, and such information is very impor-
tant in disaster mitigation and reduction (Liu et al., 2015;
Ghaffarian et al., 2018).

Location-aware big data, such as smartphone call records,
signalling data, and social media posts, have been widely
used to infer real-time human activities (Yi et al., 2019; Wang
et al., 2020, 2019; Yue et al., 2017), estimate disaster-induced
losses (Kryvasheyeu et al., 2016; Liu et al., 2019b), monitor
resettlement and restoration (Martín et al., 2020a, b; Wang
and Taylor, 2018; Yabe et al., 2020), and study disaster-
related resilience (Hong et al., 2021; Huang and Ling, 2018;
Kasmalkar et al., 2020; Zou et al., 2018). Urban residents
adjust their activities when their living environments are
socially and physically impacted by an adverse event, and
such adjustment can be inferred from location-aware big data
(Qian et al., 2021b). In other words, the changes in human ac-
tivities extracted from location-aware big data could be used
to study the resilience capacity of an urban system in re-
sponse to an adverse event. For example, Hong et al. (2021)
quantified changes in mobility behaviour before, during, and
after the Hurricane Harvey using smartphone geolocation
data, and they analysed the spatial variable of community re-
silience capacity, which was defined as the function of the
magnitude of impact and time to recovery.

Human activities may also change in response to mild yet
frequent adverse natural events, such as urban rainstorms.
Unlike in the case of hurricanes, dwellers are usually not mo-
bilized by relevant authorities to prepare for and resettle af-
ter such events. Instead, nearly 90 % of flood-related tweets
in a city are released during heavy rains (Wang et al., 2020).
Consequently, human activities mainly show how an urban
system responds to but not how it prepares for and recovers
from such adverse natural events (Qian et al., 2022; Zhang
et al., 2022). As a result, urban resilience to mild and fre-
quent adverse events refers to the ability of an urban system
to respond to adverse events. Furthermore, urban resilience
could significantly differ from that of destructive disasters
and may show significant spatiotemporal variations due to
the areal difference in local natural settings, socioeconomic
status, and infrastructure completeness (Adger et al., 2005;
Guan and Chen, 2014; Östh et al., 2015; Zou et al., 2019,

2018). Study of such regional inequality is therefore of great
value to disaster relief and mitigation.

However, previous resilience metrics, which have mainly
focused on unique disaster events, were not suitable for mak-
ing assessments at a large scale. Two resilience metrics were
introduced into this study from other fields. Sensitivity is a
widely used tool for understanding resilience in different re-
gions in many other weather events, such as heat waves and
air pollution (Hong et al., 2021; Wang et al., 2021). For ex-
ample, Zheng et al. (2019) defined the links between a city-
level happiness index calculated from social media data and
a daily local air quality metric as the perception sensitivity
and explored its spatial variation. However, response sensi-
tivity has not yet been studied for rainstorm events through
analysing the relation between a city-scale human activity
response metric and a rainstorm event index. Another in-
dex, the rainfall threshold, is commonly used to study rain-
fall events that have resulted in landslides (Marra et al., 2016;
Naidu et al., 2018). In this study, the rainfall threshold, which
is defined as the minimum rainfall index that corresponds to a
significant urban human activity response anomaly, is intro-
duced into the study of urban resilience. These two metrics
can effectively depict urban resilience at different levels of
focus.

In this study, we propose a method for measuring and eval-
uating how urban systems respond to heavy rains as reflected
in location-aware big data. We extracted human activities
from the Tencent location request (TLR) data in 346 cities
across mainland China from May to August 2017 and used
two indicators – rainfall threshold and response sensitivity
– to quantify the urban resilience across our study area. We
found significant regional inequality of urban resilience in
mainland China, and the inequality could be explained by
variations in the regional natural, socioeconomic, and infras-
tructure variables. The findings from this study provide a new
perspective and method to quantify urban resilience to fre-
quent yet not so destructive adverse events across a large
geographic scale. Practically, our findings suggest an urgent
need to revise current unified rainstorm warning standards to
better serve residents.

