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Abstract. Earthquakes in mountainous areas can trigger
thousands of co-seismic landslides, causing significant dam-
age, hampering relief efforts, and rapidly redistributing sedi-
ment across the landscape. Efforts to understand the controls
on these landslides rely heavily on manually mapped land-
slide inventories, but these are costly and time-consuming to
collect, and their reproducibility is not typically well con-
strained. Here we develop a new automated landslide detec-
tion index (ALDI) algorithm based on pixel-wise normalised
difference vegetation index (NDVI) differencing of Land-
sat time series within Google Earth Engine accounting for
seasonality. We compare classified inventories to manually
mapped inventories from five recent earthquakes: Kashmir
in 2005, Aysén in 2007, Wenchuan in 2008, Haiti in 2010,
and Gorkha in 2015. We test the ability of ALDI to recover
landslide locations (using receiver operating characteristic
— ROC - curves) and landslide sizes (in terms of landslide
area—frequency statistics). We find that ALDI more skilfully
identifies landslide locations than published inventories in 10
of 14 cases when ALDI is locally optimised and in 8 of 14
cases both when ALDI is globally optimised and in hold-
back testing. These results reflect not only good performance
of the automated approach but also surprisingly poor per-
formance of manual mapping, which has implications both
for how future classifiers are tested and for the interpreta-
tions that are based on these inventories. We find that man-
ual mapping, which typically uses finer-resolution imagery,
more skilfully captures the landslide area—frequency statis-
tics, likely due to reductions in both the censoring of individ-
ual small landslides and amalgamation of landslide clusters

relative to ALDI. We conclude that ALDI is a viable alter-
native to manual mapping in terms of its ability to identify
landslide-affected locations but is less suitable for detecting
small isolated landslides or precise landslide geometry. Its
fast run time, cost-free image requirements, and near-global
coverage suggest the potential to significantly improve the
coverage and quantity of landslide inventories. Furthermore,
its simplicity (pixel-wise analysis only) and parsimony of in-
puts (optical imagery only) mean that considerable further
improvement should be possible.

1 Introduction

Landslides are important as both agents of erosion and as
a dangerous hazard (Marc et al., 2016; Froude and Petley,
2018). Large earthquakes or rainstorms can trigger thousands
of landslides, redistributing tonnes of rock over distances of
hundreds or thousands of metres within a few seconds (Li et
al., 2014; Roback et al., 2018). These landslides can cause
significant damage, hamper relief efforts, and rapidly redis-
tribute sediment across the landscape. Efforts to understand
the drivers, behaviour, and consequences of these landslides
rely heavily on landslide inventories, in which landslide loca-
tions are mapped either as points, pixels, or polygons, usually
associated with one or more assumed trigger events. Land-
slide inventories are important because they document the
extent and impact of landslides in a region, informing disas-
ter response and recovery (Williams et al., 2018); they cap-
ture the distribution, properties, and (through predictive mod-
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els) drivers of landslides (Guzzetti et al., 2012; Tanyas et al.,
2019); they can be used to train and evaluate models of land-
slide susceptibility, hazard, and risk (Van Westen et al., 2006;
Reichenbach et al., 2018); and they enable geophysical flux
calculations central to the study of landscape evolution and
the global carbon cycle (e.g. Hilton et al., 2008; Marc et al.,
2016; Dietrich et al., 2003).

Polygon-based and pixel-based inventories both capture
information on the area affected by landslide movement.
Polygon-based inventories have the additional advantage that
they can be analysed to yield distributions of landslide ge-
ometry (such as area and shape), which is useful for under-
standing fluxes of material (Larsen et al., 2010) or impact
forces and distinguishing scars from runout areas (Marc et
al., 2018).

Landslide inventories were traditionally generated from
expensive and time-consuming site visits (e.g. Warburton et
al., 2008), severely limiting the number of landslides that
could be mapped and thus the scale of enquiry. However, they
are now increasingly collected remotely based on interpreta-
tion of satellite or aerial imagery, which enables much larger
datasets to be compiled (e.g. Li et al., 2014; Roback et al.,
2018).

Imagery provides an opportunity for rapid mapping over
wide areas but is subject to some important limitations. For
optical imagery, which depends on reflected solar energy
reaching the sensor, clouds and shadows can obscure the
ground surface. Active sensors, such as radar, that operate
at wavelengths that are not reflected by cloud suffer from
other issues (e.g. radar layover and shadowing), and their im-
ages have only recently been incorporated into operational
landslide mapping approaches (e.g. Konishi and Suga, 2018;
Burrows et al., 2019; Aimaiti et al., 2019; Mondini et al.,
2019). Images may not be available for the study area over
the time window of interest, and — when they are available
— they can be costly to acquire. In steep or high-relief to-
pography, images can suffer severe georectification errors
(Williams et al., 2018), which is particularly problematic for
landslide mapping because these are the areas of most inter-
est. Imagery is becoming increasingly available across a very
wide range of spatial and spectral resolutions, but there re-
mains a trade-off between resolution and cost, with 10-30m
imagery freely available globally with a 14 d revisit time (e.g.
Sentinel-2, Landsat 8), while sub-metric resolution data (e.g.
WorldView, Pléiades) can be acquired on demand but at a
cost of USD 10-10 000 per square kilometre.

Landslides are typically identified in imagery either by au-
tomated classification, manual mapping, or some hybrid of
the two. Manual mapping, although much faster than site
visits, remains very time-consuming over moderate to large
areas (Galli et al., 2008), particularly for co-seismic inven-
tories, which can involve digitising 10* to 103 landslides
(e.g. Xu et al., 2014; Harp et al., 2016). It also requires a
comparison of pre- and post-event images to identify change
and to avoid conflation of landslides related to the trigger
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event with those occurring before or after the event (e.g.
Hovius et al., 2011; Marc et al., 2015). Automated classi-
fication can considerably speed up this process but is com-
plicated by other factors, including the range of possible
landslide sizes and geometries; the non-unique signatures of
landslides relative to roads, buildings, or other features; and
the difficulty of excluding pre-existing landslides (Parker et
al., 2011; Behling et al., 2014). Automated landslide clas-
sification has been demonstrated predominantly using high-
resolution imagery and requires a high level of tuning; thus
it is not necessarily transferrable from one region or event to
another. Imagery can be combined with other sources of in-
formation (e.g. slope inclination from digital elevation mod-
els, DEMs) to remove some false positives, where a location
is incorrectly classified as a landslide (Parker et al., 2011).
This can improve classifier performance but can also gen-
erate spurious correlation when interpreting the results (e.g.
landslide susceptibility with slope inclination). Some authors
have adopted hybrid approaches; for example, Li et al. (2014)
applied manual checking to the earlier automated mapping of
Parker et al. (2011).

As aresult of these issues, our database of landslide inven-
tories is limited in number and biased towards the most spec-
tacular trigger events. This point is most easily illustrated by
examining earthquake-triggered landslide inventories, since
in this case the trigger event is generally very clearly iden-
tifiable in time, and its footprint is well defined in space.
Of the 326 earthquakes known to have triggered landslides
between 1976 and 2016, only 46 have published landslide
maps (Tanyas et al., 2017). For 225 earthquakes the exis-
tence of co-seismic landslides was known from news reports
and witness testimony (Marano et al., 2010), but no reliable
quantitative or spatial landslide data are available (Tanyas
et al., 2017). Many other earthquakes have likely triggered
landslides, but these have gone unreported because they oc-
curred out of human view. Between 1976 and 2016 there
were ~ 6500 earthquakes sufficiently large (> M, 5), shal-
low (< 25km), and near to land (< 25km) to trigger land-
slides (based on Marc et al., 2016). This suggests that the ex-
isting set of co-seismic landslide inventories is a small sub-
set (< 15 %) of those earthquakes known to have triggered
landslides and a tiny subset (< 1 %) of those likely to have
triggered landslides.

Extending the number of landslide inventories requires a
reduction in the cost of inventory collection, both in terms of
imagery expense and mapping time. We hypothesise that re-
cent improvements in satellite data management (e.g. data
cubes) and computing capabilities (e.g. cloud computing)
have made it possible to collect automated landslide invento-
ries of comparable quality to manual mapping, at a fraction
of the cost, due to reductions in both imagery cost and map-
ping time. Imagery cost could be reduced by using cheaper,
lower-resolution imagery, while mapping time could be re-
duced by using automated detection rather than manual map-
ping. However, these savings will only represent value for
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money if they can deliver inventories of comparable or supe-
rior quality to manual mapping.

Large amounts of freely available optical imagery with
near-global coverage have been generated by the Landsat and
Sentinel programmes. Landsat has been running for more
than 30 years (since the Landsat 4 launch in 1982), imaging
the majority of Earth’s surface at a return time of ca. 14d
and at 30m spatial resolution through the visible and in-
frared bands. Landsat received early attention as a source
of imagery for manual landslide mapping (e.g. Sauchyn and
Trench, 1978; Greenbaum et al., 1995) but has since been
largely superseded by imagery with higher spatial resolu-
tion, which is often assumed to result in more precise in-
ventories (e.g. Parker et al., 2011; Li et al., 2014; Roback et
al., 2018). The recent HazMapper application of Scheip and
Wegmann (2021) is a notable exception and seeks to leverage
the large volume of freely available coarser-resolution im-
agery to provide information on vegetation change that can
be used to map a range of hazards including landslides. It is
not clear, however, whether the long time series of coarser-
resolution imagery that is now available contains as much
usable information as individual images of finer resolution.

There have been some attempts at automated landslide de-
tection from Landsat (e.g. Barlow et al., 2003; Martin and
Franklin, 2005). However, manual mapping remains the most
common approach to map landslides despite the time costs
associated with it. Automated or hybrid approaches still need
visual interpretation for calibration, sometimes over large ar-
eas (e.g. Burié et al., 2017), and are typically compared to a
manual map of landslides that is considered to represent the
“ground truth” (Van Westen et al., 2006; Guzzetti et al., 2012;
Pawtuszek et al., 2017; Bernard et al., 2021). There remains a
perception in the landslide community that automated meth-
ods are neither necessarily more accurate (Guzzetti et al.,
2012; Pawtuszek et al., 2017) nor less time-consuming (San-
tangelo et al., 2015; Fan et al., 2019) than manual interpre-
tation. Given the considerable investment of time and money
involved in compiling an inventory, many researchers con-
tinue to generate inventories through manual mapping. It is
therefore timely and useful to evaluate both automated clas-
sification and manual mapping against a common measure of
performance.

Establishing the performance of an automated classifier
against manual mapping requires both establishing the land-
slide characteristics that should be reproduced and establish-
ing the quality of manual mapping with respect to these char-
acteristics. This is typically done by comparing similarity be-
tween at least two independently collected landslide invento-
ries in terms of their overlap or the similarity in their area—
frequency distributions. Uncertainty in area—frequency dis-
tributions from manually mapped landslide inventories has
received considerable attention (e.g. Galli et al., 2008; Fan
et al., 2019; Tanyas et al., 2019), but uncertainty in land-
slide spatial properties has received relatively little atten-
tion. However, the limited number of studies that do quan-
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tify landslide inventory error all suggest very weak spatial
agreement between different manually mapped landslide in-
ventories. Ardizzone et al. (2002) found 34 %—42 % overlap
between three inventories for the same study area (i.e. 34 %—
42 % of the area classified as a landslide in one inventory was
classified as a landslide in another). Galli et al. (2008) found
19 %-34 % overlap for three different inventories, and Fan
et al. (2019) found 33 %—44 % overlap for three inventories
associated with the Wenchuan earthquake. Fan et al. (2019)
also compared their own inventory to the three published in-
ventories and found overlaps of a similar magnitude (32 %-—
47 %) with two inventories but a much closer agreement
(82 % overlap) with the third; however, they did not suggest
a reason for this closer agreement. These low-similarity fig-
ures suggest that caution is needed in assuming that any one
inventory represents a ground truth.

