Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2475-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-2475-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Melissa Wood
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way,
Southampton, UK
Ivan D. Haigh
CORRESPONDING AUTHOR
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way,
Southampton, UK
Quan Quan Le
Southern Institute of Water Resources Research (SIWRR), 658th Vo Van
Kiet Avenue, Ward 1, District 5, Ho Chi Minh City, Vietnam
Hung Nghia Nguyen
Southern Institute of Water Resources Research (SIWRR), 658th Vo Van
Kiet Avenue, Ward 1, District 5, Ho Chi Minh City, Vietnam
Hoang Ba Tran
Southern Institute of Water Resources Research (SIWRR), 658th Vo Van
Kiet Avenue, Ward 1, District 5, Ho Chi Minh City, Vietnam
Stephen E. Darby
School of Geography and Environmental Science, University of
Southampton, Highfield, Southampton, UK
Robert Marsh
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way,
Southampton, UK
Nikolaos Skliris
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Waterfront Campus, European Way,
Southampton, UK
Joël J.-M. Hirschi
National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
Robert J. Nicholls
Tyndall Centre for Climate Change Research, University of East
Anglia, Norwich, UK
Nadia Bloemendaal
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, 1081 HV, Amsterdam, the Netherlands
Related authors
Stephen E. Darby, Ivan D. Haigh, Melissa Wood, Bui Duong, Tien Le Thuy Du, Thao Phuong Bui, Justin Sheffield, Hal Voepel, and Joël J.-M. Hirschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3506, https://doi.org/10.5194/egusphere-2025-3506, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We use model simulations to see what changes have been occurring to Mekong and Red River flows, 1970–2019, due to changes in tropical cyclone (TC)-linked precipitation. Results suggest that the highest river flows in multiple sub-catchments have been increasing over time, with coastal zones most intensely affected due to the combination of TC track and wet soils from prior rainfall. Climate change may exacerbate this TC-linked risk in the future making it a topic of strategic importance.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Hung Nghia Nguyen, Quan Quan Le, Dung Viet Nguyen, Tan Hong Cao, Toan Quang To, Hai Do Dac, Melissa Wood, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-107, https://doi.org/10.5194/nhess-2024-107, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
The paper focuses on inundation process in a highest climate vulnerability area of the Mekong Delta, main drivers and future impacts, this is importance alert to decision makers and stakeholder for investment of infrastructure, adaptation approaches and mitigating impacts.
Stephen E. Darby, Ivan D. Haigh, Melissa Wood, Bui Duong, Tien Le Thuy Du, Thao Phuong Bui, Justin Sheffield, Hal Voepel, and Joël J.-M. Hirschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3506, https://doi.org/10.5194/egusphere-2025-3506, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We use model simulations to see what changes have been occurring to Mekong and Red River flows, 1970–2019, due to changes in tropical cyclone (TC)-linked precipitation. Results suggest that the highest river flows in multiple sub-catchments have been increasing over time, with coastal zones most intensely affected due to the combination of TC track and wet soils from prior rainfall. Climate change may exacerbate this TC-linked risk in the future making it a topic of strategic importance.
Floris R. Calkoen, Arjen P. Luijendijk, Susan Hanson, Robert J. Nicholls, Antonio Moreno-Rodenas, Hugo De Heer, and Fedor Baart
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-388, https://doi.org/10.5194/essd-2025-388, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents the first global, high-resolution (100 m) coastal classification dataset derived from Earth observation data using deep learning. It offers a consistent view of coastal landforms, sediment types, and human modifications across nearly 10 million transects—covering one million kilometers of coastline. The dataset supports a wide range of applications, from coastal change monitoring and erosion risk assessment to climate adaptation planning, conservation, and coastal geology.