2 Data and methods

2.1 Data

We collected Tencent location request (TLR) data from
1 May to 31 August 2017 from Tencent’s big data portal.
Tencent, with over 700 million users, is the largest social me-
dia platform in China. A Tencent user may check in the plat-
form for a variety of purposes such as location-based search-
ing, navigation, or location sharing. The dataset we down-
loaded has an hourly temporal resolution and a 1 km× 1 km
spatial resolution. The data have been proven as a reliable
proxy for collective human activities in many studies from
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Figure 1. A flow chart showing the data analysis process in this
study. S-H-ESD denotes seasonal hybrid extreme Studentized devi-
ate.

multiple dimensions of time and space (Liu et al., 2019b;
Qian et al., 2021a; Ma, 2018).

We used the Integrated Multi-satellitE Retrievals for GPM
(IMERG; GPM denotes Global Precipitation Measurement
v6) 30 min precipitation dataset (Levizzani et al., 2020, p.1).
This dataset has a spatial resolution of 0.1◦× 0.1◦ and has
been evaluated and widely used in related studies (Yi et al.,
2019; Liu et al., 2019a). We used this dataset to extract the
characteristics of rainfall events of interest.

We collected six natural, socioeconomic, or infrastructure
indicators to help explain the variations in urban resilience,
including the annual precipitation in China calculated by ag-
gregating GPM data in 2017, population density, gross do-
mestic product, green coverage rate, drainage network den-
sity, and per capita area of paved roads.

2.2 Methods

Figure 1 shows the data process and analysis flow chart of
this study. We first proposed a multilevel human activity
anomaly detection (MHAAD) methodological framework to
detect and characterize the TLR anomalies in response to
rainfall events. The framework has two major parts. In the
first part, we identified the grids with a stable TLR number
and then the anomalies from the time series TLR data of each
grid. We then used the two-sided Welch’s t test and probabil-
ity density function (PDF) method to detect whether human
activity anomalies are triggered by a rainfall event or not.
Rainfall indices were extracted for the grids with a stable
TLR number and selected by their importance as shown in
the random forest model. We then explored the multilevel re-
lationship between rainfall characteristics and human activ-

Figure 2. The schematic diagram (a) and contingency table (b) of
the binary classifier for Beijing.

ity anomalies. We proposed two indicators – rainfall thresh-
old and response sensitivity – to describe urban resilience.
Lastly, we assessed the association between urban resilience
and natural, socioeconomic, and infrastructure explanatory
variables.

2.2.1 TLR anomaly detection

We first identified all grids with a stable TLR number (here-
after referred to as stable grids unless stated otherwise) us-
ing the method Qian et al. (2021b) proposed. Based on the
empirical cumulative distribution function (CDF) of param-
eters P and M , we can get all of the stable grids which are
the regions with stable human activity and rhythm in an ur-
ban area. In total, 832 630 out of the 9 600 903 grids across
our study area are identified as stable grids. The numbers of
smartphone users and TLRs vary significantly by grid. We
therefore normalized the TLRs using the median interquartile
normalization method (Geller et al., 2003) to make the TLRs
in the stable grids comparable. We then employed the sea-
sonal hybrid extreme Studentized deviate (S-H-ESD) method
(Vallis et al., 2014) to detect anomalies from the gridded TLR
time series. The S-H-ESD method can be denoted by the fol-
lowing additive model:

Ts = TC+ SC+RC, (1)

where TC, SC, and RC represent the trend, seasonality, and
residual components, respectively.

The S-H-ESD method has two major steps. First, the
piecewise median method is used to fit and remove the long-
term trend. Then the seasonal-trend decomposition using lo-
cally weighted regression (LOESS) method is employed to
remove seasonality (Cleveland et al., 1990). We then used
the generalized extreme Studentized deviate (G-ESD) statis-
tic (Rosner, 1975) to identify significant anomalies in the
residuals. In this study, we used a piecewise combination of
the biweekly medians to model the underlying trend, which
shows little change in the TLR time series. The significance
level a is set to 0.05, and the number of anomalies is set to
no more than 25 % of the total observations.