This research seeks to test our hypothesis that an auto-
mated detection algorithm applied to a time series of lower-
resolution imagery can deliver inventories of comparable
quality to those generated from the manual mapping of
higher-resolution imagery. We introduce a new approach to
automated landslide detection using Landsat time series in
Google Earth Engine (GEE). Our approach uses similar data
and architecture to HazMapper but is focused on landslides
in particular and uses an expectation of long- and short-term
change rather than a straight comparison of pre- and post-
event composite images (Scheip and Wegmann, 2021). To
account for uncertainty in the quality of manually mapped in-
ventories, we apply this approach to case studies where there
are at least two pre-existing inventories. This allows for the
direct comparison of the inventories that we create (in terms
of both landslide location and size) with multiple uncertain
manually mapped inventories. The key question is as follows:
can landslide location and size be reproduced more skilfully
by our automated approach than by a second manual inven-
tory?

2 Case study sites

We choose earthquake-triggered landslide detection to test
our hypothesis because (1) this type of trigger is well con-
strained in time and its footprint is well defined in space and
(2) there are several earthquake case studies for which at least
two landslide inventories are available in order to assess the
quality of manual mapping. We choose five earthquake case
studies in which at least two landslide inventories have been
published and where the authors attributed the landslides to
the same trigger event (i.e. earthquake timing and epicentral
location). The mapping times given below are each team’s
estimates of the total number of person-days taken to map
the landslides in their inventory; this is reported in the meta-
data associated with that team’s submissions to the USGS
ScienceBase catalogue of landslide inventories (Schmitt et
al., 2017).
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The 2005 Kashmir, Pakistan, earthquake triggered > 2900
landslides with a combined area of ~ 110 km? across an area
of 4000 km” (Basharat et al., 2016). The study area is primar-
ily underlain by sedimentary rock, with a summer monsoon
climate and seasonal snow on the highest peaks (note that
the climate is drier than the 2015 Gorkha study site). Land-
slides associated with the earthquake were mapped by Sato et
al. (2007, 2017), who estimated that they spent 60 d mapping
the landslides using 2.5 m resolution SPOT 5 (Satellite pour
I’Observation de la Terre) optical satellite imagery and by
Basharat et al. (2016, 2017) over 90d using 2.5 m resolution
SPOT 5 imagery and field reconnaissance. The inventories
of Sato et al. (2007, 2017) and Basharat et al. (2016, 2017),
hereafter referred to as Sato and Basharat, respectively, con-
tain 2424 and 2930 landslides, respectively.

The 2007 Aysén Fjord, Chile, earthquake triggered > 500
landslides with a combined area of ~ 17 km? across an area
of 1500 km? (Sepulveda et al., 2010b). The study area is
glacially carved valleys in volcanic rock and has a temperate
climate with seasonal snow throughout and perennial snow at
altitude. The associated co-seismic landslides were mapped
by Sepulveda et al. (2010a, b) over 120d using Landsat im-
ages and field mapping and by Gorum et al. (2014, 2017b)
over 5d using 5 m resolution SPOT 5 imagery. The invento-
ries of Sepulveda et al. (2010a, b) and Gorum et al. (2014,
2017b), hereafter referred to as Sepulveda and Gorum, re-
spectively, contain 538 and 517 landslides, respectively.

The 2008 Wenchuan, China, earthquake trig-
gered > 190000 Ilandslides with a combined area
of ~1000km? across an area of 75000km? (Xu et al.,
2014). The study area is primarily underlain by meta-
igneous and sedimentary rock with a humid temperate
climate and snow cover limited to the highest peaks. The
associated co-seismic landslides were mapped by Li et
al. (2014, 2017) over 300d using high-resolution (3—10 m)
optical satellite images and by Xu et al. (2014, 2017) over
1200 d using high-resolution (1-20 m) satellite images. The
inventories of Li et al. (2014, 2017) and Xu et al. (2014,
2017), hereafter referred to as Li and Xu, respectively,
contain 69 606 and 197 481 landslides, respectively.

The 2010 Haiti earthquake triggered > 20 000 landslides
with a combined area of ~ 25 km? (Harp et al., 2016) across
an area of ~4000km?. The study area is characterised by
steep but low-relief valleys cut through sedimentary rock
with a humid temperate climate in which snow is extremely
rare and a land-use regime in which the vegetation is rapidly
changing. The associated co-seismic landslides were mapped
by Gorum et al. (2013, 2017a) over 40d using GeoEye-2
and WorldView-2 (0.6—-1 m resolution) satellite images and
by Harp et al. (2016, 2017) using 0.6 m resolution aerial
photographs and field mapping. The inventories of Gorum
et al. (2013, 2017a) and Harp et al. (2016, 2017), hereafter
referred to as Gorum and Harp, respectively, contain 4490
and 23 567 landslides, respectively.
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The 2015 Gorkha, Nepal, earthquake triggered > 24 000
landslides with a combined area of ~ 87 km? across an area
of 20000km? (Roback et al., 2018). The study area is pri-
marily sedimentary and metamorphic rock with seasonal
snow at higher elevations and perennial snow and ice at the
highest elevations. The climate ranges from humid temperate
to alpine with a strong summer monsoon. The associated co-
seismic landslides were mapped by Zhang et al. (2016, 2017)
over 20 d using Gaofen 1 and Gaofen 2 (1-5.8 m resolution)
and Landsat satellite images, by Roback et al. (2017, 2018)
using WorldView satellite images (0.5-2 m resolution), and
by Watt (2016) using Landsat satellite images. The invento-
ries of Roback et al. (2017, 2018), Zhang et al. (2016, 2017),
and Watt (2016), hereafter referred to as Roback, Zhang,
and Watt, respectively, contain 24 915, 2643, and 4924 land-
slides, respectively. The Watt (2016) mapping reported here
was undertaken for a period of 60 d and involved comparing
pan-sharpened false-colour composites (red, green, and near
infrared) derived from Landsat 8 images before and after the
earthquake. Mapping was undertaken from multiple images
to minimise occlusion by clouds, but all images were ac-
quired within 1 year before and after the earthquake. The ma-
jority of the study area was mapped by a single person based
on comparison of one pre- and two post-event images (from
13 March 2015, 1 June 2015, and 7 October 2015). This map-
ping was checked and supplemented by a second mapper us-
ing the same procedure to capture previously occluded areas
using seven more Landsat 8 images. The registration errors
in the Watt (2016) inventory were estimated from those as-
sociated with the underlying imagery from which the land-
slides were mapped. These Landsat 7 and Landsat 8 images
were all georeferenced to Level 1TP resulting in a radial root
mean square error of < 12m (USGS, 2019), which is less
than the pan-sharpened pixel resolution (15 m). We were un-
able to find registration error estimates for the other landslide
inventories examined here.

3 Methods
3.1 ALDI classifier: theory

The automated landslide detection index (ALDI) leverages
the change in vegetation cover (and the associated spectral
signature of reflected light) caused by the removal of vege-
tation by landslides. The change in spectral signature is typ-
ically characterised by a change in the normalised difference
vegetation index (NDVI; Tucker, 1979), defined as

Ry — Ry
Ry, + R;

NDVI =

) (D

where R, is spectral reflectance in the near-infrared band and
R, is spectral reflectance in the red band (wavelengths in
Table 1). The light reflected from landslide-affected pixels,
whether they are within the scar or runout area, has a spectral
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signature associated with rock or sediment. This differs con-
siderably from vegetation in terms of R, and Ry, resulting in
extremely low NDVI values. We call the difference in NDVI
before and after the trigger event dV, which is bounded by
[—1, 1] and should be negative for landslide pixels associated
with the event. This is not in itself a novel approach and is
similar to other NDVI differencing approaches (e.g. Behling
et al., 2014, 2016; Marc et al., 2019; Scheip and Wegmann,
2021).

In addition, vegetation that is disturbed by landslides re-
grows slowly — over timescales of months to years (Restrepo
etal., 2009). Thus, for landslide-affected pixels NDVI should
not only reduce after the trigger event but also stay low for
an extended period (at least 1 year, depending on climate and
seasonality as well as the timing of the earthquake). There-
fore, we examine a time series of post-event images to calcu-
late a time-averaged post-event NDVI, which we call Vo,
which is bounded by [0, 1] and which should be low for land-
slide pixels associated with the trigger event.

Averaging over a time series of images has the additional
advantage that it enables robust estimates of both dV and
Vpost €ven for NDVI time series that are both patchy and
noisy. The time series are patchy because cloud cover oc-
cludes the ground for some pixels on some days; this cloud
can be removed using filtering algorithms (e.g. Irish, 2000;
Goodwin et al., 2013), but this leaves a gap in the series. The
timing and number of these gaps vary from pixel to pixel,
making a comparison of NDVI for particular dates or im-
ages problematic. The time series are noisy because atmo-
spheric conditions alter both incoming radiation (e.g. cloud
shadow) and that received by the sensor and because ground
surface (and especially vegetation) properties will vary over
time both periodically (e.g. due to seasonal vegetation growth
and harvesting) and randomly (e.g. due to leaf orientation).

Since we expect NDVI to be noisy, we seek a third metric
to identify whether there is a shift in NDVI in the presence
of broadly consistent seasonal variations and random noise
in NDVI. For this we take the difference in NDVI across
monthly bins to account for the seasonal component, then
quantify the shift in NDVI since the trigger event. For the
shift to be indicative of real change it should be considerably
larger than the noise present in the NDVI signal. Thus, we
express the NDVI shift relative to the noise for each pixel as

=i @)
Sy

where n is the sample size (12 for monthly bins), dV is the
mean of the monthly NDVI differences, and Sy is the stan-
dard deviation of the monthly NDVI differences. We then
normalise this by mapping ¢ onto the cumulative Student’s
t distribution to generate P, the likelihood that the pre- and
post-event NDVIs are drawn from different distributions:

P=1 nol] 3)
e U2 )
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where Iy (a,b) is the regularised incomplete beta function.
While this is equivalent to a paired ¢ test, the results cannot
be interpreted as formal probabilities, as the distribution of
dV may not be Gaussian. Rather they represent an index of
change relative to expected variability which is bounded by
[0, 1]. P, should be high for landslide pixels associated with
the trigger event. High P; could also result from other events
that reduce the coverage or vigour of vegetation, particularly
if this involves complete removal (e.g. fire or logging). How-
ever, seasonal vegetation changes should be accounted for by
examining monthly differences, while episodic events should
only be noticeable when (1) their timing is coincident with
the earthquake and (2) their effect persists over more than
1 year.