Susan E. Hanson, Robert J. Nicholls, Floris R. Calkoen, Gonéri Le Cozannet, and Arjen P. Luijendijk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2371, https://doi.org/10.5194/egusphere-2025-2371, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The CoasTER geographic database provides erosion relevant characteristics for Europe’s coastal floodplains. It builds on earlier erosion research and includes a coastal geomorphological typology incorporating modification in the form of hard engineering and infrastructure. Analysis shows 27 % of coastal floodplains have shown significant erosion over the last 40 years. Nearly 3,500 km will require additional or new management to protect developed areas and infrastructure if the trend continues.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Thomas P. Collings, Callum J. R. Murphy-Barltrop, Conor Murphy, Ivan D. Haigh, Paul D. Bates, and Niall D. Quinn
EGUsphere, https://doi.org/10.5194/egusphere-2025-1138, https://doi.org/10.5194/egusphere-2025-1138, 2025
Short summary
Short summary
Determining the threshold above which events are considered extreme is an important consideration for many modelling procedures. We propose an extension of an existing data-driven method for automatic threshold selection. We test our approach on tide gauge records, and show that it outperforms existing techniques. This helps improve estimates of extreme sea levels, and we hope other researchers will use this method for other natural hazards.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Marjolein Ribberink, Hylke de Vries, Nadia Bloemendaal, Michiel Baatsen, and Erik van Meijgaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-218, https://doi.org/10.5194/egusphere-2025-218, 2025
Short summary
Short summary
Hurricane Ophelia of October 2017 is a rare example of a strong post-tropical cyclone impacting Europe, an event that is expected to occur more frequently as our climate warms. This study examines the changes in structure, behaviour, and extratropical transition of Hurricane Ophelia under alternate climate forcing using a regional model. We find that in warmer climates the storm becomes stronger, larger, and maintains the characteristics of a tropical cyclone for longer than in cooler climates.
Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, and Quentin Jamet
EGUsphere, https://doi.org/10.5194/egusphere-2025-17, https://doi.org/10.5194/egusphere-2025-17, 2025
Short summary
Short summary
Using statistical methods and a set of ensemble climate models, we decompose the sources of Atlantic Meridional Overturning Circulation (AMOC) variance. Three distinct phases of physical variability are identified: from 1850 to 1990, internal variability dominates; from 1990 to 2050, dynamical adjustment related to AMOC decline takes over; after 2050, differences between forcing scenarios become dominant. Beyond these physical factors, model variability remains the major source of uncertainty.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Hung Nghia Nguyen, Quan Quan Le, Dung Viet Nguyen, Tan Hong Cao, Toan Quang To, Hai Do Dac, Melissa Wood, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-107, https://doi.org/10.5194/nhess-2024-107, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
The paper focuses on inundation process in a highest climate vulnerability area of the Mekong Delta, main drivers and future impacts, this is importance alert to decision makers and stakeholder for investment of infrastructure, adaptation approaches and mitigating impacts.
Andrea Gasparotto, Stephen E. Darby, Julian Leyland, and Paul A. Carling
Earth Surf. Dynam., 11, 343–361, https://doi.org/10.5194/esurf-11-343-2023, https://doi.org/10.5194/esurf-11-343-2023, 2023
Short summary
Short summary
In this study the processes leading to bank failures in the hypertidal Severn Estuary are studied employing numerical models and field observations. Results highlight that the periodic fluctuations in water levels drive an imbalance in the resisting (hydrostatic pressure) versus driving (pore water pressure) forces causing a frequent oscillation of bank stability between stable (at high tide) and unstable states (at low tide) both on semidiurnal bases and in the spring–neap transition.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Samuel Tiéfolo Diabaté, Didier Swingedouw, Joël Jean-Marie Hirschi, Aurélie Duchez, Philip J. Leadbitter, Ivan D. Haigh, and Gerard D. McCarthy
Ocean Sci., 17, 1449–1471, https://doi.org/10.5194/os-17-1449-2021, https://doi.org/10.5194/os-17-1449-2021, 2021
Short summary
Short summary
The Gulf Stream and the Kuroshio are major currents of the North Atlantic and North Pacific, respectively. They transport warm water northward and are key components of the Earth climate system. For this study, we looked at how they affect the sea level of the coasts of Japan, the USA and Canada. We found that the inshore sea level
