Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3939-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3939-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mass flows, turbidity currents and other hydrodynamic consequences of small and moderate earthquakes in the Sea of Marmara
Aix-Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Aix-en-Provence, France
M. Sinan Özeren
Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, Istanbul, Turkey
Nurettin Yakupoğlu
Geological Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
Ziyadin Çakir
Geological Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
Emmanuel de Saint-Léger
CNRS, DT INSU, Parc national d'instrumentation océanographique, Plouzané, France
Olivier Desprez de Gésincourt
CNRS, DT INSU, Parc national d'instrumentation océanographique, Plouzané, France
Anders Tengberg
Aanderaa Data Instruments AS, Bergen, Norway
Cristele Chevalier
Aix-Marseille Université, CNRS, IRD, MIO, Aix-en-Provence, France
Christos Papoutsellis
Aix-Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Aix-en-Provence, France
Nazmi Postacıoğlu
Physics Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
Uğur Dogan
Department of Geomatic Engineering, Yıldız Technical University,
Istanbul, Turkey
Hayrullah Karabulut
KOERI, Boğaziçi University, Istanbul, Turkey
Gülsen Uçarkuş
Geological Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
M. Namık Çağatay
Geological Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
Related authors
Nathan Rispal, Bruno Arfib, Philippe Audra, Pierre Henry, Benoît Viguier, Alexandre Zappelli, Ludovic Mocochain, Marianna Jagercikova, Christine Vallet-Coulomb, Hélène Miche, and Laurent Cadilhac
EGUsphere, https://doi.org/10.5194/egusphere-2025-5654, https://doi.org/10.5194/egusphere-2025-5654, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
In mountain karst regions, seasonal snow is a key component of groundwater recharge, making them highly vulnerable to climate change. Using a rainfall-snow-discharge model in the southern French Alps, we show that warming shifts high-flow periods and causes a strong summer flow decline. Rapid karst flow paths lead to quick spring responses, limiting storage above the base level and increasing sensitivity to future hydrological change.
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024, https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Short summary
Conservation of decorated caves is highly dependent on airflows and is correlated with rock formation permeability. We present the first conceptual model of flows around the Paleolithic decorated Cosquer coastal cave (southeastern France), quantify air permeability, and show how its variation affects water levels inside the cave. This study highlights that airflows may change in karst unsaturated zones in response to changes in the water cycle and may thus be affected by climate change.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Nathan Rispal, Bruno Arfib, Philippe Audra, Pierre Henry, Benoît Viguier, Alexandre Zappelli, Ludovic Mocochain, Marianna Jagercikova, Christine Vallet-Coulomb, Hélène Miche, and Laurent Cadilhac
EGUsphere, https://doi.org/10.5194/egusphere-2025-5654, https://doi.org/10.5194/egusphere-2025-5654, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
In mountain karst regions, seasonal snow is a key component of groundwater recharge, making them highly vulnerable to climate change. Using a rainfall-snow-discharge model in the southern French Alps, we show that warming shifts high-flow periods and causes a strong summer flow decline. Rapid karst flow paths lead to quick spring responses, limiting storage above the base level and increasing sensitivity to future hydrological change.
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024, https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Short summary
Conservation of decorated caves is highly dependent on airflows and is correlated with rock formation permeability. We present the first conceptual model of flows around the Paleolithic decorated Cosquer coastal cave (southeastern France), quantify air permeability, and show how its variation affects water levels inside the cave. This study highlights that airflows may change in karst unsaturated zones in response to changes in the water cycle and may thus be affected by climate change.
N. Tekin Ünlütürk and U. Doğan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W9-2024, 371–376, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-371-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-371-2024, 2024
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Cited articles
Adams, J.: Paleoseismicity of the Cascadia Subduction Zone: Evidence from
turbidites off the Oregon-Washington Margin, Tectonics, 9, 569–583, https://doi.org/10.1029/TC009i004p00569, 1990.
Alpar, B. and Yüce, H.: Sea-level variations and their interactions
between the Black Sea and the Aegean Sea, Estuar. Coast. Shelf Sci., 46, 609–619, 1998.
Arai, K., Naruse, H., Miura, R., Kawamura, K., Hino, R., Ito, Y., Inazu, D.,
Yokokawa, M., Izumi, N., Murayama, M., and Kasaya, T.: Tsunami-generated
turbidity current of the 2011 Tohoku-Oki earthquake, Geology, 41, 1195–1198, https://doi.org/10.1130/G34777.1, 2013.