Although low NDVI is effective for identifying the ab-
sence of vegetation, it does not uniquely identify landslides,
since a range of other surfaces generate similar signatures,
particularly snow and cloud. Cloud cover varies from one
image to another, and we thus seek to remove cloud-affected
pixels from both the pre- and post-event time series. Clouds
can be identified based on their spectral signature, with dif-
ferent types resulting in different signatures. The “Landsat
simple cloud score” function within Google Earth Engine
returns the minimum of a set of five cloudiness indices us-
ing Egs. (4a)—(4f) and parameters in Table 2 (Earth Engine,
2021). Each index reflects an expectation about cloud re-
flectance and temperature: they should be reasonably bright
in the blue band (Clp), in all visible bands (CIy), and in all
infrared bands (CI;;,); they should be reasonably cool in the
thermal infrared band (Clr,,); but they should not be snow

(Clnpsi):

Ry — Rpmi
CIb _ b bmin ’ (4a)
Romax — Rpmin

(Rr + Rg + Rb) — Rymin

ClL, = , (4b)
Y Rymax — Rvmin
CIir _ (Rn + Rs1 + RsZ) — Ritmin ’ (4C)
Rirmax — Rirmin
Rt — Rimin
Clemp = 1 — ———n (4d)
e Rtmax - Rtmin
NDSI — NDSI
Clnpsi = 1 — - (4e)
NDSInax — NDSInin
CI = min (Cly, Cly, Clir, Cltemp, CInpsi) , (4f)

where Ry and Ry, are the spectral reflectances from the red
and blue bands, Rs; and Ry are those from the first and sec-
ond short-wave infrared bands, and R; is that from the ther-
mal infrared band (the only band used here with a coarser
60 m resolution). The parameters with min and max sub-
scripts (€.g2. Rpmin and Rpmax for the red band) in Eq. (4)
are minimum and maximum values used to normalise pixel
reflectances; their values are given in Table 2. NDSI is the
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Table 1. Landsat and Sentinel image characteristics (Barsi et al., 2014; ESA, 2022).

Landsat 5 and Landsat 7

Landsat 8 Sentinel-2

Band 2: 0.52-0.60
Band 3: 0.63-0.69
Near infrared (um) Band 4: 0.77-0.90
Short-wave infrared (um) Band 5: 1.55-1.75
Spatial resolution (m) 30

Revisit time (days) 16

Operational life 1984-2013 (L5)
1999—present (L7)

Green (um)
Red (um)

Band 3: 0.53-0.59

Band 4: 0.64-0.67

Band 5: 0.85-0.88  Band 8: 0.76-0.91

Band 6: 1.57-1.65 Band 11: 1.51-1.70

30 10

16 5

2013—present June 2015—-present (S2a)
March 2017-present (S2b)

Band 3: 0.52-0.60
Band 4: 0.65-0.69

Table 2. Parameters for Landsat simple cloud score, Egs. (4a)—(4f).

Threshold Minimum Maximum
Blue (Eq. 4a) Rpmin =0.1 Rpmax =0.3
Visible (Eq. 4b) Rymin =0.2 Rymax =0.8
Infrared (Eq. 4c) Rirmin =0.3 Rirmax =0.8
Temperature (Eq. 4d)  Rymin =290 Rimax =300
NDSI (Eq. 4e) NDSIhin =0.6  NDSIpax =0.8
normalised difference snow index:
Ry — R
NDSI = ———. 5)
R+ R

This index is also used within ALDI outside the Landsat
simple cloud score function to identify pixels where persis-
tent snow cover could result in misleading statistics. Where
pixels remain snow-covered for periods of several weeks or
months, we cannot retain sufficient observations to calculate
stable statistics from these pixels. Instead, we identify pix-
els with persistent snow cover based on time-averaged NDSI
and censor them from the analysis.

We define the automated landslide detection index (ALDI)
as the product of the three parameters defined above. While
this formulation is entirely arbitrary, it has the advantage of
allowing the index to take a minimum value of zero (indicat-
ing negligible probability that the images reflect a landslide
at that location) if any of the individual terms is zero. Because
we have no a priori knowledge of the relative importance of
each parameter in determining the landslide signature, we as-
sume a power-functional form with empirical exponents «,
B, and A:

B pa i
_ ) (—dWV)*(1 — Vyost)” P2, if Spost > Tsnow[dV < 0
ALDI= ! 0, ( o) otherwise . (6)

where Spost is the mean post-earthquake NDSI and Tnow is a
threshold value for NDSI, chosen to identify persistent snow
cover. The likelihood that a pixel is landslide-affected in-
creases monotonically with the ALDI output value, which
has upper and lower bounds of 0 and 1, respectively. Land-
slide pixels should be characterised by negative dV/, indicat-
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ing vegetation removal; low Vjog, indicating a lack of veg-
etation after the earthquake; and high P;, due to a distin-
guishable shift in post-event NDVI distributions relative to
the pre-event distributions. The likelihood that a pixel con-
tains a landslide should increase with P; and decrease with
dV and Vjost. We exclude snow-dominated pixels where Spost
exceeds threshold Tpow, as well as pixels where median post-
earthquake exceeds pre-earthquake NDVI (i.e. positive dV).

The empirical exponents o, 8, and A can be expressed in
terms of one parameter («) and two ratios (o : 8 and o : A)
because

B=«

1
and A = o ——, (7
o:p oA

substituting the following terms into Eq. (6),

5 e
ALDI = E)de)“(l — Vpost) T PITT

if Spost > Tsnow[dV < 0
otherwise " ’ (8)

then taking logarithms of both sides clarifies the role of the
ratio parameters. This yields

log(ALDI) =« (log(—dV) +

1
ey log (1 — Vpost)

1
o5 loe(P). ©)

The values of dV, Vpost, and Py are all <1 (thus their loga-
rithms are negative), and larger values of the ratio parameters
(o : B and « : A) result in smaller powers for their respective
layers (Vpost and Py). Therefore, large o : B ratios result in a
stronger influence of Vst on ALDI; large « : A ratios result
in the same for P;; and when both « : § and « : A are small,
dV dominates. These ratios are more informative than the
raw parameters because it is the relationship between expo-
nents rather than the exponents themselves which defines the
relative role of the different ALDI components (i.e. equal but
high values of «, B, and X result in the same ALDI classifi-
cation pattern as equal but low values).

+

3.2 ALDI classifier implementation and data
pre-processing

We implement ALDI and perform all pre-processing steps
within Google Earth Engine (GEE; Gorelick et al., 2017) be-
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cause (1) it hosts an extensive Landsat archive and provides
efficient access to large volumes of freely available satellite
data; (2) it provides both a toolkit of pre-compiled algorithms
for image processing and cloud computing resources to run
these algorithms; and (3) it is an open-access platform so that
both the data and the algorithms used here are widely acces-
sible and reproducible (see Milledge, 2021, for source code).

The objective of pre-processing is to generate four layers:
dV, the change in NDVI before and after the trigger event;
Vpost» the time-averaged post-event NDVI; Spoq, the post-
event NDSI; and P, the likelihood that pre- and post-event
NDVIs are drawn from different distributions. These layers
should synthesise the time series of available imagery from
multiple sensors minimising bias due to the sensor, the influ-
ence of clouds, and seasonal vegetation changes.

We use time series of NDVI calculated from Land-
sat 5, Landsat 7, and Landsat 8 imagery following “top-
of-atmosphere” correction (Chander et al., 2009) to adjust
for radiometric variations due to solar illumination geome-
try (angle and distance to Sun) and sensor-specific gains and
offsets. Sentinel-2 data would offer additional gains in terms
of both spatial and temporal resolution of data but are not
available for any of our case study events and thus cannot
yet be evaluated within the same framework. Landsat 8 sen-
sors aggregate red and near-infrared reflectance over slightly
different frequency bands to Landsat 5 and Landsat 7, but
their central frequencies vary by < 4 % between sensors and
by > 20 % between bands (Table 1). To ensure satisfactory
image-to-image registration for time series analysis, we use
only images which have been both georeferenced to ground
control points and terrain-corrected (i.e. Level 1TP) and thus
have < 12 mradial root mean square error (RMSE) in > 90 %
of cases (USGS, 2019).

The time series is split into two “stacks” of images, those
before the trigger event and those after it (Fig. 1b). The du-
ration of these time series (and thus length of stacks) reflects
a trade-off between shorter durations, which limit the sample
size, and longer durations, which include landscape changes
unrelated to the earthquake. We remove “cloudy” pixels from
each stack using the GEE simple cloud score exceeding a
tuneable threshold (7¢oud), Where stricter thresholds not only
remove more cloudy pixels but also incorrectly remove more
cloud-free false positives (Earth Engine, 2018). The number
of images in each stack is controlled by the stack lengths and
cloud threshold, introducing three tuneable parameters to be
calibrated. These parameters are found using the calibration
process described in Sect. 3.4 rather than by considering the
physical processes that characterise the possible evolution of
the time series.
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To account for seasonal vegetation change, NDVI values
for each pixel in the pre- and post-earthquake stacks are ex-
tracted as a time series (Fig. 1a) and binned based on the
month in which the image was acquired. Monthly bins are
used since they are generally long enough to contain data
in every bin (even after removal of cloudy pixels) but short
enough to capture annual seasonality (e.g. Fig. 1a). Monthly
bins result in four images per bin per year on average, and
thus empty bins are very unlikely except for month—location
pairs that are characterised by extreme cloudiness (such as
Nepal in July; see Wilson and Jetz, 2016). Monthly bins that
are empty in either the pre- or post-earthquake period are
not used in the subsequent analysis, with calculations for that
pixel performed using the remaining monthly bins. We cal-
culate median NDVI for each monthly bin, choosing median
rather than mean, since it is less sensitive to skew and to ex-
treme values (Fig. 1c). We difference the monthly median
values prior to and after the trigger event, generating a dis-
tribution of differences (Fig. 1¢). From that distribution, we
calculate the mean monthly NDVI difference (dV') and eval-
uate the likelihood that the mean monthly NDVI difference
differs significantly from zero using a pairwise ¢ test to cal-
culate P;. We take the mean of the post-event monthly NDVI
values to generate Vo, then apply a similar procedure to
the pixel-wise NDSI values to calculate the mean of the post-
event monthly NDSI, Spost. This allows us to construct maps
of the pixel-wise values of dV, Vjost, Spost, and Py (Fig. 1d)
and thus to evaluate Eq. (6). The full routine runs in GEE in
less than 30 min for an area of ~ 10* km? (ca. 107 pixels).

3.3 Performance testing

We evaluate ALDI performance in terms of its ability to re-
produce the location and size of manually mapped landslides.
For each earthquake inventory we define a study area based
either on the area defined by the manual mappers (e.g. ex-
cluding areas where cloud or snow cover hampered manual
mapping) or, where this is not available, on a convex hull that
bounds the landslide inventory.