We then extracted the total numbers of the grids with posi-
tive anomalies (PTLR) and negative anomalies (NTLR) by
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Figure 3. (a) The schematic definitions of the human activity
anomaly associated with a specific rainfall event used in this study,
where the x axis presents the “month–day hour”. (b) The relative
proportions and numbers of the rainfall events with various cPTLR
and cNTLR values (see the main text for definitions of cPTLR
and cNTLR). (c) The probability density distribution curves of the
events with significantly increased cPTLR/cNTLR. (d) Box plots
by peak rainfall intensity groups per 0.5 mm. Trend lines are shown
for the ordinary least squares (OLS) regression (dashed black), 0.25
quantile (purple), median (red), and 0.75 quantile (blue) range. The
numbers in Fig. 3d show the numbers of rainfall events with specific
peak intensity as shown along the x axis.

city, respectively, and then examined the variations in the
PTLR and NTLR time series over the periods with rains
and without rains to identify whether a rainfall event triggers
collective human activity anomalies. The two-sided Welch’s
t test was used for the significance test. Human activity
anomalies usually happen shortly before or after the peak
rainfall intensity and last as a spell instead of the entire rain-
fall event. We therefore employed a moving-time-window
method to find the period with the largest accumulative rain-
fall and used the period to detect the statistical significance
of the change in relation to the PTLR/NTLR time series in
a raining and non-raining period. In this study, we used a
6 h moving window, which is half of the average duration of
all rainfall events of interest in this study (see Fig. S3 in the
Supplement).

2.2.2 Feature selection of rainfall indices

The GPM data were first resampled to the same spatiotem-
poral resolutions as those of the TLR data using the nearest-
neighbour interpolation method. We then extracted the rain-
fall intensity for each city per hour, i.e. the average hourly
GPM precipitation within the stable grids of the city.

In this study, a rainfall event is defined as a precipitation
process that lasts for at least 3 h and with no rains preceding
for at least 1 h. The number of rainfall events in each city

Figure 4. (a) The importance of the five rainfall indicators obtained
by the random forest model. The peak hour is the most important
covariate that triggers human activity anomalies and has the high-
est decrease accuracy value of 114.5. (b) The peak hour thresholds
identified from the differences in the peak hour PDF values between
the rainfall events with and without significant collective human
activity anomalies. When the peak hours are between 08:59 and
18:50 UTC+8, the PDF values of the events with human activity
anomalies are higher than those without. In other words, daytime
rains are more likely to trigger human activity anomalies. There are
11 491 daytime rains (i.e. from 08:59 to 18:50 UTC+8) out of the
total 20 860 rainfall events (ratio: 55.11 %).

is normally distributed. We selected the 346 cities with at
least 40 (the top 5 % quantile) rainfall events for this study
(Figs. S1 and S2).

Every rainfall event is described with three rainfall in-
dices (the 1 h peak intensity, 6 h peak intensity, and cumu-
lative rainfall) and two temporal indices (the duration and
peak hour) (Table S1). From these indices, we used a random
forest model (RF) to calculate the importance score (mean
decrease accuracy) for each indicator. The importance score
shows the global importance over all the out-of-bag cross-
validated predictions. The random forest model is robust and
less susceptible to multicollinearity as it averages all pre-
dictions for a given feature variable and is more efficient in
terms of feature selection than multi-linear regression (Strobl
et al., 2007; Pal, 2005). We then identified the most impor-
tant indicator that triggers human activity anomalies (Liaw
and Wiener, 2001).

2.2.3 Quantifying the rainfall threshold and response
sensitivity

In this study, we used two indices, rainfall threshold and
response sensitivity, to quantitatively characterize urban re-
silience. The rainfall threshold is the peak intensity of
the rainfall event which triggers collective human activity
anomalies. We first used a linear binary classifier to examine
the paired values of the peak intensity and duration to deter-
mine whether a rainfall event brings more or less rain than
the threshold to trigger collective human activity anomalies
(Fig. 2a). The Fisher discriminant analysis method was then
applied to identify the discriminant function to minimize the
classification errors (Mika et al., 1999). The rainfall thresh-
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Figure 5. Spatial distribution of the rainfall threshold that triggers human activity anomalies for rainfall events lasting 3 (a), 6 (b), and 12 h
(c) and slope (d) of the decision boundary. The isohyets show the 2017 annual rainfall.

olds associated with different rainfall durations are directly
extracted from Fig. 2a.