Armijo, R. and Malavieille, J.: MARMARASCARPS cruise, RV L'Atalante, Flotte océanographique française opérée par l'Ifremer [data set], https://doi.org/10.17600/2010140, 2002.
Armijo, R., Meyer, B., Navarro, S., King, G., and Barka, A.: Asymmetric slip
partitioning in the Sea of Marmara pull-apart: a clue to propagation processes of the North Anatolian Fault?, Terra Nova, 14, 80–86,
https://doi.org/10.1046/j.1365-3121.2002.00397.x, 2002.
Atwater, B. F., Carson, B., Griggs, G. B., Johnson, P. P., and Salmi, M. S.:
Rethinking turbidite paleoseismology along the Cascadia subduction zone,
Geology, 42, 827–830, https://doi.org/10.1130/G35902.1, 2014.
Azpiroz-Zabala, M., Cartigny, M. J. B., Talling, P. J., Parsons, D. R., Sumner, E. J., Clare, M. A., Simmons, S. M., Cooper, C., and Pope, E. L.:
Newly recognized turbidity current structure can explain prolonged flushing
of submarine canyons, Sci. Adv., 3, e1700200, https://doi.org/10.1126/sciadv.1700200, 2017.
Beck, C., Mercier de Lépinay, B., Schneider, J. L., Cremer, M., Çagatay, N., Wendenbaum, E., Boutareaud, S., Ménot, G., Schmidt, S.,
Weber, O., Eris, K., Armijo, R., Meyer, B., Pondard, N., Gutscher, M. A.,
Turon, J. L., Labeyrie, L., Cortijo, E., Gallet, Y., Bouquerel, H., Gorur, N., Gervais, A., Castera, M. H., Londeix, L., de Rességuier, A., and
Jaouen, A.: Late Quaternary co-seismic sedimentation in the Sea of Marmara's
deep basins, Sediment. Geol., 199, 65–89, https://doi.org/10.1016/j.sedgeo.2005.12.031, 2007.
Beşiktepe, Ş. T., Sur, H. İ., Özsoy, E., Latif, M. A., Oguz,
T., and Ünlüata, Ü.: The circulation and hydrography of the Marmara Sea, Prog. Oceanogr., 34, 285–334, https://doi.org/10.1016/0079-6611(94)90018-3, 1994.
Bradley, B. A., Razafindrakoto, H. N. T., and Polak, V.: Ground-Motion
Observations from the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, Earthquake and Insights from Broadband Simulations, Seismol. Res. Lett., 88, 740–756, https://doi.org/10.1785/0220160225, 2017.
Brizuela, N., Filonov, A., and Alford, M. H.: Internal tsunami waves transport sediment released by underwater landslides, Sci. Rep., 9, 10775, https://doi.org/10.1038/s41598-019-47080-0, 2019.
Çagatay, M. N., Erel, L., Bellucci, L. G., Polonia, A., Gasperini, L.,
Eriş, K. K., Sancar, Ü., Biltekin, D., Uçarkuş, G., Ülgen, U. B., and Damci, E.: Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey, Sediment. Geol., 282, 347–359,
https://doi.org/10.1016/j.sedgeo.2012.10.001, 2012.
Çagatay, N. M., Ucarkus, G., Eris, K. K., Henry, P., Gasperini, L., and
Polonia, A.: Submarine canyons of the Sea of Marmara, in: Submarine Canyon Dynamics in the Mediterranean and Tributary Seas, CIESM Workshop Monograph no. 47, edited by: Briand, F., CIESM Publisher, Monaco, 123–135, 2015.
Carter, L., Milliman, J. D., Talling, P. J., Gavey, R., and Wynn, R. B.:
Near-synchronous and delayed initiation of long run-out submarine sediment
flows from a record-breaking river flood, offshore Taiwan, Geophys. Res. Lett., 39, 6–10, https://doi.org/10.1029/2012GL051172, 2012.