co-varies with the north-to-south shifts of the Gulf Stream and Kuroshio. In the paper, we discuss the physical mechanisms that could explain the agreement.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
Grant Robert Bigg, Quentin Jutard, and Robert Marsh
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-61, https://doi.org/10.5194/os-2021-61, 2021
Revised manuscript not accepted
Short summary
Short summary
Icebergs fertilize the Southern Ocean, enhancing phytoplankton production, but this link is yet to be found in the Arctic. This study seeks such a relationship in the NW Atlantic. A one-month-lagged correlation between iceberg flux and chlorophyll levels is found, with the likely cause for this link through advection of the nutrients entrained in iceberg meltwater. The impact of iceberg meltwater on Arctic phytoplankton is much less pronounced than in the Southern Ocean, but it is discernible.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Andrew Yool, Julien Palmiéri, Colin G. Jones, Lee de Mora, Till Kuhlbrodt, Ekatarina E. Popova, A. J. George Nurser, Joel Hirschi, Adam T. Blaker, Andrew C. Coward, Edward W. Blockley, and Alistair A. Sellar
Geosci. Model Dev., 14, 3437–3472, https://doi.org/10.5194/gmd-14-3437-2021, https://doi.org/10.5194/gmd-14-3437-2021, 2021
Short summary
Short summary
The ocean plays a key role in modulating the Earth’s climate. Understanding this role is critical when using models to project future climate change. Consequently, it is necessary to evaluate their realism against the ocean's observed state. Here we validate UKESM1, a new Earth system model, focusing on the realism of its ocean physics and circulation, as well as its biological cycles and productivity. While we identify biases, generally the model performs well over a wide range of properties.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-282, https://doi.org/10.5194/nhess-2020-282, 2020
Revised manuscript not accepted
Short summary
Short summary
Following hurricanes and other natural hazards, it is important to quickly estimate the damage caused by the hazard such that recovery aid can be granted from organizations such as the European Union and the World Bank. To do so, it is important to estimate the vulnerability of buildings to the hazards. In this research, we use post-disaster observations from social media to improve these vulnerability assessments and show its application in the Bahamas following Hurricane Dorian.
Cited articles
Anh, L. T., Takagi, H., Thao, N. D., and Esteban, M.: Investigation of
awareness of typhoon and storm surge in the Mekong Delta – Recollection of
1997 Typhoon Linda, Journal of Japan Society of Civil Engineers, Ser. B3
(Ocean Engineering), 73, I_168–I_173, 2017.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P.,
Niehüser, S., and Jensen, J.: Non-linear interaction modulates global
extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-15752-5, 2020.
Bangalore, M., Smith, A., and Veldkamp, T.: Exposure to floods, climate
change, and poverty in Vietnam, Economics of Disasters and Climate Change
3, 79–99, https://doi.org/10.1007/s41885-018-0035-4, 2019.
Baranes, H. E., Woodruff, J. D., Talke, S. A., Kopp, R. E., Ray, R. D., and
DeConto, R. M.: Tidally driven interannual variation in extreme sea level frequencies in the Gulf of Maine, J. Geophys. Res.-Oceans, 125, e2020JC016291, https://doi.org/10.1029/2020JC016291, 2020.
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J. F., and Chaumillon,
E.: A modeling-based analysis of the flooding associated with Xynthia,
central Bay of Biscay, Coast. Eng., 94, 80–89, 2014.
Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Apecechea, M. I., de
Moel, H., Ward, P. J., and Aerts, J. C.: Global modeling of tropical cyclone
storm surges using high-resolution forecasts, Clim. Dynam., 52, 5031–5044, 2019.
Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., and
Aerts, J. C.: Generation of a global synthetic tropical cyclone hazard
dataset using STORM, Sci. Data, 7, 1–12, 2020.
Bloemendaal, N., de Moel, H., Martinez, A. B., Muis, S., Haigh, I. D., van
der Wiel, K., Haarsma, R. J., Ward, P., Roberts, M. J., Dullaart, J. C. M., and Aerts, J.: A globally consistent local-scale assessment of future
tropical cyclone risk, Science Advances, 8, eabm8438, https://doi.org/10.1126/sciadv.abm8438, 2022a.
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, 2022.
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings
(NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5V40S7W, 2015.
Chan, J. C.: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific, Meteorol. Atmos. Phys., 89, 143–152, 2005.
Cid, A., Camus, P., Castanedo, S., Mendez, F., and Medina, R.: Global
reconstructed daily surge levels from the 20th Century Reanalysis (1871-2010), Global Planet. Change, 148, 9–21, 2017.