ALDI returns a continuous relative measure of the cer-
tainty with which a pixel is classified as a landslide. To eval-
uate this measure against a manually mapped landslide in-
ventory it must be converted into a binary classification by
thresholding the classification surface. The manual map is
then rasterised to the same resolution as the classification
surface — in this case, 30 m — using a “majority area” rule,
whereby landslide pixels are those with the majority of their
area overlapped by landslide polygons. The benefit of a given
classification can then be quantified in terms of success in
identifying positive (landslide) and negative (non-landslide)
outcomes on a pixel-by-pixel basis. Thresholding the clas-
sification surface is a difficult exercise involving a trade-off
between sensitivity, the fraction of the landslides that should
be captured (also known as the true-positive rate, TPR — the
number of true positives normalised by all positive obser-
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(a) Time series of NDVI values for pixel A (in panel b)
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Figure 1. ALDI pre-processing steps. (a) Time series of NDVI values for a single landslide-affected pixel (circled in panels b and d) before
and after the trigger event, with cloud-free values shown as solid symbols. This time series is derived from a stack of NDVI images (b) and
is used to calculate monthly median NDVI before and after the earthquake and their difference (¢), which can be used to calculate dV, P,
and Vpost for every pixel in the study area (d). Please note that the date format in this figure is month/year.

vations), and specificity, the number of false positives that
should be allowed in doing so (also known as the false-
positive rate, FPR — the number of false positives normalised
by all negative observations). In practice, this threshold is
often set by external requirements in terms of a desired sen-
sitivity or specificity, but these requirements can vary consid-
erably between users and applications.

Receiver operating characteristic (ROC) curves provide
a more complete quantification of the performance of the
classifier (e.g. Frattini et al., 2010). The ROC curve is con-
structed by incrementally thresholding the classifier and eval-
uating true- and false-positive rates at different threshold
values to generate a curve where the 1:1 line reflects the
naive (i.e. random) case. The true- and false-positive rates
are insensitive to imbalanced data and thus are well suited
to the evaluation of landslide classification, which typically
has many more non-landslide than landslide pixels (Garcia et
al., 2010). The area under the curve (AUC) tends to 1 as the
skill of the classifier improves towards perfect classification
and to 0.5 as the classifier worsens towards the naive (ran-
dom) case. The strength of AUC is that it avoids the need to
threshold the classifier and is widely used, enabling compar-
ison with other landslide detection methods; its main weak-
ness is that it is difficult to interpret in absolute terms. What
AUC value constitutes “good” performance?

In our case, we seek to establish whether automated detec-
tion performance is such that it can be used as an alternative
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to manual mapping. However, it is difficult to compare the
ALDI output against manual mapping because manual map-
ping is itself being used as the ground truth in the absence
of a better alternative. To address this, we first test the agree-
ment between manual inventories in terms of true- and false-
positive rates. TPRyj.; indicates the fraction of landslides in
inventory I1 that are also predicted by 12, and FPRyj.; indi-
cates the fraction of non-landslide pixels in I1 that are “in-
correctly” identified as landslide pixels by 12.

ALDI performance in identifying landslide location on a
pixel-by-pixel basis can then be compared against one of
the manual maps as a competitor with the other manual map
used as the check dataset. To enable the comparison, we first
threshold the ALDI output to generate a binary classifier with
the same FPR as the competitor inventory with respect to the
check inventory. The ability of ALDI to successfully identify
more landslide pixels than the competitor inventory can then
be calculated from the difference in their true-positive rates
as TPRdiff:

TPRyitt = TPRALDI — TPRComp, FPRALDI = FPRcomp, (10)

where TPR A1 pr and FPR a1 pr are the ALDI true- and false-
positive rates, respectively, both calculated from the check
inventory, and TPRcomp and FPRcomp are the true- and false-
positive rates for the competitor inventory, also calculated
from the check inventory. The magnitude of TPRy;¢r indicates
the similarity in performance, while the sign indicates the
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best performer (positive values indicate that ALDI outper-
forms manual mapping and vice versa). This approach allows
for direct comparison between ALDI and manual mapping
for the same classification threshold. Other metrics could
be derived from the confusion matrix (e.g. Tharwat, 2020;
Prakash et al., 2020), but these typically require assumptions
about the relative weight assigned to true and false positives
and negatives. Our approach avoids these assumptions be-
cause the ALDI output is thresholded to ensure that FPRs
are equal to those of the competitor inventory.

In addition, we express spatial mapping error between
manual inventories as the ratio of the intersection of the two
maps to their union. This is equivalent to the “degree of
matching” (Carrara et al., 1992; Galli et al., 2008) and can
be interpreted as the percentage of total mapped landslide
area that the inventories have in common.

To examine the ability of ALDI to recover landslide size
information we compare the area—frequency distributions of
landslides from each manual map with those for landslides
detected by ALDI. For manually mapped inventories this
information is generally captured automatically, since land-
slides are mapped as discrete objects rather than on a pixel-
by-pixel basis. However, automated classifiers like ALDI re-
quire additional steps to convert a continuous pixel-based
classification surface to a set of landslide objects. First, we
generate a binary prediction of landslide presence or absence
by thresholding the ALDI classification surface to match
the manually mapped FPR, as described above. The man-
ual inventories examined here typically have very low FPRs
(<2 % of TPR on average and < 7 % at most, Table 3). Sec-
ond, we convert the binary landslide map to a set of landslide
objects by identifying connected components at the 30 m res-
olution of the Landsat imagery (Haralick and Shapiro, 1992).
This connected-component clustering is one of the simplest
of many possible clustering algorithms. Finally, we calcu-
late the area of individual landslide objects from the num-
ber of pixels in each object (cluster) and generate an area—
frequency distribution.

3.4 Parameter calibration and uncertainty estimation

The ALDI landslide classifier has seven tuneable parameters:
cloud threshold (T¢joud), pre-event stack length (Lpre), post-
event stack length (Lpost), snow threshold (Tsnow), and the
three exponents («, 8, and A) that control the weighting as-
signed to the Vpogst, dV, and P layers, respectively. Calibrat-
ing the parameters and estimating the associated uncertainty
is important because the parameters are difficult or impossi-
ble to set a priori and because we seek to develop a general
model that can be applied to new landslide events not exam-
ined here. Our calibration seeks to optimise classifier perfor-
mance evaluated by comparing the classifier to 11 manually
mapped landslide inventories using the performance metrics
described in Sect. 3.3.
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We calibrate ALDI parameters using one-at-a-time cali-
bration for parameters that are internal to the GEE routine
(Telouds Lpre» Lpost), since these parameters are well con-
strained (in the case of Ttjoug and Lpos) or have a limited
number of possible values (in the case of Lpre and Lpost). We
use an informal Bayesian calibration procedure (e.g. Beven
and Binley, 1992) for parameters in Eq. (6) (Tspow @, B,
and A), since these parameters are less well constrained, but
evaluation of Eq. (6) is computationally cheap. We calibrate
Lposts Lpre, and T¢ioud One-at-a-time (in that order) for each
earthquake event then test alternative near-optimum param-
eter combinations to minimise the effect of the calibration
order. These combinations are obtained by varying Lpos by
=+ 1 year for optimum values of Lpe and T¢joud and doing the
same for Ly at optimum values of Lposy and Tejoud. For each
GEE run in the one-at-a-time process we run 500 simulations
of Eq. (6) with Typow and o randomly sampled from uniform
probability distributions and the ratio parameters sampled
from uniform distributions of logjo(e : B) and logio(w : ).
We sample the ratio parameters in logarithmic space to main-
tain symmetric sampling density with distance from a ratio of
unity (e.g. o : f =0.1, where 8 = 10« should be sampled as
densely as « : B =10, where @ = 108).

We examine Lpost of up to 5 years because vegetation typ-
ically begins to regrow over this timescale (Restrepo et al.,
2009) and Lpye of up to 10 years because we expect that other
landscape changes (e.g. fire, drought, and landslides caused
by other triggers) will begin to disrupt the pre-event signal
at longer timescales. In both cases we examine only integer
year values to ensure consistent sampling within the monthly
bins. We use the full range of NDSI values for Tspow ([0, 1])
and cloud score values for T¢jouq ([0, 1]). For the three expo-
nents, we use zero for the lower bound and iteratively refine
the upper bound to ensure that optimum performance at any
site is found to be within the range.

We perform the calibration for individual earthquakes to
estimate the optimum classification skill that could be ob-
tained when calibrating on all the check data. We then retain
the best 20 parameter sets (measured in terms of AUC) from
each earthquake to generate a global set of 100 parameter
sets. To account for parameter interaction (particularly be-
tween the three exponents «, 8, and A) within a set we retain
parameter sets as seven-element vectors. To ensure that each
manually mapped landslide inventory is given equal weight
as a check dataset we calibrate to each in turn taking 7 param-
eter sets from calibration to each of the 3 Gorkha inventories
and 10 from each of the 2 inventories at the other sites. Fi-
nally, we run ALDI with each of these 100 parameter sets to
generate 100 ALDI classification surfaces then take the mean
for each cell.

To simulate the “blind” application of ALDI to future
events, we perform a holdback test in which we run ALDI
using the global-parameter set but hold back the 20 parame-
ter sets that were derived from the site at which testing is be-
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Table 3. Performance metrics for ALDI applied with the different parameter sets to identify landslide-affected areas from each of the
14 inventory pairs. Abbreviated names for the inventory pairs indicate the case study with subscripts denoting first check and then competitor
inventories (e.g. Kgp denotes the Kashmir earthquake with Sato as the check inventory and Basharat as the competitor inventory). The
true-positive rate (TPR) and false-positive rate (FPR) are reported for both object-based analysis (in brackets) and pixel-based analysis at
30 m resolution. Overlap indicates the percentage overlap between pairs of landslide inventories. Shading in right-hand columns indicates
performance of ALDI relative to each competitor and for each metric and calibration, with a linear colour scale from blue where ALDI
outperforms the manual competitor to red where the manual competitor outperforms ALDI. Vertical blocks reflect different performance
metrics: TPRgjgr and AUC (see text). Columns within each block reflect different ALDI calibration strategies: local calibration optimised to
both site and check inventory, global calibration using a compilation of the best parameter sets from all sites, and holdback calibration where
parameter sets from the test site are excluded. Note that positive values of TPRy; reflect cases where ALDI outperforms manual mapping,
while negative values reflect cases where manual mapping is better.