Cattaneo, A., Babonneau, N., Ratzov, G., Dan-Unterseh, G., Yelles, K., Bracane, R., Mercier De Lapinay, B., Boudiaf, A., and Daverchare, J.: Searching for the seafloor signature of the 21 May 2003 Boumerdas earthquake
offshore central Algeria, Nat. Hazards Earth Syst. Sci., 12, 2159–2172, https://doi.org/10.5194/nhess-12-2159-2012, 2012.
Dan, G., Sultan, N., Savoye, B., Deverchere, J., and Yelles, K.: Quantifying
the role of sandy-silty sediments in generating slope failures during
earthquakes: Example from the Algerian margin, Int. J. Earth Sci., 98, 769–789, https://doi.org/10.1007/s00531-008-0373-5, 2009.
Drab, L., Hubert Ferrari, A., Schmidt, S., and Martinez, P.: The earthquake
sedimentary record in the western part of the Sea of Marmara, Turkey, Nat. Hazards Earth Syst. Sci., 12, 1235–1254, https://doi.org/10.5194/nhess-12-1235-2012, 2012.
Drab, L., Hubert-Ferrari, A., Schmidt, S., Martinez, P., Carlut, J., and El Ouahabi, M.: Submarine Earthquake History of the Çınarcık Segment of the North Anatolian Fault in the Marmara Sea, Turkey, Bull. Seismol. Soc. Am., 105, 622–645, https://doi.org/10.1785/0120130083, 2015.
Eriş, K. K., Çagatay, N., Beck, C., Mercier de Lepinay, B., and
Corina, C.: Late-Pleistocene to Holocene sedimentary fills of the
Çinarcik Basin of the Sea of Marmara, Sediment. Geol., 281, 151–165, https://doi.org/10.1016/j.sedgeo.2012.09.001, 2012.
Garfield, N., Rago, T. A., Schnebele, K. J., and Collins, C. A.: Evidence of
a turbidity current in Monterey Submarine Canyon associated with the 1989 Loma Prieta earthquake, Cont. Shelf Res., 14, 673–686,
https://doi.org/10.1016/0278-4343(94)90112-0, 1994.
Gavey, R., Carter, L., Liu, J. T., Talling, P. J., Hsu, R., Pope, E., and
Evans, G.: Frequent sediment density flows during 2006 to 2015, triggered by
competing seismic and weather events: Observations from subsea cable breaks
off southern Taiwan, Mar. Geol., 384, 147–158, https://doi.org/10.1016/j.margeo.2016.06.001, 2017.
Goldfinger, C., Nelson, C. H., and Johnson, J. E.: Holocene earthquake records from the cascadia subduction zone and northern san andreas fault
based on precise dating of offshore turbidites, Annu. Rev. Earth Planet. Sci., 31, 555–577, https://doi.org/10.1146/annurev.earth.31.100901.141246, 2003.
Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J.,
Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A. T., Grácia, E., Dunhill, G., Enkin, R. J., Dallimore, A., and Vallier, T.: Earthquake Hazards of the Pacific Northwest Coastal and Marine Regions Turbidite Event History, Methods and Implications for Holocene Paleoseismicity of the Cascadia
Subduction Zone Professional Paper 1661, USGS Professional Paper 1661-F, USGS, 170 pp., https://pubs.usgs.gov/pp/pp1661f/pp1661f.pdf (last access: 30 November 2022), 2012.
Grall, C., Henry, P., Tezcan, D., Mercier de Lepinay, B., Becel, A., Geli, L., Rudkiewicz, J.-L., Zitter, T., and Harmegnies, F.: Heat flow in the Sea of Marmara Central Basin: Possible implications for the tectonic evolution of the North Anatolian fault, Geology, 40, 3–6, https://doi.org/10.1130/G32192.1, 2012.
Guazzelli, E., Morris, J. F., and Pic, S.: A Physical Introduction to
Suspension Dynamics, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511894671, 2011.
Guerrero, M., Szupiany, R. N., and Amsler, M.: Comparison of acoustic backscattering techniques for suspended sediments investigation, Flow Meas. Instrum., 22, 392–401, https://doi.org/10.1016/j.flowmeasinst.2011.06.003, 2011.
Guerrero, M., Rüther, N., and Szupiany, R. N.: Laboratory validation of
acoustic Doppler current profiler (ADCP) techniques for suspended sediment
investigations, Flow Meas. Instrum., 23, 40–48,
https://doi.org/10.1016/j.flowmeasinst.2011.10.003, 2012.