Cid, A., Wahl, T., Chambers, D., and Muis, S.: Storm Surge Reconstruction
and Return Water Level Estimation in Southeast Asia for the 20th Century,
J. Geophys. Res., 123, 437–451, 2018.
Dang, T. D., Cochrane, T. A., and Arias, M. E.: Future hydrological alterations in the Mekong Delta under the impact of water resources development, land subsidence and sea-level rise, Journal of Hydrology: Regional Studies, 15, 119–133, 2018.
Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., and Yan, J.: The impact
of sea-level rise on developing countries: a comparative analysis, Climatic Change, 93, 379–388, 2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., and Bechtold, P.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
DHI: MIKE 21 – Flow Model - Hydrodynamic Module, User Guide,
https://manuals.mikepoweredbydhi.help/latest/Coast_and_Sea/M21HD.pdf (last access: January 2020), 2017a.
DHI: MIKE 21 Flow Model – Cyclone Wind Generation Tool, Scientific Documentation, https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/CycloneTool_Scientific_Doc.pdf (last access: January 2020), 2017b.
Dube, S. K., Sinha, P. C., and Rao, A. D.: The effect of coastal geometry on the location of peak surge, Mausam, 33, 445–450, 1982.
Dullaart, J. C., Muis, S., Bloemendaal, N., Chertova, M. V., Couasnon, A., and Aerts, J. C.: Accounting for TROPICAL CYCLONEs more than doubles the global population exposed to low-probability coastal flooding, Communications Earth & Environment, 2, 1–11, 2021.
Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., and Siani, S. M.: Coastal
flooding will disproportionately impact people on river deltas, Nat. Commun., 11, 1–8, 2020.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Technol., 19, 183–204, 2002.
Emanuel, K.: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models, J. Climate, 34, 57–70, 2021.
Emanuel, K. A.: Downscaling CMIP5 climate models shows increased tropical
cyclone activity over the 21st century, P. Natl. Acad. Sci. USA, 110, 12219–12224, 2013.
Erofeeva, S., Padman, L., and Howard, S. L.: Tide Model Driver (TMD) version 2.5, Toolbox for Matlab, GitHub, https://www.github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5, last access: 9 September 2020.
Feng, X., Klingaman, N. P., and Hodges, K. I.: Poleward migration of western
North Pacific tropical cyclones related to changes in cyclone seasonality,
Nat. Commun., 12, 1–11, 2021.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
GFDRR: Country Profile: Vietnam,
https://www.gfdrr.org/en/publication/country-profile-vietnam (last access: 10 December 2020), 2015.
Gray, W. M.: Tropical cyclone genesis, doctoral dissertation, Colorado State
University, Libraries, 1975.
Gray, W. M.: Tropical cyclone genesis in the western North Pacific, J. Meteorol. Soc. Jpn., Ser. II, 55, 465–482, 1977.
GSO [General Statistics Office]: General Statistical Office of Vietnam, http://www.gso.gov.vn/, 2019.
Guo, S. L.: A discussion on unbiased plotting positions for the general extreme value distribution, J. Hydrol., 121, 33–44, 1990.
Haigh, I. D., Eliot, M., and Pattiaratchi, C.: Global influences of the 18.61
year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels,
J. Geophys. Res.-Oceans, 116, C06025, https://doi.org/10.1029/2010JC006645, 2011.
Haigh, I. D., MacPherson, L. R., Mason, M. S., Wijeratne, E. M. S., Pattiaratchi, C. B., Crompton, R. P., and George, S.: Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges, Clim. Dynam., 42, 139–157, 2014.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S.-B., and Woodworth, P. L.: The tides they are a-Changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications, Rev. Geophys., 57, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2020.
Harper, B. A. and Holland, G. J.: An updated parametric model of the tropical
cyclone, in: Proc. 23rd Conf. Hurricanes and Tropical Meteorology, 10–15 January 1999, Dallas, TX, 10–15, 1999.
Harper, B., Hardy, T., Mason, L., and Fryar, R.: Developments in storm tide modelling and risk assessment in the Australian region, Nat. Hazards, 51, 225–238, 2009.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and
Simmons, A.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol,
R. S., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal
flood damage and adaptation costs under 21st century sea-level rise, P. Natl. Acad. Sci. USA, 111, 3292–3297, 2014.
