Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1685-2023
https://doi.org/10.5194/nhess-23-1685-2023
Research article
 | Highlight paper
 | 
03 May 2023
Research article | Highlight paper |  | 03 May 2023

Evaluation of liquefaction triggering potential in Italy: a seismic-hazard-based approach

Simone Barani, Gabriele Ferretti, and Davide Scafidi

Related authors

A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024,https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary

Related subject area

Earthquake Hazards
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024,https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024,https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024,https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary
The influence of aftershocks on seismic hazard analysis: a case study from Xichang and the surrounding areas
Qing Wu, Guijuan Lai, Jian Wu, and Jinmeng Bi
Nat. Hazards Earth Syst. Sci., 24, 1017–1033, https://doi.org/10.5194/nhess-24-1017-2024,https://doi.org/10.5194/nhess-24-1017-2024, 2024
Short summary
Characteristics and mechanisms of near-surface negative atmospheric electric field anomalies preceding the 5 September 2022, Ms 6.8 Luding earthquake in China
Lixin Wu, Xiao Wang, Yuan Qi, Jingchen Lu, and Wenfei Mao
Nat. Hazards Earth Syst. Sci., 24, 773–789, https://doi.org/10.5194/nhess-24-773-2024,https://doi.org/10.5194/nhess-24-773-2024, 2024
Short summary

Cited articles

Abraham, J. R., Lai, C. G., and Papageorgiou, A.: Basin-effects observed during the 2012 Emilia earthquake sequence in Northern Italy, Soil Dyn. Earthq. Eng., 78, 230–242, 2015. 
Atkinson, G. M., Finn, W. D. L., and Charlwood, R. G.: Simple computation of liquefaction probability for seismic hazard applications, Earthq. Spectra, 1, 107–123, 1984. 
Barani, S., Spallarossa D., and Bazzurro, P.: Disaggregation of probabilistic ground-motion hazard in Italy”, Bull. Seismol. Soc. Am., 99, 2638–2661, 2009. 
Barani, S., Ferretti, G., and De Ferrari, R.: Incorporating results from seismic microzonation into probabilistic seismic hazard analysis: An example in western Liguria (Italy), Eng. Geol., 267, 105479, https://doi.org/10.1016/j.enggeo.2020.105479, 2020. 
Bozzoni, F., Cantoni, A., De Marco, M. C., and Lai, C. G.: ECLiq: European interactive catalogue of earthquake induced soil liquefaction phenomena, Bull. Earthq. Eng., 19, 4719–4744, 2021. 
Download
Executive editor
This paper produces a map for all of Italy that classifies different regions in terms of liquefaction triggering potential according to their seismic hazard level. The map MILQ (Mappa del potenziale d’Innesco della LiQuefazione), and the associated data are freely accessible at: www.distav.unige.it/rsni/milq.php. The results can be useful to guide land-use planners in deciding whether liquefaction is a hazard that needs to be considered within the planning processes or not. Furthermore, they can serve as a guide for recommending geological and geotechnical investigations aimed at evaluating liquefaction hazards or, conversely, rule out further studies with a consequent saving in efforts and money.
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Altmetrics
Final-revised paper
Preprint