Gutiérrez-Pastor, J., Nelson, C. H., Goldfinger, C., and Escutia, C.:
Sedimentology of seismo-turbidites off the Cascadia and northern California
active tectonic continental margins, northwest Pacific Ocean, Mar. Geol., 336, 99–119, https://doi.org/10.1016/j.margeo.2012.11.010, 2013.
Gwyn Lintern, D., Hill, P. R., and Stacey, C.: Powerful unconfined turbidity
current captured by cabled observatory on the fraser river delta slope,
British Columbia, Canada, Sedimentology, 63, 1041–1064, https://doi.org/10.1111/sed.12262, 2016.
Hage, S., Cartigny, M. J. B., Sumner, E. J., Clare, M. A., Hughes Clarke, J.
E., Talling, P. J., Lintern, D. G., Simmons, S. M., Silva Jacinto, R.,
Vellinga, A. J., Allin, J. R., Azpiroz-Zabala, M., Gales, J. A., Hizzett, J.
L., Hunt, J. E., Mozzato, A., Parsons, D. R., Pope, E. L., Stacey, C. D.,
Symons, W. O., Vardy, M. E., and Watts, C.: Direct Monitoring Reveals Initiation of Turbidity Currents From Extremely Dilute River Plumes, Geophys. Res. Lett., 46, 11310–11320, https://doi.org/10.1029/2019GL084526, 2019.
Hébert, H., Schindelé, F., Altinok, Y., Alpar, B., and Gazioglu, C.:
Tsunami hazard in the Marmara Sea (Turkey): A numerical approach to discuss
active faulting and impact on the Istanbul coastal areas, Mar. Geol., 215, 23–43, https://doi.org/10.1016/j.margeo.2004.11.006, 2005.
Heerema, C. J., Cartigny, M. J. B., Jacinto, R. S., Simmons, S. M., Apprioual, R., and Talling, P. J.: How distinctive are flood-triggered
turbidity currents?, J. Sediment. Res., 92, 1–11, https://doi.org/10.2110/jsr.2020.168, 2022.
Heezen, B. C., Ericson, D. B., and Ewing, M.: Further evidence for a turbidity current following the 1929 Grand banks earthquake, Deep-Sea Res., 1, 193–202, https://doi.org/10.1016/0146-6313(54)90001-5, 1954.
Henry, P., Şengör, A. M. C., and Çağatay, M. N.: MARNAUT
cruise, RV L'Atalante, Flotte océanographique française opérée par l'Ifremer [data set], https://doi.org/10.17600/7010070, 2007.
Henry, P., Özeren, M. S., Desprez De Gesincourt, O., de Saint-Leger, E.,
Libes, M., Çakir, Z., Yakupoğlu, N., and Géli, L.: EMSO/MAREGAMI
Marmara bottom pressure and current records, SEANOE [data set], https://doi.org/10.17882/78928, 2021.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on single levels from 1959 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Howarth, J. D., Orpin, A. R., Kaneko, Y., Strachan, L. J., Nodder, S. D.,
Mountjoy, J. J., Barnes, P. M., Bostock, H. C., Holden, C., Jones, K., and
Cağatay, M. N.: Calibrating the marine turbidite palaeoseismometer using
the 2016 Kaikōura earthquake, Nat. Geosci., 14, 161–167, https://doi.org/10.1038/s41561-021-00692-6, 2021.
Hsu, S. K., Kuo, J., Lo, C. L., Tsai, C. H., Doo, W. Bin, Ku, C. Y., and
Sibuet, J. C.: Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan, Terrest. Atmos. Ocean. Sci., 19, 767–772, https://doi.org/10.3319/TAO.2008.19.6.767(PT), 2008.
Hughes Clarke, J. E.: First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics, Nat. Commun., 7, 11896, https://doi.org/10.1038/ncomms11896, 2016.
Ikehara, K., Kanamatsu, T., Nagahashi, Y., Strasser, M., Fink, H., Usami, K., Irino, T., and Wefer, G.: Documenting large earthquakes similar to the
2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over
the past 1500 years, Earth Planet. Sc. Lett., 445, 48–56,
https://doi.org/10.1016/j.epsl.2016.04.009, 2016.