Three quantitative indices, the probability of detection
(POD), false alarm rate (FAR), and critical success index
(CSI), are used to evaluate the performance of the thresh-
old identification method based on the contingency table
(Fig. 2b):

POD=
H

H +M
, (2)

FAR=
FA

H +FA
, (3)

CSI=
H

H +M +FA
=

1

POD−1
+ (1−FAR)−1

− 1
, (4)

where H , FA, and M represent the percent of hits, false
alarms, and misses, respectively. All three indices range from
0 to 1. A value of 1 for the POD and FAR indicates a perfect
hit and a 100 % false-positive rate. A higher CSI is associated
with a higher POD and a lower FAR value.

The second index, the response sensitivity, is defined as the
rate of abnormal change in collective human activities trig-
gered by a rainfall event. We first selected the rainfall events
with precipitation above the threshold and that trigger human

activity anomalies, i.e. those represented with red crosses and
above the decision boundary in Fig. 2a. Then we defined two
indicators, cPTLR and cNTLR, to describe the rate of ab-
normal change in collective human activities (Fig. S4). The
cPTLR and cNTLR were calculated as the difference be-
tween the mean of the two time series, i.e. the PTLR and
NTLR in the 6 h raining time window and non-raining time
window. A multiple linear regression model was then con-
structed between the cPTLR and the rainfall intensity/dura-
tion for each city. In the end, we calculated the marginal city-
specific partial derivatives of cPTLR with respect to the peak
intensity and the duration. The response sensitivity index is
calculated as the average of the regression coefficients of the
peak intensity and the duration. The adjusted R2 was also
calculated to assess the model accuracy.

Finally, we separately classified the rainfall threshold and
response sensitivity indices of the 346 cities into three classes
using the Jenks natural breaks classification method, which
clusters data into different groups by seeking minimum vari-
ance within a class and maximum variance between classes
(McDougall and Temple-Watts, 2012). In this study, we used
the 6 h rainfall threshold index in line with the time window
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Figure 6. Spatial distribution of the response sensitivity (a) and adjusted R2 (b) in multiple linear regression. The isohyets show the 2017
annual rainfall.

in Fig. S4. In total, there are nine different combinations be-
tween the threshold and response sensitivity indices.

2.2.4 Quantifying the relationships between resilience
and urban characteristics

We then examined the relationships between the two urban
resilience indices and the annual rainfall, population den-
sity, gross domestic product, green coverage rate, drainage
network density, and per capita area of paved roads. The
Kendall, Pearson, and Spearman correlation coefficients and
multi-linear regression were used to measure the correla-
tion between rainfall threshold, response sensitivity, and city
characteristics at the city level.

3 Results

3.1 Collective human activities in response to rainfall
events

The gridded TLR numbers could increase (positive anomaly)
or decrease (negative anomaly) in response to rains (Fig. S5).
Counting the overall TLR changes by city would not show
how rains impact collective human activities (Yi et al., 2019).
In this study, instead, we calculated the changes in the total
numbers of the grids showing positive (cPTLR) and negative
anomalies (cNTLR) by city during a raining period in rela-
tion to those over the non-raining period (Fig. 3a) to illustrate
how collective human activities change in response to rains.

The city-level collective human activities jump to an ex-
cited state (Fig. 3b) with a significantly increased number of
grids exhibiting positive anomalies in response to 55.11 %
of the daytime rains (Fig. 4), whereas nighttime rains show
no significant impact on collective human activities. About
93.2 % (i.e. 10 710) of the rainfall events in this study are
associated with a greater change in the number of grids

with positive anomalies than that of the grids with negative
anomalies (i.e. |cPTLR|> |cNTLR|). Around 59.7 % of the
10 710 (i.e. 6394) rains show an increased number of grids
with positive anomalies by city. Furthermore, 35.3 % of the
6394 (i.e. 2257) rainfall events associated with excited-state
human activities show a significantly increased number of
grids with positive anomalies, which we believed could be
attributed to heavy rains. We noticed that a small number
(103, 13.19 % |cPTLR| ≤ |cNTLR|) of heavy rains brought
by typhoons trigger city-level collective human activities to
be in a dispirited state, with a significantly increased number
of grids exhibiting NTLR (Fig. 3c) as compared to the non-
typhoon rains. Accordingly, we excluded all typhoon-related
rainfall events from this study.