Hinkel, J., Feyen, L., Hemer, M., Le Cozannet, G., Lincke, D., Marcos, M.,
Mentaschi, L., Merkens, J. L., de Moel, H., Muis, S., and Nicholls, R. J.:
Uncertainty and bias in global to regional scale assessments of current and
future coastal flood risk, Earth's Future, 9, e2020EF001882, https://doi.org/10.1029/2020EF001882, 2021.
Holland, G. J.: An analytic model of the wind and pressure profiles in
hurricanes, Mon. Weather Rev., 108, 1212–1218, 1980.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the
distribution of surge residuals in the North Sea, J. Geophys. Res., 112,
C08003, https://doi.org/10.1029/2006JC004033, 2007.
Hung, N. N., Delgado, J. M., Tri, V. K., Hung, L. M., Merz, B., Bárdossy, A., and Apel, H.: Floodplain hydrology of the Mekong delta, Vietnam, Hydrol. Process., 26, 674–686, 2012.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions
between mean sea level, tide, surge, waves and flooding: mechanisms and
contributions to sea level variations at the coast, Surv. Geophys., 40, 1603–1630, 2019.
Irish, J. L., Resio, D. T., and Divoky, D.: Statistical properties of hurricane surge along a coast, J. Geophys. Res., 116, C10007, https://doi.org/10.1029/2010JC006626, 2011.
IPCC: Summary for Policymakers, in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/ (last access: 22 December 2020), in press, 2019.
IPCC: Technical Summary, in: Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 33–144, https://doi.org/10.1017/9781009157896.002, 2021.
Jelesnianski, C. P.: SPLASH : (Special Program to List Amplitudes of Surges
from Hurricanes), I, Landfall storms, United States, National Weather
Service, Techniques Development Laboratory, NOAA technical memorandum NWS
TDL; 46, https://repository.library.noaa.gov/view/noaa/13509 (last access: January 2021), 1972.
Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke,
D., and Hinkel, J.: Projections of global-scale extreme sea levels and
resulting episodic coastal flooding over the 21st Century, Scientific
Reports, 10, 1–12, 2020.
Kleinen, J.: Historical perspectives on typhoons and tropical storms in the
natural and socio-economic system of Nam Dinh (Vietnam), J. Asian Earth Sci., 29, 523–531, 2007.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying tropical cyclone best track data, B Am. Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J.,
Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones
and climate change assessment: Part II: Projected response to anthropogenic
warming, B. Am. Meteorol. Soc., 101, E303–E322, 2020.
Kossin, J. P., Emanuel, K. A., and Vecchi, G. A.: The poleward migration of the location of tropical cyclone maximum intensity, Nature, 509, 349–352, 2014.
Lap, T. Q.: Researching the variation of typhoon Intensities under climate
change in Vietnam: A case study of typhoon Lekima, 2007, Hydrology, 6, 51, https://doi.org/10.3390/hydrology6020051, 2019.
Larson, M., Hung, N. M., Hanson, H., Sundström, A., and Södervall, E.: Impacts of Typhoons on the Vietnamese Coastline: A Case Study of Hai Hau
Beach and Ly Hoa Beach, in: Coastal Disasters and Climate Change in Vietnam
Elsevier, 17–42, ISBN 9780128004791, 2014.
Lee, J.-Y., Marotzke,J., Bala, G., Cao, L., Corti, S., Dunne, J. P.,
Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near-Term Information, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 553–672, https://doi.org/10.1017/9781009157896.006, 2021.
Lin, N. and Emanuel, K.: Grey swan tropical cyclones, Nat. Clim. Change, 6, 106–111, 2016.
Lin-Ye, J., García-León, M., Gràcia, V., Ortego, M. I., Lionello, P., Conte, D., Pérez-Gómez, B., and Sánchez-Arcilla, A.: Modeling of future extreme storm surges at the NW Mediterranean Coast (Spain), Water, 12, 472, https://doi.org/10.3390/w12020472, 2020.
Marcos, M., Calafat, F. M., Berihuete, Á., and Dangendorf, S.: Long-term
variations in global sea level extremes, J. Geophys. Res.-Oceans, 120, 8115–8134, https://doi.org/10.1002/2015JC011173, 2015.