Johnson, H. P., Gomberg, J. S., Hautala, S. L., and Salmi, M. S.: Sediment
gravity flows triggered by remotely generated earthquake waves, J. Geophys. Res.-Solid, 122, 4584–4600, https://doi.org/10.1002/2016JB013689, 2017.
Karabulut, H., Güvercin, S. E., Eskikoÿ, F., Konca, A. Ö., and
Ergintav, S.: The moderate size 2019 September Mw 5.8 Silivri earthquake unveils the complexity of the Main Marmara Fault shear zone, Geophys. J. Int., 224, 377–388, https://doi.org/10.1093/gji/ggaa469, 2021.
Kasaya, T., Mitsuzawa, K., Goto, T., Iwase, R., Sayanagi, K., Araki, E.,
Asakawa, K., Mikada, H., Watanabe, T., Takahashi, I., and Nagao, T.: Trial
of Multidisciplinary Observation at an Expandable Sub-Marine Cabled Station
“Off-Hatsushima Island Observatory” in Sagami Bay, Japan, Sensors, 9,
9241–9254, https://doi.org/10.3390/s91109241, 2009.
Khripounoff, A., Crassous, P., Lo Bue, N., Dennielou, B., and Silva Jacinto,
R.: Different types of sediment gravity flows detected in the Var submarine
canyon (northwestern Mediterranean Sea), Prog. Oceanogr., 106, 138–153, https://doi.org/10.1016/j.pocean.2012.09.001, 2012.
Le Pichon, X., Şengör, A. M. C., Demirbağ, E., Rangin, C.,
İmren, C., Armijo, R., Görür, N., Çağatay, N., Mercier
de Lepinay, B., Meyer, B., Saatçılar, R., and Tok, B.: The active Main
Marmara Fault, Earth Planet. Sc. Lett., 192, 595–616, https://doi.org/10.1016/S0012-821X(01)00449-6, 2001.
Le Pichon, X., Chamot-Roooke, N., Rangin, C., and Sengör, A. M. C.: The
North Anatolian fault in the Sea of Marmara, J. Geophys. Res., 108, 2179, https://doi.org/10.1029/2002JB001862, 2003.
Liu, J. T., Wang, Y.-H., Yang, R. J., Hsu, R. T., Kao, S.-J., Lin, H.-L.,
and Kuo, F. H.: Cyclone-induced hyperpycnal turbidity currents in a submarine canyon, J. Geophys. Res.-Oceans, 117, C04033, https://doi.org/10.1029/2011JC007630, 2012.
McDougall T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, 28 pp., ISBN 978-0-646-55621-5, 2011.
McDougall, T. J., Feistel, R., and Pawlowicz, R.: Thermodynamics of
Seawater, in: International Geophysics, Vol. 103, 2nd Edn., Elsevier Ltd., 141–158, https://doi.org/10.1016/B978-0-12-391851-2.00006-4, 2013.
McHugh, C. M., Seeber, L., Braudy, N., Cormier, M. H., Davis, M. B., Diebold, J. B., Dieudonne, N., Douilly, R., Gulick, S. P. S., Hornbach, M. J., Johnson, H. E., Mishkin, K. R., Sorlien, C. C., Steckler, M. S., Symithe, S. J., and Templeton, J.: Offshore sedimentary effects of the 12 January 2010 Haiti earthquake, Geology, 39 723–726, https://doi.org/10.1130/G31815.1, 2011.
McHugh, C. M. G., Seeber, L., Cormier, M. H., Dutton, J., Cagatay, N., Polonia, A., Ryan, W. B. F., and Gorur, N.: Submarine earthquake geology
along the North Anatolia Fault in the Marmara Sea, Turkey: A model for
transform basin sedimentation, Earth Planet. Sc. Lett., 248, 661–684, https://doi.org/10.1016/j.epsl.2006.05.038, 2006.
McHugh, C. M. G., Braudy, N., Çağatay, M. N., Sorlien, C., Cormier,
M.-H., Seeber, L., and Henry, P.: Seafloor fault ruptures along the North
Anatolia Fault in the Marmara Sea, Turkey: Link with the adjacent basin
turbidite record, Mar. Geol., 353, 65–83, https://doi.org/10.1016/j.margeo.2014.03.005, 2014.