The higher rainfall intensity could trigger more excited-
state collective human activities (Fig. 3d). The 1 h peak
intensity values of the rainfall events associated with
excited-state human activities are positively correlated with
the corresponding cPTLR values (fitting slope= 0.49 %,
p value < 0.001). However, the cPTLR slope against rainfall
is affected by the divergence of the peak intensity anomaly.
Quantile regression results show that the cPTLR slope co-
efficient estimates gradually increase from 0.17 % for the
lower 25 % quantile to 0.84 % for the higher 75 % quan-
tile (p value < 0.01). In other words, the cPTLR growth rate
generally increases from the lower-anomaly to the sensitive-
anomaly rainfall events with respect to the increasing magni-
tude of the rainfall peak intensity.

3.2 Regional inequality of urban resilience

We derived two indicators – rainfall threshold and response
sensitivity – from the perspective of the public’s social re-
sponse to rains to evaluate urban resilience. The threshold
is defined as the intensity of an event that triggers a city to
reach an undesirable state (Liao, 2012). In this study, we de-
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Figure 7. Spatial distribution of urban resilience. The basemap
colours indicate the 2017 annual rainfall.

fined the threshold of a rainfall event with a specific duration
as the minimum rainfall intensity that corresponds to signif-
icant urban TLR anomalies. As shown in Fig. 4a, the peak
rain intensity and rain duration are the second and third most
important characteristics, respectively, that trigger human ac-
tivity anomalies. We extracted the rainfall thresholds for each
city using binary classification models (Fig. S6), and the re-
sults show that the rainfall thresholds drop with increased
rainfall duration across all 346 cities in China (Fig. 5a–c).
The 3, 6, and 12 h rainfall thresholds all show significant spa-
tial autocorrelation and a pattern of gradual decrease from the
southeastern coast to the northwestern inland. However, with
increased rainfall durations, the average rainfall thresholds of
all 346 cities decrease from 4.24 to 2.75, whereas their stan-
dard deviations decrease from 3.55 to 2.45. Such results in-
dicate the public’s response to the short rainfall events varies
greatly in different cities and tends to be more consistent with
increased rainfall durations.

The impacts of the peak rain intensity and duration on
human activity vary across our study area as shown by the
slopes of the decision boundary of different cities (Fig. 5d).
In arid and semi-arid northwestern China, the slope is close
to zero, showing the public response is mainly affected by
peak intensity. Residents in northwestern China may adjust
their activities in response to the rain peak intensity as rains
in this area seldom last long. By contrast, the slope is high
for the southeastern region, indicating the public’s response
is more affected by rainfall duration. The wet southeastern
China usually receives frequent and heavy rains and resi-
dents have already adapted to it. Consequently, residents in
this area may change their activities in response to rainfall
duration more than to the peak intensity.

Results of the binary classification are solid as shown by
the anomaly detection POD, FAR, and CSI values for differ-
ent rainfall durations based on rainfall thresholds (Fig. S7).

Figure 8. Regression coefficients between the six explanatory vari-
ables and the 6 h rainfall threshold (a) and response sensitivity (b).
The horizontal lines mean the 95 % confidence interval.

More specifically, the POD values for different rainfall du-
rations in the 346 cities range from 0.71 to 1.00, the FAR
values from 0 to 0.46, and the CSI values from 0.48 to 1.

The other urban resilience indicator, the response sensi-
tivity, is defined as the rate of the collective human activ-
ity anomalies triggered by a rainfall event and was extracted
from multiple regression analysis. The response sensitivity
is low on the southeastern coast and high in the northwestern
inland, showing a trend opposite to that of the rainfall thresh-
old (Fig. 6a). The higher response sensitivity in the northwest
suggests that the residents in this area tend to change their
activities more significantly in response to rains. By contrast,
activities of the residents in the southeast are not significantly
impacted by rains. Such findings are consistent with those
derived from the rain threshold indicator. The accuracy of
the regression model (the adjusted R2) also shows a similar
trend to that of the response sensitivity (Fig. 6b), which in-
dicates that the response mode of collective human activities
to rainfall in the southeastern coastal area is more complex.