Martin, P. J., Smith, S. R., Posey, P. G., Dawson, G. M., and Riedlinger, S. H.: Use of the Oregon State University tidal inversion software (OTIS) to
generate improved tidal prediction in the East-Asian Seas, Naval Research
Lab Stennis Space Center MS Oceanography Div., https://www7320.nrlssc.navy.mil/pubs/2009/smith1-2009.pdf (last access: July 2023), 2009.
Mawdsley, R. J. and Haigh I. D.: Spatial and temporal variability and long-term trends in skew surges globally, Frontiers in Marine Science, 3, 29,
https://doi.org/10.3389/fmars.2016.00029, 2016.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37, 2007.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction on
subsidence in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
Mori, N., Shimura, T., Yoshida, K., Mizuta, R., Okada, Y., Fujita, M.,
Khujanazarov, T., and Nakakita, E.: Future changes in extreme storm surges
based on mega-ensemble projection using 60-km resolution atmospheric global
circulation model, Coast. Eng. J., 61, 295–307, 2019.
Mousavi, M. E., Irish, J. L., Frey, A. E., Olivera, F., and Edge, B. L.: Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding, Climatic Change, 104, 575–597, 2011.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 1–12, 2016.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A High-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections, Frontiers in Marine Science, 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Murakami, H. and Sugi, M.: Effect of model resolution on tropical cyclone
climate projections, SOLA, 6, 73–76, 2010.
Nicholls, R. J.: Storm surges in coastal areas, in: Natural Disaster Hotspots Case Studies, edited by: Arnold, M., Chen, R. S., Deichmann, U., Dilley, M., Lerner-Lam, A. L., Pullen, R. E., and Trohanis, Z., The World Bank Hazard
Management Unit, Disaster Risk Management Series, 6, World Bank, Washington,
DC, 79–108, https://doi.org/10.1596/978-0-8213-6332-4, 2006.
Nicholls, R. J. and Cazenave, A.: Sea-level rise and its impact on coastal
zones, Science, 328, 1517–1520, 2010.
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T.,
Meyssignac, B., Hanson, S. E., Merkens, J. L., and Fang, J.: A global analysis of subsidence, relative sea-level change and coastal flood exposure, Nat. Clim. Change, 11, 338–342, 2021.
Nguyen, H. N., Vu, K. T., and Nguyen, X. N.: Flooding in Mekong River Delta,
Vietnam, Human Development Occasional Papers (1992–2007), No. HDOCPA-2007-53, Human Development Report Office (HDRO), United Nations Development Programme (UNDP), https://hdr.undp.org/system/files/documents/nguyenhuuninhpdf.pdf (last access: December 2021), 2007.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019.
Pandey, S. and Rao, A. D.: Impact of approach angle of an impinging cyclone
on generation of storm surges and its interaction with tides and wind waves,
J. Geophys. Res.-Oceans, 124, 7643–7660, 2019.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, 2002.
Peng, D., Hill, E. M., Meltzner, A. J., and Switzer, A. D.: Tide gauge records show that the 18.61-year nodal tidal cycle can change high water levels by up to 30 cm, J. Geophys. Res.-Oceans, 124, 736–749, 2019.
Phan, H. M., Ye, Q., Reniers, A. J., and Stive, M. J.: Tidal wave propagation
along The Mekong deltaic coast, Estuar. Coast. Shelf S., 220, 73–98, 2019.
Pielke Jr., R., Burgess, M. G., and Ritchie, J.: Plausible 2005–2050 emissions scenarios project between 2 ∘C and 3 ∘C of warming by 2100, Environ. Res. Lett., 17, 024027, https://doi.org/10.1088/1748-9326/ac4ebf, 2022.
Poulose, J., Rao, A. D., and Bhaskaran, P. K.: Role of continental shelf on
non-linear interaction of storm surges, tides and wind waves: An idealized
study representing the west coast of India, Estuar. Coast. Shelf S., 207, 457–470, 2018.
Pugh, D. and Woodworth, P.: Sea-level science: understanding tides, surges,
tsunamis and mean sea-level changes, Cambridge University Press, https://doi.org/10.1017/CBO9781139235778, 2014.
Ramos-Valle, A. N., Curchitser, E. N., and Bruyère, C. L.: Impact of
tropical cyclone landfall angle on storm surge along the Mid-Atlantic bight,
J. Geophys. Res.-Atmos., 125, e2019JD031796, https://doi.org/10.1029/2019JD031796, 2020.
Rego, J. L. and Li, C.: Nonlinear terms in storm surge predictions: Effect of
tide and shelf geometry with case study from Hurricane Rita, J. Geophys. Res., 115, C06020, https://doi.org/10.1029/2009JC005285, 2010.