Mikada, H., Mitsuzawa, K., Matsumoto, H., Watanabe, T., Morita, S., Otsuka,
R., Sugioka, H., Baba, T., Araki, E., and Suyehiro, K.: New discoveries in
dynamics of an M8 earthquake-phenomena and their implications from the 2003 Tokachi-oki earthquake using a long term monitoring cabled observatory,
Tectonophysics, 426, 95–105, https://doi.org/10.1016/j.tecto.2006.02.021, 2006.
Mountjoy, J. J., Howarth, J. D., Orpin, A. R., Barnes, P. M., Bowden, D. A.,
Rowden, A. A., Schimel, A. C. G., Holden, C., Horgan, H. J., Nodder, S. D.,
Patton, J. R., Lamarche, G., Gerstenberger, M., Micallef, A., Pallentin, A.,
and Kane, T.: Earthquakes drive large-scale submarine canyon development and
sediment supply to deep-ocean basins, Sci. Adv., 4, 1–9, https://doi.org/10.1126/sciadv.aar3748, 2018.
Mulder, T. and Cochonnat, P.: Classification of Offshore Mass Movements, J. Sediment. Res., 66, 43–57, https://doi.org/10.1306/D42682AC-2B26-11D7-8648000102C1865D, 1996.
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J.-C., and Savoye,
B.: Marine hyperpycnal flows: initiation, behavior and related deposits. A
review, Mar. Petrol. Geol., 20, 861–882, https://doi.org/10.1016/j.marpetgeo.2003.01.003, 2003.
Nakajima, T. and Kanai, Y.: Sedimentary features of seismoturbidites triggered by the 1983 and older historical earthquakes in the eastern margin
of the Japan Sea, Sediment. Geol., 135, 1–19, https://doi.org/10.1016/S0037-0738(00)00059-2, 2000.
Normandeau, A., Bourgault, D., Neumeier, U., Lajeunesse, P., St-Onge, G.,
Gostiaux, L., and Chavanne, C.: Storm-induced turbidity currents on a
sediment-starved shelf: Insight from direct monitoring and repeat seabed
mapping of upslope migrating bedforms, Sedimentology, 67, 1045–1068,
https://doi.org/10.1111/sed.12673, 2020.
Okal, E. A. and Synolakis, C. E.: Comment on “Origin of the 17 July 1998
Papua New Guinea Tsunami: Earthquake or Landslide?” by E. L. Geist, Seismol. Res. Lett., 72, 362–366, https://doi.org/10.1785/gssrl.72.3.362, 2001.
Özeren, M. S., Çagatay, M. N., Postacioglu, N., Şengör, a.
M. C., Görür, N., and Eriş, K.: Mathematical modelling of a
potential tsunami associated with a late glacial submarine landslide in the
Sea of Marmara, Geo-Mar. Lett., 30, 523–539, https://doi.org/10.1007/s00367-010-0191-1, 2010.
Palanques, A., Guillén, J., Puig, P., and Durrieu de Madron, X.:
Storm-driven shelf-to-canyon suspended sediment transport at the southwestern Gulf of Lions, Cont. Shelf Res., 28, 1947–1956, https://doi.org/10.1016/j.csr.2008.03.020, 2008.
Parker, G.: Conditions for the ignition of catastrophically erosive turbidity currents, Mar. Geol., 46, 307–327, https://doi.org/10.1016/0025-3227(82)90086-X, 1982.
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D.
W., Gwiazda, R., Lundsten, E. M., Anderson, K., Barry, J. P., Chaffey, M.,
O'Reilly, T., Rosenberger, K. J., Gales, J. A., Kieft, B., McGann, M., Simmons, S. M., McCann, M., Sumner, E. J., Clare, M. A., and Cartigny, M.
J.: Powerful turbidity currents driven by dense basal layers, Nat. Commun.,
9, 1–9, https://doi.org/10.1038/s41467-018-06254-6, 2018.
Piper, D. J. W. and Normark, W. R.: Processes That Initiate Turbidity Currents and Their Influence on Turbidites: A Marine Geology Perspective, J. Sediment. Res., 79, 347–362, https://doi.org/10.2110/jsr.2009.046, 2009.
Piper, D. J. W., Cochonat, P., and Morrison, M. L.: The sequence of events
around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar, Sedimentology, 46, 79–97, https://doi.org/10.1046/j.1365-3091.1999.00204.x, 1999.