TPR [-] FPR[-] TPRuitr [%] AUC[]
Check Competitor n E ,‘i E n E E %‘ E‘é :_30 s E = B Z‘g
Inventory Inventory i = 8 E i = 8 ﬁ = 2 5 = § —S 2
= = 3 T I
Kashmir (K)
(Kss) Sato et al. (2007) Basharatet al. (2016)  0.58 (0.56) 0.029 (0.030) 30 26 27 094093 093
(Kas) Basharat et al. (2016)  Sato et al. (2007) 0.09(0.09)  0.002 (0.002) 52 02 -7 -5 |0.720.69 0.69
Aysén (A)
(Ags) Gorum et al. (2014)  Sepulveda et al. (2010a) 0.52 (0.52) 0.010 (0.009) - 39 39 093093 093
(Asc) Sepulveda et al. (2010a) Gorum et al. (2014) 0.4 (0.41) 0.006 (0.006) 257 6 5 5 0.77 0.78 0.78
Wenchuan (W)
(Wix) Li et al. (2014) Xu et al. (2014) 0.35(0.35)  0.026(0.029) 36 26 27 0.87 085 0.85
(W) Xu et al. (2014) Li et al. (2014) 0.19(0.19)  0.011(0.012) 140 - 50 51 0.86 0.84 0.84
Haiti (H)
(Hue) Harp et al. (2016) Gorum et al. (2013) 0.24 (0.21) 0.001 (0.001) -51 -74 -73| 0.88 0.84 0.84
(Hen) Gorum et al. (2013) Harp et al. (2016) 0.64 (0.62) 0.005 (0.007) 188 -52 62 60 095 083083
Gorkha (G)
(Gws) Watt (2016) Robacketal. (2018)  0.27(0.33)  0.004 (0.005) 22 1 1 092092092
(Grw) Roback et al. (2018) Watt (2016) 0.42 (0.43)  0.008 (0.008) 228 20 7 6 094093093
(Grz) Roback et al. (2018) Zhang et al. (20186) 0.1 (0.09) 0.001 (0.001) 30 4 -3 09209009
(Gzx) Zhang etal. (2016)  Robacketal. (2018)  0.49(0.51)  0.004 (0.005) &2 19 4 5 096 095 095
(Gzw) Zhang et al. (2016) Watt (2016) 0.11(0.11) .0003 (.0003) -28 47 47 092 092 092
(Gwz) Watt (2016) Zhangetal.(2016)  0.79(0.80)  0.010(0.010) H 9 17 -17 _
Median 0.38 0.006 140 20 3 3 092091091
Mean 0.37 0.008 161 10 -4 -3 0.89 088 0.88

ing performed. In this test the parameters used to run ALDI

that experienced the most intense shaking. However, when

are uninfluenced by the specific behaviour of the test site. the maps are compared at a finer scale they differ consider-
ably (Fig. 2c, e). In some cases, one mapper has identified a
landslide, but one or both of the others have not (e.g. location
A in Fig. 2e). Some, but not all, of these missed landslides
can be attributed to areas where imagery was unavailable or
where the ground was obscured by clouds (shown as grey
areas in Fig. 2c). In other cases, mapped landslides overlap,
but their size and/or shape differ, due either to differences
in the interpretation of landslide boundaries (e.g. location B
in Fig. 2e) or to the georeferencing of the underlying im-
agery from which the landslides were mapped. Georeferenc-
ing differences seem particularly likely to explain mapped
landslides of very similar size and shape that are offset by

4 Results
4.1 Spatial agreement: Gorkha case study

We first illustrate our approach using the 2015 Gorkha earth-
quake, where three manual inventories are available, and then
consider the other four earthquakes introduced in Sect. 2. All
three manual inventories for the Gorkha earthquake show an
elongated cluster of landslides extending from northwest to
southeast (Fig. 2a) that coincides with the area of steep slopes
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small distances (e.g. location C in Fig. 2e) or appear distorted
relative to one another so that their outlines only partially
overlap (e.g. location D in Fig. 2e).

The ALDI classifier applied to the Gorkha earthquake cap-
tures the broad spatial pattern of mapped co-seismic land-
slides with large patches of high ALDI values, and thus
high classification likelihood, corresponding to clusters of
mapped landslides (Fig. 2b). Examining a subsection of the
study area (Fig. 2d) shows that ALDI identifies the same
broad zones of more intense landsliding as identified in the
manual mapping. However, the ALDI output also contains
a series of stripes ~ 1 km apart and ~ 150 m wide trending
west-northwest to east-southeast most clearly visible across
the centre of the map. These are the result of data gaps in
Landsat 7 images since 2003 due to Scan Line Corrector
(SLC) failure on the Landsat 7 sensor. Although both pre-
and post-event image stacks include Landsat 5 and Landsat 8
images in addition to Landsat 7, these data gaps clearly in-
fluence the ALDI output, with high values more likely for
pixels where Landsat 7 data are not available.

Zooming in to a smaller subsection of the study area sug-
gests that most of the landslides that are included in both
inventories overlap areas of high ALDI values (Fig. 2e). In
addition, areas of high ALDI values overlap many of those
landslides identified by one inventory but not the other, al-
though there are mapped landslides that do not overlap areas
with high ALDI values (Fig. 2e). In many cases, the patches
of high ALDI values have shapes that closely follow those
of the mapped landslides (Fig. 2e). In other cases, patches
of high ALDI values have typical landslide morphology but
are not in either inventory (e.g. location E in Fig. 2e), rais-
ing the question of whether these should be considered gen-
uine classifier false positives or are in fact landslides missed
in all three manual maps. Given that each inventory misses
landslides identified by another, this possibility cannot be ex-
cluded. In other cases, the patches of high ALDI values have
a size and/or shape that suggest that they are misclassifica-
tions. These may be due to clouds, shadows, snow, or other
landscape changes not associated with landslides (e.g. crop
harvesting, river channel change, building construction).

4.2 ALDI calibration: Gorkha case study

In this section, we seek to establish the best possible ALDI
performance when parameters can be optimised to a single
study site and identify the influence of parameters on that
performance, both in terms of sensitivity to the parameter and
preferred range for the parameter. We illustrate this using the
Gorkha earthquake, calibrating ALDI’s seven tuneable pa-
rameters (columns a—g in Fig. 3) to optimise agreement with
two of the manually mapped landslide inventories measured
using our two performance metrics (rows in Fig. 3). The re-
sults are visualised in Fig. 3 using dotty plots (after Beven
and Binley, 1992): a matrix of scatter plots where each sub-
plot shows model performance (y axis) against a parameter
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value (x axis). The histogram above each scatter plot shows
the frequency distribution of parameter values for the best 50
model runs for that metric and check dataset.

All the scatter plots in Fig. 3 show wide scatter in per-
formance for a single value of any given parameter, indicat-
ing that the model is sensitive to multiple parameters. How-
ever, the key feature of each plot is the upper bound on ALDI
performance for a given parameter value and the sensitivity
of this upper bound to change in that parameter. This upper
bound can be interpreted as the best possible ALDI perfor-
mance at value x of parameter A when all other parameters
are given flexibility to optimise. Plots where this upper bound
is near horizontal suggest limited influence of a particular pa-
rameter and are accompanied by broad histograms. Narrow
peaks in a plot’s upper bound indicate that good model per-
formance requires that parameter to be set within a narrow
range, with performance degrading rapidly as values depart
from this range independent of other parameter values. In the
following paragraphs we examine the influence of each pa-
rameter in turn (Fig. 3).

Setting the pre- and post-earthquake stack lengths (L e
and Lpost, respectively) involves a trade-off between errors
caused by landslides (or other landscape changes) not asso-
ciated with the earthquake, if the stack is too long, and er-
rors caused by cloud cover, if the stack is too short. For the
Gorkha earthquake, ALDI performance is most sensitive to
Lpost, indicated by the steep gradient in upper-bound perfor-
mance across both metrics and for all check datasets (Fig. 3,
column g). For all metrics and datasets, a post-earthquake
stack length of only 1 year produces the best performance.
This may be because longer stacks are more likely to include
other landscape changes after the earthquake that disrupt the
signal, such as post-seismic landslides or re-vegetation of co-
seismic landslides.

ALDI allows landslides to be identified only in pixels
where NDSI is lower than the snow threshold (7gpow). ALDI
performs well (i.e. <20 % from optimum) for Tyyoy values
ranging from 0.1 to 0.9 (Fig. 4, column d). For TPRy;s the
best values of Typow are 0.2—0.4 with a rapid decline in per-
formance as Tynow i reduced and a slow decline as it is in-
creased (Fig. 4, rows 1-2 of column d). This suggests that
snow rarely causes false positives even when little effort
is made to remove it but that an overly conservative snow
threshold results in landslides being misclassified as snow.
The AUC metric behaves similarly to TPRgjfr with a larger
performance reduction at low Tnow Values and reduced per-
formance reduction at high Tnow values (Fig. 4, rows 3—4 of
column d).

The « : B ratio controls the influence of change in NDVI
(dV) relative to mean post-earthquake NDVI (V). Noting
that dV and Vo5 are bounded to be < 1 and that by definition
B =a(a:B)~ !, larger values of « : B result in smaller expo-
nents on Vo5t and larger values of the term. ALDI is thus
dominated by Vs at higher o : 8 ratios and by dV at lower
ratios. There is a clear optimum within the parameter space
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Figure 2. Mapped landslides and the ALDI classifier for the Gorkha study site. (a) Mapped landslides at the scale of the full study area with
AOIs (areas of interest; the mapped area) shown in grey. Zhang, Roback, and Watt refer to the inventories of Zhang et al. (2016), Roback
et al. (2018), and Watt (2016). (b) ALDI values for the full study area, using locally optimised parameters. (¢) Mapped landslides from
the three inventories for a subset of the study area, with areas that were unmapped in one or more inventory shaded grey. (d) ALDI values
using locally optimised parameters for the same subset of the study area shown in (c). (e) Detailed view of mapped landslides from the three
inventories and ALDI values. Yellow boxes in each panel show the locations of nested panels (e.g. ¢ in a and d in b). Green labels in (e)
indicate examples of (A) missed landslides, (B) agreement between inventories, (C) offset landslide outlines, (D) distorted landslide outlines,
and (F) landslides identified by ALDI but missed by manual mapping.
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Figure 3. Dotty plots and posterior parameter distributions for the Gorkha case study for the seven tuneable parameters associated with ALDI
(columns) evaluated using two of the test datasets (Watt and Roback) and two performance metrics (rows): (1) TPRy;¢f, the difference in TPR
between ALDI and the competitor inventory at the FPR defined by the competitor inventory, and (2) AUC, the area under the ROC curve,
a more general indicator of classifier performance over the full range of FPRs. “Roback/Watt” refers to using Roback as the check dataset
and Watt as the competitor in row 1; “Watt/Roback” refers to the converse in row 2. Roback is used as the check dataset in row 3, and Watt
is the check dataset in row 4. Points plotting above the yellow line are results for the best 100 parameter values. In each case the parameter
distributions are for the best 100 parameter sets evaluated using the same metric and datasets as the dotty plot below it. Dotty plots for the

other Gorkha inventories and for all other sites are given in the Supplement. EQ: earthquake.

and a large reduction in performance away from this opti-
mum indicating that both layers (dV and V}ost) are important
components of the classifier (Fig. 3, column b). Best perfor-
mances are found in the range o : 8 =3—4 for TPRyifr and
in the range o : § = 10-20 for AUC, suggesting that more
weight needs to be given to Vpos to successfully identify
landslides, particularly when bulk performance over the full
ROC curve is of primary concern.

The o : A ratio controls the influence of change in NDVI
(dV) relative to the likelihood that the dV values in the post-
event stack are significantly different from those in the pre-
event stack (P;). As explained above, ALDI is dominated by
P; at higher « : X ratios and by dV at lower ratios. ALDI per-
formance is somewhat sensitive to this parameter for both
TPRgisr and AUC, with gentle but consistent slopes to the
upper-bound performances (Fig. 3, column c). Best perfor-
mances are found for « : XA in the range 0.01-1 for TPRg;sr
and 0.1-5 for AUC, suggesting that, although both layers

https://doi.org/10.5194/nhess-22-481-2022

contribute important information, dV is a stronger predictor
than P; for the Gorkha case study.