The associations between the two urban resilience in-
dices also exhibit a significant pattern across our study area
(Fig. 7). Cities located in the area with over 1600 mm annual
precipitation are mainly categorized into type HL (threshold
> 10.29 mm and response sensitivity < 0.003) and are sur-
rounded by the ML and HM city types. The cities located
in the areas with less than 400 mm annual precipitation are
mainly classified into LH, MH, and LL types, indicating the
annual precipitation has a significant impact on human activ-
ities in different cities.

The LH type cities have a low rainfall threshold
(< 3.25 mm) and high response sensitivity (> 0.025). These
cities are mainly found in the northwestern fragile region
(mainly including the Yili prefecture in Xinjiang) and the
central underdeveloped China (including Shaanxi, Shanxi,
and Hebei provinces). Such cities may have underdeveloped
infrastructure, and weaker rains could trigger human activity
anomalies.
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Table 1. Urban resilience indices from this study for different city groups and the difference from the current yellow Chinese heavy-rain-alert
standard. Note that the different types of urban resilience are defined in Fig. 7.

Threshold Response Alarm Yellow Difference from
Type (mm) sensitivity standard (mm) warning (mm) yellow warning

LH 1.8 0.71 10.8 50 −39.2
LM 2.08 0.51 12.46 50 −37.54
LL 2.23 0.39 13.35 50 −36.65
MH 3.61 0.63 21.68 50 −28.32
ML 4.99 0.41 29.94 50 −20.06
MM 5.03 0.49 30.19 50 −19.81
HL 17.5 0.42 104.97 50 54.97
HM 18.94 0.48 113.64 50 63.64
HH 22.34 0.64 134.05 50 84.05

3.3 Associations between the urban resilience with the
urban indicators

Results of multiple regression analysis show that variations
in urban resilience by city could be explained by the vari-
ations in a variety of natural, socioeconomic, and urban in-
frastructure indicators. Figure 8a shows the relationship be-
tween rainfall thresholds and explanatory indicators. The 3,
6, and 12 h rainfall thresholds all show similar correlations
with the indictors (Tables S2, S3, S4), and we only show the
correlations between the 6 h rainfall and the indicators in this
section.

All six explanatory variables are significantly correlated
with the rainfall threshold (p < 0.05). About 42 % of the
variations in the rainfall threshold could be explained by the
variations in the explanatory variables as shown by the R2

(Table 3). Among all explanatory variables, the annual rain-
fall has the highest coefficient value of 0.43, indicating the
variations in the threshold are most affected by the annual
rainfall. In other words, residents living in regions with dif-
ferent annual precipitation amounts are more likely to ac-
cordingly adjust their daily activities once the rainfall is over
a specific threshold.

Other explanatory variables are also positively correlated
with the threshold variable, as shown by the positive regres-
sion coefficients ranging from 0.21 to 0.10, except the per
capita area of paved road, which is negatively correlated with
the threshold. In fact, the per capita area of paved roads is the
only indicator showing a negative correlation. Increased per
capita area of paved road weakens rainwater infiltration ca-
pacity and increases surface runoff, which is more likely to
cause traffic congestion and trigger human activity anomalies
even when the rainfall amount is below a lower threshold.

Multi-regression analysis shows that the response sensi-
tivity is negatively correlated with all explanatory variables,
except for the per capita area of paved roads, which shows a
positive regression coefficient (Fig. 8b). All correlations are
statistically significant (p < 0.05) (Table S5). About 31 % of
the variations in the response sensitivity could be explained

by the variations in the explanatory variables as shown by an
R2 value of 0.31.

4 Conclusions and discussions

Residents in different cities may adjust and change their ac-
tivities in different ways in response to rainfall. Such activ-
ity changes and adjustment, also known as urban resilience,
could be characterized and studied from location-aware big
data. In this study, we used Tencent aggregated location re-
quest data to examine the changes in collective human ac-
tivities in major cities in China in response to rainfall over
summer 2017. Our results show that the rainfall time, peak
intensity, and duration are the three most important indica-
tors that determine whether a rain event would trigger human
activity anomalies or not. We also proposed two indices, the
rainfall threshold and response sensitivity, to describe urban
resilience; they show significant spatial variations across our
study area. Furthermore, the unequal urban resilience could
be explained by a series of explanatory variables.