Saulter, A., Bunney, C., Li, J. G., and Palmer, T.: Process and resolution
impacts on UK coastal wave predictions from operational global-regional wave
models, in: Proceedings of the 15th International Workshop on Wave
Hindcasting and Forecasting and 6th Coastal Hazard Symposium, Liverpool, UK, 10–15 September 2017, 26 pp., 2017.
Schwalm, C. R., Glendon, S., and Duffy, P. B.: RCP8.5 tracks cumulative CO2 emissions, P. Natl. Acad. Sci. USA, 117, 19656–19657, 2020.
Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., and Reichstein,
M.: Managing the risks of extreme events and disasters to advance climate
change adaptation, A special report of working Groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012.
Simpson, R. H. and Saffir, H.: The hurricane disaster–potential scale,
Weatherwise, 27, 169–186, 1974.
SwissRe: Industry-first Global Storm Surge Zones,
https://www.swissre.com/dam/jcr:dedf399f-af17-4061-928f-dba8229c1499/industry_first_global_storm_surge_zones.pdf (last access: 25 January 2021), 2017.
Tadesse, M. G. and Wahl, T.: A database of global storm surge reconstructions, Scientific Data, 8, 125, https://doi.org/10.1038/s41597-021-00906-x, 2021.
Takagi, H., Thao, N. D., Esteban, M., Tran, T. T., Knaepen, H. L., and Mikami, T.: Vulnerability of coastal areas in southern Vietnam against tropical cyclones and storm surges, in: Proceedings of the 4th International Conference on Estuaries and Coasts (ICEC), Hanoi, Vietnam, 8–11 October 2012, 292–299. 2012.
Takagi, H., Esteban, M., Shibayama, T., Mikami, T., Matsumaru, R., De Leon,
M., Thao, N. D., Oyama, T., and Nakamura, R.: Track analysis, simulation, and
field survey of the 2013 Typhoon Haiyan storm surge, J. Flood Risk Manag., 10, 42–52, 2017.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global bathymetry and topography at 15 arc sec: SRTM15+, Earth and Space Science, 6, 1847–1864, 2019.
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and
Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Scientific Reports, 7, 1–9, 2017.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen,
L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47, 3171–3190, 2016.
Wahl, T. and Chambers, D. P.: Climate controls multidecadal variability in US
extreme sea level records, J. Geophys. Res.-Oceans, 121, 1274–1290, 2016.
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., and Slangen, A. B.: Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis, Nat. Commun., 8, 1–12, 2017.
Williams, J., Horsburgh, K. J., Williams, J. A., and Proctor, R. N. F.: Tide
and skew surge independence: new insights for flood risk, Geophys. Res. Lett., 43, 6410–6417, https://doi.org/10.1002/2016GL069522, 2016.
Wood, M. L., Haigh, I. D., Quan, L., Hung, N., Darby, S. E., Marsh, R., Skliris, N., Hirschi, J., Nicholls, R. J., and Bloemendaal, N.: Modelled storm surge and total water level return periods along the coastline of China, Vietnam, Cambodia and Thailand (1980–2050), NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/e17e7db6-4a78-1a89-e053-6c86abc0253d, 2022.
Woodruff, J. D., Irish, J. L., and Camargo, S. J.: Coastal flooding by tropical cyclones and sea-level rise, Nature, 504, 44–52, 2013.
Wong, P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A.,
McInnes, K. L., Saito, Y., and Sallenger, A.: Coastal systems and low-lying areas, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea,P.R., and White (eds.)], L.L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 361–409, ISBN 978-1-107-64165-5, 2014.
Zhang, X. and Church, J. A.: Sea level trends, interannual and decadal variability in the Pacific Ocean, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL053240, 2012.
Zhang, B. and Wang, S.: Probabilistic characterization of extreme storm
surges induced by tropical cyclones, J. Geophys. Res.-Atmos., 126, e2020JD033557, https://doi.org/10.1029/2020JD033557, 2021.
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced...
Special issue
Altmetrics
Final-revised paper
Preprint