Polonia, A., Vaiani, S. C., and De Lange, G. J.: Did the A.D. 365 Crete
earthquake/tsunami trigger synchronous giant turbidity currents in the
Mediterranean Sea?, Geology, 44, 191–194, https://doi.org/10.1130/G37486.1, 2016.
Polonia, A., Nelson, C. H., Romano, S., Vaiani, S. C., Colizza, E., Gasparotto, G., and Gasperini, L.: A depositional model for seismo-turbidites in confined basins based on Ionian Sea deposits, Mar. Geol., 384, 177–198, https://doi.org/10.1016/j.margeo.2016.05.010, 2017.
Pope, E. L., Talling, P. J., and Carter, L.: Which earthquakes trigger damaging submarine mass movements: Insights from a global record of submarine cable breaks?, Mar. Geol., 384, 131–146, https://doi.org/10.1016/j.margeo.2016.01.009, 2017.
Puig, P., Ogston, A. S., Mullenbach, B. L., Nittrouer, C. A., Parsons, J.
D., and Sternberg, R. W.: Storm-induced sediment gravity flows at the head
of the Eel submarine canyon, northern California margin, J. Geophys. Res.-Oceans, 109, 1–10, https://doi.org/10.1029/2003JC001918, 2004.
Şengör, A. M. C., Grall, C., İmren, C., Le Pichon, X.,
Görür, N., Henry, P., Karabulut, H., and Siyako, M.: The geometry of
the North Anatolian transform fault in the Sea of Marmara and its temporal
evolution: implications for the development of intracontinental transform
faults, Can. J. Earth Sci., 51, 222–242, https://doi.org/10.1139/cjes-2013-0160, 2014.
Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A.,
Silver, E. A., Sweet, S., and Tappin, D. R.: The slump origin of the 1998 Papua New Guinea Tsunami, P. Roy. Soc. Lond. A, 458, 763–789,
https://doi.org/10.1098/rspa.2001.0915, 2002.
Talling, P. J.: Fidelity of turbidites as earthquake records, Nat. Geosci., 14, 113–116, https://doi.org/10.1038/s41561-021-00707-2, 2021.
Talling, P. J., Masson, D. G., Sumner, E. J., and Malgesini, G.: Subaqueous
sediment density flows: Depositional processes and deposit types, Sedimentology, 59, 1937–2003, https://doi.org/10.1111/j.1365-3091.2012.01353.x, 2012.
Xu, J. P., Noble, M. A., and Rosenfeld, L. K.: In-situ measurements of
velocity structure within turbidity currents, Geophys. Res. Lett., 31, L09311, https://doi.org/10.1029/2004GL019718, 2004.
Xu, J. P., Swarzenski, P. W., Noble, M., and Li, A.-C.: Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California, Mar. Geol., 269, 74–88, https://doi.org/10.1016/j.margeo.2009.12.007, 2010.
Yakupoğlu, N., Uçarkuş, G., Kadir Eriş, K., Henry, P., and
Namık Çağatay, M.: Sedimentological and geochemical evidence for
seismoturbidite generation in the Kumburgaz Basin, Sea of Marmara: Implications for earthquake recurrence along the Central High Segment of the
North Anatolian Fault, Sediment. Geol., 380, 31–44, https://doi.org/10.1016/j.sedgeo.2018.11.002, 2019.
Zitter, T. A. C., Grall, C., Henry, P., Özeren, M. S., Çağatay,
M. N., Şengör, A. M. C., Gasperini, L., de Lépinay, B. M., and
Géli, L.: Distribution, morphology and triggers of submarine mass
wasting in the Sea of Marmara, Mar. Geol., 329–331, 58–74, https://doi.org/10.1016/j.margeo.2012.09.002, 2012.
Short summary
Seafloor instruments at the bottom of the Sea of Marmara recorded disturbances caused by earthquakes, addressing the minimum magnitude that may be recorded in the sediment. A magnitude 4.7 earthquake caused turbidity but little current. A magnitude 5.8 earthquake caused a mudflow and strong currents that spread sediment on the seafloor over several kilometers. However, most known earthquake deposits in the Sea of Marmara spread over larger zones and should correspond to larger earthquakes.
Seafloor instruments at the bottom of the Sea of Marmara recorded disturbances caused by...
Altmetrics
Final-revised paper
Preprint