We believe this paper provides a new perspective for
studying urban resilience and that the results bridge the
knowledge gap between heavy rains, collective human activi-
ties, and urban resilience. Such knowledge is of great signifi-
cance to urban planning, traffic management, and emergency
response.

We also believe this study has three other contributions re-
garding urban resilience research. First, this study expanded
the research framework of urban resilience in response to
high-frequency yet mild adverse events, and such a frame-
work could be used to study the variations in urban resilience
across a large area. Previous studies have mainly focused on
urban resilience to a specific adverse event such as a typhoon
or a hurricane. For example, Zou et al. (2018) used a nor-
malized ratio index to assess the regional variations in urban
resilience to Hurricane Sandy. In this study, we examined ur-
ban resilience to rains over a relatively long period and across
a large area. Such a study can better show how residents in

Nat. Hazards Earth Syst. Sci., 23, 317–328, 2023 https://doi.org/10.5194/nhess-23-317-2023



J. Qian et al.: Rainfall across China from location-aware big data 325

different regions change their activities in different ways in
response to rains with different durations, peak intensities,
and accumulative rainfall levels.

Secondly, our research analysed the impacts of different
features of the rainfall events on human activities. Previous
studies have often simply characterized a disaster using its
threat levels. For example, Zou et al. (2018) used the average
hurricane track kernel density and its wind speed to define the
threat levels. In this study, instead, we extracted five major
elements of a rainfall event and employed the random forest
model to study the impacts of different elements on collective
human activities.

Thirdly, we used the rainfall threshold to quantify urban
resilience, and the threshold is valuable for authorities to re-
vise heavy-rain alerts. Conventionally, heavy-rain alerts are
usually based on rainfall intensity and precipitation only and
seldom consider the areal difference in infrastructures. Ac-
cording to current Chinese standards, Chinese authorities is-
sue a blue, yellow, and orange alert when precipitation is or
will be over 50 mm in 12, 6, and 3 h and the rain might not
stop (Mendiondo, 2005). A red alert is issued when precipi-
tation is or will be over 100 mm in 3 h and the rain might not
stop. Results from this study show that it is not appropriate
to apply such a unified alert standard to different groups of
cities across China. In the less resilient, fragile areas (Fig. 7),
for instance, a rainfall event with 3.25 mm of precipitation
per hour (i.e. 19.5 mm in 6 h) already triggers significant
human activity anomalies. As a result, the national heavy-
rain-alert standard significantly underestimates the impacts
of rainfall on the residents in northwestern and central China.

Table 1 shows the precipitation thresholds of different city
groups that trigger human activity anomalies and the 6 h ac-
cumulative precipitation based on which a heavy-rain warn-
ing should be issued. For example, for the LH cities, a rain-
fall intensity of 1.8 mm and 6 h accumulative precipitation of
10.8 mm should trigger a yellow heavy-rain warning. Such
a value of the 6 h accumulative precipitation is much lower
than the current yellow Chinese heavy-rain-warning standard
(50 mm in 6 h). By contrast, for the HH cities, the rainfall
threshold and 6 h accumulative precipitation that trigger hu-
man activity anomalies are 22.34 and 134.05 mm, respec-
tively. The accumulative precipitation is much higher than
the yellow heavy-rain-warning standard. In other words, it is
amateurish to issue a heavy-rain warning when the 6 h ac-
cumulative precipitation is 50 mm for the HH cities. Results
from this study therefore are of great value for the authori-
ties who revise heavy-rain alerts across China to help local
residents be better prepared for such adverse events.

The study could be expanded. Rather than representing all
the residents of a city, the Tencent location request dataset is
generated by over 1 billion monthly active users. The Ten-
cent dataset’s aggregate geotagged human activities may un-
derestimate the effects of rainstorms on infrequent users, par-
ticularly the elderly and children. To address this limitation
and further investigate human responses to various weather

events, our future studies will aim to integrate multisource
geospatial datasets. Furthermore, identifying disaster types
such as rainstorm, waterlogging, and flood from social me-
dia data and then analysing the regional response variation in
large-scale human activity in different disasters can improve
deep understanding of urban resilience.
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