Optimum parameters for the Gorkha study site differ
slightly between performance metrics (compare histograms
down columns in Fig. 3). This reflects the different focus of
the metrics, where TPRyjfr gives the strongest weight to very
conservative (i.e. low FPR) classification thresholds (Fig. 3,
rows 1-2), and AUC weights all classification thresholds
equally (Fig. 3, rows 3-4). In general, the parameters to
which ALDI performance is most sensitive are also those for
which optimum values are most robust to changes in check
dataset or performance metric. For example, there is negligi-
ble change in optimum values for Lpost and Tsnow across the
range of metrics and datasets. « : 8 and « : A are both broadly
comparable between metrics, although in both cases there is a
shift towards higher optimum values for AUC, indicating that
for this metric NDVI difference is less important than it was
for TPRg;sr (noting that the improvement is always < 3%).
o : B has a progressively less clear optimum as metrics be-
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Figure 4. Dotty plots and posterior parameter distributions for the seven tuneable parameters associated with ALDI (columns a—g) for the
five study earthquakes (rows 1-5). Dotty plots show classifier performance evaluated using AUC, the area under the ROC curve. Blue or red
colours indicate the inventory used as the check dataset, as shown to the right. Parameter distributions are for the best 100 parameter sets

evaluated using the same metric. EQ: earthquake.

come more generalised (from TPRg;ff to AUC) indicating re-
duced parameter sensitivity for AUC. T¢joug and L. have
larger changes in optimised parameters between the metrics,
although the sensitivity to these changes is small in perfor-
mance terms (Fig. 3, columns e—f). Optimum 7T¢jouq is 0.7 for
TPRgifr but 0.5 for AUC; optimum L is in the range 2-5
for TPRgy;sr and 5-10 for AUC. ALDI performance is insen-
sitive to «, varying by < 10 % across the parameter range for
all metrics, generating a broad histogram of best-performing
parameter values and showing large shifts in the optimum
value depending on both the metric and the dataset used to
assess performance (Fig. 3, column a).

4.3 ALDI calibration: global comparison

We focus our global comparison on the AUC performance
metric. Results for TPRy;sr are very similar and can be found
in the Supplement (Figs. S1-S6). Figure 4 shows that opti-
mum values for a given parameter differ between sites; that
sensitive parameters at one site are usually sensitive at others;
and that absolute performance differences between different
inventories at a site can be large, although the trends are gen-
erally similar.

Nat. Hazards Earth Syst. Sci., 22, 481-508, 2022

ALDI is sensitive to Ly for all sites but with trends that
differ between sites: for Haiti and Gorkha a value of 1 year is
best, 2 years is reasonable, and 3 years is poor. For Kashmir
and Wenchuan a value of 1 year is best, but a value of 2 years
also gives reasonable results. For Aysén a value of 5 years is
best, and a value of 1 year is particularly poor (Fig. 4, col-
umn g). An Ly, of 2 years generally results in fairly good
performances for all five sites. These site-by-site differences
suggest a connection between the optimum time series length
Lpost, the frequency of Landsat image acquisition during the
study period, and the processes that cause NDVI change at
different sites (e.g. vegetation growth rates, fire, drought,
or post-seismic landsliding). While this does not preclude
good performance of ALDI using a global-parameter set, it
does imply that performance with this global-parameter set
will almost always be sub-optimal relative to a locally cali-
brated set. However, such local calibration requires indepen-
dent landslide mapping over at least part of the study area.
Further work might seek to connect optimum parameters at a
site with its image and landscape characteristics, enabling a
refinement of the parameters without the need for additional

mapping.
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ALDI is sensitive to Tyhow in three of the five sites and par-
ticularly for Aysén, but in all cases Tgpow Of 0.5-0.8 results
in performances that are at least close to optimum (Fig. 4,
column d). ALDI is only weakly sensitive to Lpe for all
sites and with subtly differing trends: for Kashmir a value of
3 years is best; for Wenchuan and Haiti a value of 10 years is
best; and for Aysén and Gorkha best performances are in the
range of 5 to 10 years (Fig. 4, column f). However, the trends
are not linear, and an Ly of 5 years generally results in fairly
good performances for all five sites. ALDI is generally in-
sensitive to T¢joud across the range 0.3-0.7 with best perfor-
mances consistently found at 0.5, although these are at most
10 % better than those for other values in the range (Fig. 4,
column e). ALDI is insensitive to « alone but is strongly sen-
sitive to « : B and weakly sensitive to « : A at all sites (Fig. 4,
columns a—c) with best performances found for « : 8 in the
range 1-100.

ALDI application would be both faster and simpler if
single optimum values could be used for the three pre-
processing parameters within Google Earth Engine (7¢joud,
Lpre, Lpost). In particular, the shorter post-event window
L post 18, the sooner an inventory following an earthquake can
be compiled. Our site-by-site calibration suggests that it is
possible to find single values for these parameters that re-
sult in good performance for all study sites (Fig. 4). This is
the case when cloud threshold Ttjouq is 0.5, pre-earthquake
stack length Ly is 5 years, and post-earthquake stack length
Lpost is 2 years (thus it is reasonable to expect that an ALDI-
derived inventory can be generated after 2 years). We also
examined performance when these parameters were allowed
to vary but found that the performance improvement for the
global-parameter set was negligible.

To examine similarity between locally optimised parame-
ters and compare them to a global set of parameter sets, we
first identified the best 100 parameter sets for each study site,
using AUC as the performance metric (Fig. 5). To generate
the global-parameter sets we held Tcioud, Lpre, and Lpost con-
stant at 0.5, 5, and 2 years, respectively; then, treating the
remaining parameter sets as four-element vectors, we sam-
pled the best 20 parameters from each site; finally, we gen-
erated a holdback parameter set for each site by removing
that site’s parameters from the global set. Locally optimised
parameter sets (grey histograms in Fig. 5) are broadly con-
sistent with the global set (blue histograms) with a small
number of exceptions: Tgyow should be set lower for Kashmir
and higher for Aysén; « : 8 should be set higher for Kashmir;
and o : A should be set lower for Gorkha. These differences
are accentuated in the holdback distributions (the black out-
lined histograms) because the divergent local parameter val-
ues are stripped from the set, pulling the distributions away
from their local optima. We would expect larger performance
degradation from local to global to holdback parameter sets
at sites where these distributions are more different.

ALDI with locally optimised parameters always outper-
forms the global parameters, and the global parameters al-
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ways outperform the holdback parameters (Table 3). The
difference between local and global parameters is generally
larger than between global and holdback parameters. In fact,
performance reduction from global to holdback parameters
is always < 1 % for AUC. This indicates that the five study
sites provide an adequately varied calibration set to enable
the generation of a general parameter set that is not overly
influenced by any one site. This is encouraging for future
blind ALDI application. However, the difference in perfor-
mance between local and global parameters shows that lo-
cal optimisation can improve ALDI performance in terms of
AUC by up to 9% (and by 2 % on average). In three cases,
one for Kashmir and two for Gorkha, local optimisation im-
proves ALDI to the point where it is no longer outperformed
by the manually mapped competitor inventory but instead
outperforms it in terms of identifying landslide locations in
the check inventory. This is somewhat consistent with the
observed divergence of locally optimised parameter distri-
butions from the global distribution at these sites (Fig. 5).
However, it likely also reflects the broadly similar perfor-
mance (i.e. skill) of ALDI and manual mapping at the sites
(Table 3).

4.4 Spatial agreement: global comparison to manual
mapping

Spatial agreement between manual landslide inventories is
surprisingly low not only for the Gorkha study site shown in
Fig. 2 but across all sites. TPRs range from 0.08 to 0.8 indi-
cating that at best 80 % and at worst 8 % of the landslide area
mapped by one inventory is also identified as a landslide by a
second test inventory (Fig. 6a and Table 3). FPRs range from
0.0003 to 0.03, indicating that at best 0.03 % and at worst 3 %
of the area that is identified as a non-landslide area in one in-
ventory is instead identified as a landslide by a second test
inventory. There are two possible reasons why FPRs are so
much lower than TPRs: (1) landslide density is low, so there
are few positives (TP+FN) and many negatives (TN + FP)
— these are the denominators of TPR and FPR, respectively,
amplifying TPR and damping FPR — and (2) landslide map-
pers may be inherently conservative, mapping only features
that they are confident are landslides. TPRs and FPRs are
positively correlated but with considerable scatter (Fig. 6a).
In some cases manual maps agree quite closely: for example,
the inventories of Gorum et al. (2013) and Harp et al. (2016)
for Haiti (Hgu, Hug) or those of Zhang et al. (2016) and
Watt (2016) for Gorkha (Gzw, Gwz). These cases have a rel-
atively high TPR given their FPR and plot towards the top left
of the point cloud in ROC space (Fig. 6a). In other cases the
agreement is weaker, such as between the inventories of Li et
al. (2014) and Xu et al. (2014) for Wenchuan (W x, Wxp),
or those of Sato et al. (2007) and Basharat et al. (2016) for
Kashmir (Ksg, Ks). There is a symmetry to the inventory
comparison because each inventory takes a turn as the com-
petitor dataset (to which ALDI is being compared) and as the
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Figure 5. Posterior parameter distributions for the four parameters external to Google Earth Engine after global optimisation (top row)
and local optimisation for each earthquake. Rows 2—-6 show posterior frequency distributions for each ALDI parameter following local
optimisation (grey bars) and the holdback parameter set derived from the global set excluding locally optimised parameters (hollow bars).

check dataset (against which both are evaluated). As a result,
a single pairwise comparison results in two points in Fig. 6a
reflecting the switching of roles. The three-way comparison
for the Gorkha earthquake results in three pairwise compar-
isons and six points. When one inventory is considerably
more complete and less conservative, then the separation be-
tween pairs of points will be large (e.g. Watt and Zhang for
Gorkha). Zhang et al. (2017) reported, in their metadata, that
their inventory is incomplete and focuses on the largest land-
slides, while that of Watt (2016) was more complete and
less conservative. As a result Zhang et al. (2016) success-

Nat. Hazards Earth Syst. Sci., 22, 481-508, 2022

fully identified only 10 % of the landslide pixels identified
by Watt (2016) but identified only a tiny fraction (< 0.1 %)
of the study area as landslides when Watt (2016) considered
that they were not (Gzw in Fig. 6a). Conversely, Watt (2016)
successfully identified 80 % of the landslides identified by
Zhang et al. (2016) but identified a further 1 % of the study
area as landslides that were not identified as such by Zhang
et al. (2016) (Gwz in Fig. 6a).
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labels as subscripts; see Table 3.

To evaluate ALDI performance relative to manual map-
ping, we compare the ability of ALDI to successfully iden-
tify more landslide pixels in one (check) inventory than an-
other (competitor) inventory when ALDI output is thresh-
olded to reproduce the FPR of the competitor inventory. This
TPR difference (TPRyjfr) is shown as a red line in Fig. 6b—f;
positive differences indicate that ALDI outperforms manual
mapping and vice versa. ALDI outperforms manual mapping
in the majority of cases when parameters are locally opti-
mised (10 of 14 cases, Fig. 6 and Table 3) and is compara-
ble to manual mapping when a single global-parameter set
is applied to all study sites (8 of 14 cases). Performance is
only slightly reduced when the test site is held back from
the global optimisation, and ALDI continues to outperform
manual mapping in 8 of 14 cases.

