Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-481-2022
https://doi.org/10.5194/nhess-22-481-2022
Research article
 | 
16 Feb 2022
Research article |  | 16 Feb 2022

Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping

David G. Milledge, Dino G. Bellugi, Jack Watt, and Alexander L. Densmore

Related authors

Detection of landslide timing, reactivation and precursory motion during the 2018, Lombok, Indonesia earthquake sequence with Sentinel-1
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264,https://doi.org/10.5194/egusphere-2024-3264, 2024
Short summary
Integrating empirical models and satellite radar can improve landslide detection for emergency response
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021,https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
A systematic exploration of satellite radar coherence methods for rapid landslide detection
Katy Burrows, Richard J. Walters, David Milledge, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020,https://doi.org/10.5194/nhess-20-3197-2020, 2020
Short summary
Simple rules to minimise exposure to coseismic landslide hazard
David G. Milledge, Alexander L. Densmore, Dino Bellugi, Nick J. Rosser, Jack Watt, Gen Li, and Katie J. Oven
Nat. Hazards Earth Syst. Sci., 19, 837–856, https://doi.org/10.5194/nhess-19-837-2019,https://doi.org/10.5194/nhess-19-837-2019, 2019
Short summary
Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes
Jack G. Williams, Nick J. Rosser, Mark E. Kincey, Jessica Benjamin, Katie J. Oven, Alexander L. Densmore, David G. Milledge, Tom R. Robinson, Colm A. Jordan, and Tom A. Dijkstra
Nat. Hazards Earth Syst. Sci., 18, 185–205, https://doi.org/10.5194/nhess-18-185-2018,https://doi.org/10.5194/nhess-18-185-2018, 2018
Short summary

Related subject area

Landslides and Debris Flows Hazards
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary

Cited articles

Aimaiti, Y., Liu, W., Yamazaki, F., and Maruyama, Y.: Earthquake-induced landslide mapping for the 2018 Hokkaido Eastern Iburi earthquake using PALSAR-2 data, Remote Sensing, 11, 2351, https://doi.org/10.3390/rs11202351, 2019. 
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Nat. Hazards Earth Syst. Sci., 2, 3–14, https://doi.org/10.5194/nhess-2-3-2002, 2002. 
ALDI-landslide-detection: https://dgmilledge.users.earthengine.app/view/aldi-landslide-detection, last access: 4 February 2022. 
Barlow, J., Martin, Y., and Franklin, S. E.: Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia, Can. J. Remote Sens., 29, 510–517, 2003. 
Barlow, J., Barisin, I., Rosser, N., Petley, D., Densmore, A., and Wright, T.: Seismically-induced mass movements and volumetric fluxes resulting from the 2010 Mw= 7.2 earthquake in the Sierra Cucapah, Mexico, Geomorphology, 230, 138–145, 2015. 
Download
Short summary
Earthquakes can trigger thousands of landslides, causing severe and widespread damage. Efforts to understand what controls these landslides rely heavily on costly and time-consuming manual mapping from satellite imagery. We developed a new method that automatically detects landslides triggered by earthquakes using thousands of free satellite images. We found that in the majority of cases, it was as skilful at identifying the locations of landslides as the manual maps that we tested it against.
Altmetrics
Final-revised paper
Preprint