ALDI performs better at some sites than others, with per-
formances for Aysén and Gorkha particularly good (Table 3).
Performance is poor for Haiti, both in absolute terms and rel-
ative to the manual mapping. For AUC, an indicator of ab-
solute performance, ALDI performance for the Haiti case is
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ranked 10th—11th of 14 (where the range results from com-
bining local, global, or holdback tests). Relative to manual
mapping, ALDI correctly identifies 51 %—74 % fewer land-
slide pixels for the same FPR. Explanations for these per-
formance differences are discussed in Sect. 5.4. ALDI in
Wenchuan performs only moderately in absolute terms, with
ranked performances in the range 9th to 12th out of 14 for
AUC, but outperforms manual mapping (1st and 4th for
TPRgisr) as a result of the relatively poor agreement between
manual maps for the site. Kashmir has very marked differ-
ences in ALDI performance depending on the test dataset
(all <4th of 14 for Sato et al., 2007; all > 9th of 14 for
Basharat et al., 2016), illustrating the difficulty of interpret-
ing performance relative to check data when the check data
themselves contain errors of similar magnitude to the data
being tested.
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4.5 Area—frequency distributions

Probability density functions (PDFs) for manually mapped
landslide areas (Fig. 7a—e) follow a consistent distribution
with a roll-over and a heavy right tail that is approximately
linear in logarithmic space but that usually has positive (con-
vex up) curvature or a roll-off at very large areas. These char-
acteristics have already been widely reported both for the
study inventories in particular (e.g. Gorum et al., 2013; Li
et al., 2014; Roback et al., 2018) and for many other land-
slide inventories worldwide (e.g. Tanyas et al., 2019). Differ-
ent inventories for the same study site show broadly consis-
tent scaling in their right tail but tend to differ markedly in
the location of the roll-over, modal size, degree of curvature
in their right tail, and the location (and presence) of a roll-off
for very large areas (e.g. Fig. 7a, d, and e). These differences,
as well as their possible explanations, have also been widely
reported for these and other sites (see review by Tanyas et al.,
2019).

The area—frequency distributions derived from ALDI re-
flect the sizes of clustered landslide-affected areas (rather
than the areas of landslide objects themselves). The ALDI-
based distributions generally exhibit a broadly similar right
tail to those of the manually mapped distributions; both
have heavy right tails that closely approximate a power law
and have similar scaling (i.e. slope in logarithmic space) in
that right tail. However, the ALDI-based distributions are
clearly different from those derived from manual mapping,
and they lack the following: (1) the roll-over at small areas
(in all cases, Fig. 7a—e), (2) the positive curvature to the right
tail (particularly clear for Haiti, Fig. 7d), and (3) the roll-
off at very large areas (resulting in oversampling of land-
slides > 10° m? for Wenchuan, Fig. 7¢).

These differences can be explained in terms of amalga-
mation and censoring. The amalgamation of multiple neigh-
bouring landslides increases the frequency of large land-
slides, fattening the right tail (Marc and Hovius, 2015) and
in some cases considerably increasing the size of the largest
landslide (e.g. Aysén and Wenchuan, Fig. 7b—c). Resam-
pling to a 30 m grid makes it impossible to record landslides
smaller than a single pixel (i.e. 900 m?), censoring them from
the area—frequency distribution.

To illustrate the role of amalgamation and censoring we
convert the manual landslide maps to binary grids at 30 m
resolution, using a majority area rule to identify landslide-
affected pixels, and perform the same connected-component
clustering used for ALDI. Resampling to 30m should re-
sult in strong censoring and some amalgamation as explained
above. Re-clustering with a connected-component algorithm
likely results in further amalgamation. Figure 7 shows that
resampling and re-clustering manually mapped landslides
transforms their area—frequency distributions, removing the
roll-over and resulting in distributions that are very similar to
those for landslide pixels classified with ALDI. This supports
our interpretation that the misfit between ALDI and manual
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mapping is due to censoring and amalgamation, although we
are unable to determine their relative roles. Misfits due to
the resolution of Landsat and thus the classification surface
are difficult to overcome, whereas improvements in cluster-
ing could be more easily implemented.

5 Discussion

5.1 The problem of testing landslide location against
uncertain check data

The TPRgjsr results for the five study sites show that ALDI
outperforms manual mapping in 8 of 14 inventories in terms
of its ability to identify landslide-affected areas identified in
a second check inventory. This may indicate that ALDI is
more skilful than each of these inventories at identifying the
locations of landslides. However, because the check invento-
ries are themselves known to contain error, this is not a se-
cure result; erroneous outperformance by ALDI would result
if it identified the same artefacts that had been (erroneously)
mapped in the check dataset but not in the competitor.

A more secure result can be obtained from the four (of
seven) inventory pairs where ALDI outperforms both inven-
tories in the pair when the other is used as check data. This
indicates that the ALDI output is more similar to each in-
ventory than the inventories are to one another (Table 3) and
demonstrates that ALDI must be more skilful than at least
one of the inventories (either the check or competitor inven-
tory) in identifying the locations of landslides. However, we
are still unable to conclude whether ALDI is better than one
or both inventories or identify which inventory is better. This
is because errors in a single inventory influence the result
both when it is used as the predictor (i.e. as a competitor
against ALDI) and the check dataset (against which both are
evaluated).

5.2 Spatial disagreement in manually mapped
inventories reflects processing errors, not solely
mapping errors

Our findings on the large locational mismatch between co-
seismic landslide inventories are initially surprising, given
the widespread assumption that such inventories represent a
ground truth and the limited attempts to propagate these er-
rors into hazard maps, classification tests, process inferences,
or landslide rate estimates. However, the limited number of
other studies that do quantify landslide inventory error all
suggest very weak spatial agreement between landslide in-
ventories (Ardizzone et al., 2002; Galli et al., 2008; Fan et
al., 2019).

The process of generating a landslide inventory from satel-
lite imagery involves choosing which images to map from
and how to post-process and georeference them before land-
slides can be identified and delineated by a human map-
per. Thus, the comparison of two inventories is not a di-
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values.

rect test of the consistency with which human mappers de-
tect and delineate landslides but instead the consistency with
which different research groups generate landslide inventory
maps. As an illustration of this distinction, Fan et al. (2019)
found that landslide inventories had an overlap of 67 %—86 %
(and 76 % on average) when comparing between mappers in
the same team mapping from the same imagery. This dif-
fers considerably from both our own results (8 %—30 % over-
lap, Table 3) and other published cross-inventory compar-
isons (19 %—44 % overlap, Ardizzone et al., 2002; Galli et al.,
2008; Fan et al., 2019). In these cases, the inventories being
compared were published by independent research groups
and were not only collected by different mappers without
collaboration but were also generated from different sets of
satellite images. For example, Roback et al. (2018) used
WorldView imagery with high spatial resolution but which
suffers from severe distortions in the Gorkha study area due
to the steep landscape and oblique look angles (Williams et
al., 2018). Even if landslides were correctly identified in both
sets of imagery, differences between inventories could be in-
troduced during georeferencing. Figure 8 shows evidence of
the same problem for the Wenchuan inventories, where two
sets of mapped landslides with strikingly similar patterns are
offset by ~ 1 km. These georeferencing errors are difficult to
attribute to a single inventory and appear to vary in magni-
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tude and direction even over quite short length scales within
an inventory (Figs. 2 and 8). Thus, improved performance of
ALDI relative to a particular inventory reflects an improved
overall workflow rather than specifically the ability to iden-
tify landslides in images.

5.3 Limitations to ALDI performance

ALDI performance varies from site to site, with particularly
good performances for Aysén and Gorkha but particularly
poor ones for Haiti. The overall poor performance for Haiti
may reflect the drier conditions in the study area, which lead
to vegetation that is more difficult to differentiate from land-
slide scars, or the higher degree of human influence on land
cover relative to other sites, which may result in more veg-
etation changes not related to landslides. ALDI can iden-
tify landslides only in areas where they result in a change
in NDVI and will perform better in areas where this change
is more pronounced (all else being equal). This will occur
where pre-event NDVI is higher due to denser and/or more
vigorous vegetation coverage, both of which result in a larger
share of reflectance from leaves, with their more pronounced
“red edge” (the red—near-infrared reflectance change). Con-
versely, ALDI will perform poorly in areas with sparse vege-
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tation such as the epicentral area of the 2010 Sierra Cucapah
earthquake (Barlow et al., 2015).

Poor performance for Haiti in comparison with the man-
ual mapping may also be due to ALDI’s coarse 30 m res-
olution relative to the dimensions of the landslides in the
study area. ALDI will identify a pixel as landslide-affected
only if the landslide occupies enough of the pixel to alter its
spectral response and will perform better when landslides are
large enough to occupy large fractions of one or many pix-
els. Given their typically elongate shape (Taylor et al., 2018),
landslides with widths < 30 m and thus areas < 2700 m? (as-
suming L/ W =3, 75th percentile from Taylor et al., 2018)
will be partially censored, with the degree of censoring in-
creasing as width declines. Median landslide area in the in-
ventories examined here ranges from 250 m? for Haiti (Harp
etal., 2016) to 19 000 m? for Kashmir (Basharat et al., 2016),
with medians less than 2700 m? in 4 of 14 inventories. There-
fore, this censoring will strongly affect ALDI-derived inven-
tories, particularly in areas with lower relief (such as Haiti)
where smaller landslides are expected to be more common
(Jeandet et al., 2019).

Finally, poor performance for Haiti is also likely to reflect
the limited number and quality of Landsat images acquired
over the study area. ALDI used imagery from 2005-2012 to
identify landslides triggered by the Haiti earthquake and thus
relies exclusively on Landsat 5 and Landsat 7 data (Landsat 8
launched in 2013). Both Landsat 5 and Landsat 7 are prob-
lematic for this study site and period. All of the Landsat 7
data contain data gaps due to Scan Line Corrector (SLC)
failure from June 2003 onwards, and only small amounts of
Landsat 5 data for areas outside the USA were retained dur-
ing this period, limiting archival imagery in some areas (see
Fig. S5 in Pekel et al., 2016). For Haiti the pre-earthquake
stack is composed of 6 Landsat 5 images and 205 Landsat 7
images and the post-earthquake stack of 16 and 91 images,
respectively. Limited availability of Landsat 5 data at this site
means that in some areas the classifier relies exclusively on
Landsat 7 and is thus unable to calculate an ALDI value for
pixels within the data gaps (these are visible as white stripes
in the eastern half of Fig. 9b). While some areas of high
ALDI values show good agreement with mapped landslides,
there are also large patches of high ALDI values with com-
plex shapes that are uncharacteristic of landslides and that
manual mapping shows as likely false positives (Fig. 9c).

Given these limitations to Landsat 5 and Landsat 7 im-
agery, it is perhaps surprising that ALDI performs so well in
the Aysén case (where the stack extends from 2002-2009).
This is likely due to the larger number of Landsat 5 images
available for the study site (140 in the pre-earthquake stack
and 46 in the post-earthquake stack) and to the location of
the area of densest landsliding near the centre of a Landsat 7
image where data gaps related to SLC failure are minimised.
The 2015 Gorkha earthquake is the only case study for which
Landsat 8 data were available, perhaps explaining the rel-
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atively good performance at this site and offering hope for
application to more recent events.

Sparse image data (associated with incomplete archiving
of Landsat 5) and sensor problems (primarily SLC failure
on Landsat 7) from 2003-2014 suggest ALDI-based map-
ping in this period should be handled with care. However,
the majority of our test earthquakes come from this period,
and we have demonstrated that even with these constraints,
ALDI performs well in determining landslide locations for
four of the five case studies, both in absolute terms and rela-
tive to manual mapping. Potential checks on ALDI applica-
tions during this time period could entail careful checking of
the numbers of images in the pre- and post-earthquake stacks,
the extent of Landsat 7-derived striping in the ALDI map,
and the size and shape of the landslides in the ALDI-derived
inventory. Small image stacks (particularly for Landsat 5),
extensive striping, and large complex landslide shapes should
all be treated as indicators of potentially poor ALDI perfor-
mance. However, even when large image stacks are avail-
able for an earthquake-affected area, cloud cover can limit
the number of usable observations per pixel within the pre-
and post-earthquake stacks.

ALDI can identify landslide-affected pixels with a high
degree of skill (comparable to manual mapping) but is
considerably less skilful in identifying discrete landslides,
as demonstrated by the difference in ALDI and manu-
ally mapped area—frequency distributions. As with Parker et
al. (2011), additional steps are required to identify separate
landslides (e.g. Marc et al., 2016). Calibration based on a
small subset of manually mapped landslides followed by sub-
sequent manual editing to remove false positives could result
in a very good inventory in a fraction of the time associated
with full manual mapping.

5.4 Strengths and weaknesses of ALDI relative to
manual mapping

The most widely used properties of landslide inventories are
landslide location and geometry (Guzzetti et al., 2012). In
terms of location, ALDI performs comparably to manual
mapping in identifying whether the majority of each pixel in
a 30m grid is landslide-affected. However, it performs worse
in capturing landslide area—frequency distributions, primar-
ily because it cannot identify small isolated landslides (i.e.
with areas < 900 m? separated by more than 30 m), and sep-
arating the output from ALDI (or any other pixel-based clas-
sifier) into discrete landslide objects is not straightforward.
Current approaches to train and test landslide prediction
models (including hazard and susceptibility models) almost
exclusively use pixel-based information on landslide pres-
ence or absence rather than information about the size or
shape of a landslide at a particular location (see Bellugi et al.,
2015, for an exception). For such applications, skilful iden-
tification of landslide-affected pixels is the sole requirement.
Our results suggest that the ALDI landslide inventory would
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be an appropriate product to use in these cases, as it is better
than at least one of the manual inventories in four of the five
case studies (Table 3).

Landslide geometry is required to construct landslide
area—frequency distributions and is useful to distinguish
landslide initiation and runout zones (Marc et al., 2018).
Manual mapping provides landslide geometry with a high
level of accuracy, although disagreements in landslide area—
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frequency distributions for manually mapped inventories
have already been reported, with the most pronounced differ-
ences being in roll-over location, usually due to differences in
image resolution (Galli et al., 2008; Fan et al., 2019; Tanyas
et al., 2019). The accuracy of landslide geometry derived
from ALDI depends strongly on the extent to which land-
slide pixels can be clustered to identify separate landslides
(e.g. Marc et al., 2016) and on the pixel resolution. The first
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of these is common to all pixel-based classifiers. Given the
relatively coarse resolution of the underlying Landsat data,
we expect ALDI-derived geometries to be accurate only for
large landslides, as shown in Fig. 7.

All in all, we expect ALDI to be useful in identifying ar-
eas for further (more detailed) mapping at multiple scales:
(1) globally, as a supplement to the existing archive of co-
seismic landslide inventories by examining historic events
for which a landslide inventory has never previously been
generated but where landslides are known or expected to
have been triggered; (2) at a site, to identify areas of inter-
est or to extend the study area beyond that which can be fea-
sibly mapped by hand; and (3) at the finest scale, to iden-
tify individual candidate landslides to be manually checked
and re-digitised if necessary. We also expect ALDI to be a
useful check on manual mapping, enabling increased homo-
geneity in areas where there is only patchy coverage of high-
resolution imagery and perhaps for identifying georeferenc-
ing errors.

We do not expect ALDI in its current form to be as use-
ful as manual mapping: (1) as a source of rapid landslide
information to inform emergency response (because ALDI
performs better with 2 years of post-event images); (2) for
size or shape distributions (because of censoring and amal-
gamation inherent in 30 m pixel-based output); (3) for anal-
ysis where landslide initiation zones must be differentiated
from runout; (4) in landscapes where vegetation is sparse
(because NDVI changes in landslide pixels are unlikely to
be detectable relative to natural variability); and (5) in land-
scapes where small landslides are widely distributed across
the landscape (because the pixel-averaged NDVI change will
be small if only a fraction of a pixel is disrupted).

5.5 Comparison to other automated detection methods

Automated detection of landslides typically relies on veg-
etation change detection and involves either generating in-
dices of surface disturbance from which landslides can be
manually identified (e.g. Scheip and Wegmann, 2021) or per-
forming a supervised classification (e.g. Barlow et al., 2003;
Behling et al., 2014, 2016; Prakash et al., 2020).

A recent example of automated surface disturbance detec-
tion, HazMapper (Scheip and Wegmann, 2021), uses sim-
ilar image data (Landsat) and the same platform (Google
Earth Engine) as ALDI but for a different purpose and using
different functions to combine and transform the imagery.
HazMapper is designed to generate a qualitative metric for
surface change rather than a landslide-specific mapping tool.
As a result, the approach does not mask snow-covered areas
in case these are of interest for a user’s particular application.
The approach is simpler than that of ALDI in that HazMap-
per calculates the NDVI difference only, rather than account-
ing for post-event NDVI, seasonal variability, and noise in
the NDVI signal for each pixel. It is currently only applied
to Landsat 7 onwards and only for individual sensors, rather
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than combining images from multiple Landsat sensors. This
limits the events that can be examined to those occurring
after 1999. However, results from HazMapper for the same
study periods examined here show a good qualitative agree-
ment with the ALDI results. The similarity in approach, us-
ing stacks of Landsat imagery before and after a suspected
trigger event, means that the two approaches will likely have
many of the same strengths (e.g. the accurate georeferenc-
ing of Landsat imagery) and limitations (e.g. the coarse res-
olution of Landsat imagery and long wait times required to
generate the post-event stack).

Alternative approaches to landslide detection that involve
supervised classification typically rely on machine learning
(e.g. Prakash et al., 2020) or clustering methods (e.g. Bar-
low et al., 2003; Behling et al., 2014; 2016). These more
complex approaches are compatible with the data and plat-
forms that we use here. Although we have taken a sim-
pler approach, the classification surfaces generated by ALDI
could be coupled with modern machine learning approaches
to improve ALDI’s landslide detection skill. However, our
results also highlight an important potential limitation to the
use of supervised learning for landslide detection in gen-
eral. Given the very severe disagreement between manu-
ally mapped landslide inventories, any supervised learning
method will have a very high risk of propagating gross errors
into the classifier unless the training inventory is precisely
co-located with the imagery used by the classifier. ALDI
could help improve existing supervised classification efforts
by providing additional well-referenced landslide inventories
or by correcting existing ones.

5.6 Application to future earthquakes

The increased frequency and quality of optical imagery sug-
gest that ALDI should perform well for future earthquakes.
In particular, Sentinel-2 imagery can generate NDVI at 10 m
spatial resolution (Table 1). The two Sentinel-2 satellites
were launched between June 2015 and March 2017, and
thus there is a limited stack of pre- or post-earthquake im-
ages available to date. The 2018 Hokkaido earthquake of-
fers the best trade-off to date between pre- and post-event
data. As a test of the wider applicability of ALDI to future
events, we ran ALDI using the global-parameter set identi-
fied above and evaluated its results against landslides mapped
from aerial imagery by Wang et al. (2019). The results are
extremely promising both at the scale of the entire epicentral
area (Fig. 9d and e), as well as of individual landslides, with
few false positives, a large area under the ROC curve (0.94),
and many landslides clearly delineated by a sharp break from
high to low ALDI values (Fig. 9f).
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6 Conclusion

Rapid derivation of landslide inventories after large trigger-
ing events remains a key research challenge. We have devel-
oped a parsimonious automatic landslide classifier, ALDI,
that uses pre- and post-event stacks of freely available
medium-resolution satellite imagery and relies on landslide-
induced changes to vegetation cover and thus to NDVI val-
ues. We test the classifier against multiple independent man-
ually mapped inventories from five recent earthquakes. Con-
sidering that manually mapped inventories are typically as-
sumed to be the ground truth against which automatic classi-
fiers are evaluated, we find that agreement between different
manual inventories is surprisingly low (8 %-30 % of land-
slide area in common). ALDI often identifies landslides in
one inventory missed in the other and even identifies some
candidate landslides not in either inventory but that have lo-
cation and morphometric characteristics that strongly sug-
gest they are true positives.

We further find that ALDI can identify landslide locations
with a level of skill that is comparable to manual mapping
on a pixel-by-pixel basis. ALDI calibrated to mapped land-
slides at a site outperforms manual mapping in 10 of 14 cases
(i.e. 71 %). The only cases where manual mapping performs
better are the two inventories for the 2010 Haiti earthquake,
where the stack of available Landsat images is extremely lim-
ited, and the cross comparison of inventories for the 2015
Gorkha earthquake, where strong agreement between inven-
tories is the result of mapping from very similar satellite im-
agery.

Even when using a global-parameter set, ALDI outper-
forms manual mapping in 8 of 14 cases (57 %) with 10 of
14 cases (71 %) performing either better than manual map-
ping or within the uncertainty in manual mapping perfor-
mance estimates. These results suggest that ALDI can be
applied with considerable confidence to map the areas af-
fected by co-seismic landslides in future earthquakes with-
out the need for additional calibration. Holdback tests do not
change either of these statistics and affect our chosen perfor-
mance metrics by only a few percent, suggesting that the set
of earthquakes that we have used is large enough to develop
a robust global-parameter set.

The area—frequency distributions for clusters of pixels that
are classified as landslides both from manual and automated
landslide classification are broadly similar, particularly in
their heavy right tail. However, the classifier-derived inven-
tories are fundamentally limited by the resolution of the im-
agery and their inability to disaggregate amalgamated land-
slides so that an object-based approach is required to recover
realistic area—frequency information.

ALDI is fast to run, uses free imagery with near-global
coverage, and generates landslide information that is of com-
parable quality to that of costly and time-consuming man-
ual mapping, depending on its intended use. Thus, even in
its current form it has the potential to significantly improve
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the coverage and quantity of landslide inventories. However,
its simplicity (performing only pixel-wise analysis) and par-
simony of inputs (using only optical imagery) suggest that
considerable further improvement should be possible.

Code availability. The Google Earth Engine code to run ALDI
is available on GitHub at https:/github.com/DavidMilledge/
ALDI (last access: 9 February 2022; Milledge, 2021) and
as a GEE App at https://dgmilledge.users.earthengine.app/view/
aldi-landslide-detection (ALDI-landslide-detection, 2022).
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