Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landslides triggered by the 2015 Mw 6.0 Sabah (Malaysia) earthquake: inventory and ESI-07 intensity assignment
Maria Francesca Ferrario
CORRESPONDING AUTHOR
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
Related authors
Franz A. Livio, Anna M. Blumetti, Valerio Comerci, Francesca Ferrario, Gilberto Binda, Marco Caciagli, Michela Colombo, Pio Di Manna, Fernando Ferri, Fiorenzo Fumanti, Roberto Gambillara, Maurizio Guerra, Luca Guerrieri, Paolo Lorenzoni, Valerio Materni, Francesco Miscione, Rosa Nappi, Rosella Nave, Kathleen Nicoll, Alba Peiro, Marco Pizza, Roberto Pompili, Luca M. Puzzilli, Mauro Roma, Aurora Rossi, Valerio Ruscito, Vincenzo Sapia, Argelia Silva Fragoso, Emanuele Scaramuzzo, Frank Thomas, Giorgio Tringali, Stefano Urbini, Andrea Zerboni, and Alessandro M. Michetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2531, https://doi.org/10.5194/egusphere-2025-2531, 2025
Short summary
Short summary
The Rieti Basin in Central Italy, though surrounded by active faults, has been largely overlooked in earthquake studies. To better understand its seismic past, we dug 17 trenches and discovered evidence of 15 ancient earthquakes over the past ca. 20,000 years. The findings show that earthquakes in this area tend to cluster in time, likely due to stress shifting between nearby faults, and can reach a magnitude of 6.5.
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264, https://doi.org/10.5194/egusphere-2024-3264, 2024
Short summary
Short summary
In 2018, 6 moderate-large earthquakes occurred in Lombok, Indonesia over a 3-week period, triggering landslides across the island. Their locations were previously mapped with optical satellite images, but information on which earthquake triggered which landslide was limited. Here we use Sentinel-1 satellite images to determine when during the earthquake sequence many of the landslides failed and so build a more complete picture of how landslide activity evolved through time.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Franz A. Livio, Anna M. Blumetti, Valerio Comerci, Francesca Ferrario, Gilberto Binda, Marco Caciagli, Michela Colombo, Pio Di Manna, Fernando Ferri, Fiorenzo Fumanti, Roberto Gambillara, Maurizio Guerra, Luca Guerrieri, Paolo Lorenzoni, Valerio Materni, Francesco Miscione, Rosa Nappi, Rosella Nave, Kathleen Nicoll, Alba Peiro, Marco Pizza, Roberto Pompili, Luca M. Puzzilli, Mauro Roma, Aurora Rossi, Valerio Ruscito, Vincenzo Sapia, Argelia Silva Fragoso, Emanuele Scaramuzzo, Frank Thomas, Giorgio Tringali, Stefano Urbini, Andrea Zerboni, and Alessandro M. Michetti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2531, https://doi.org/10.5194/egusphere-2025-2531, 2025
Short summary
Short summary
The Rieti Basin in Central Italy, though surrounded by active faults, has been largely overlooked in earthquake studies. To better understand its seismic past, we dug 17 trenches and discovered evidence of 15 ancient earthquakes over the past ca. 20,000 years. The findings show that earthquakes in this area tend to cluster in time, likely due to stress shifting between nearby faults, and can reach a magnitude of 6.5.
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264, https://doi.org/10.5194/egusphere-2024-3264, 2024
Short summary
Short summary
In 2018, 6 moderate-large earthquakes occurred in Lombok, Indonesia over a 3-week period, triggering landslides across the island. Their locations were previously mapped with optical satellite images, but information on which earthquake triggered which landslide was limited. Here we use Sentinel-1 satellite images to determine when during the earthquake sequence many of the landslides failed and so build a more complete picture of how landslide activity evolved through time.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Cited articles
Ahlenius, H.: World tectonic plates and boundaries, GitHub [data set], https://github.com/fraxen/tectonicplates (last access: July 2022), 2014.
Avşar, U., Jónsson, S., Avşar, Ö., and Schmidt, S.:
Earthquake-induced soft-sediment deformations and seismically amplified
erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey): Earthquake Records in Lacustrine Varves, J. Geophys. Res.-Solid, 121, 4767–4779, https://doi.org/10.1002/2016JB012820, 2016.
Benjamin, J., Rosser, N. J., and Brain, M. J.: Rockfall detection and
volumetric characterisation using LiDAR, in: Landslides and Engineered Slopes, Experience, Theory and Practice, CRC Press, 389–395, ISBN 978-1-138-02988-0, 2018.
Bessette-Kirton, E. K., Cerovski-Darriau, C., Schulz, W. H., Coe, J. A.,
Kean, J. W., Godt, J. W., Thomas, M. A., and Hughes, K. S.: Landslides
triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico,
GSA Today, 29, 4–10, https://doi.org/10.1130/GSATG383A.1, 2019.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: Earthquake-and-landslide events are associated with more fatalities than
earthquakes alone, Nat. Hazards, 72, 895–914, https://doi.org/10.1007/s11069-014-1044-4, 2014.
Burrows, K., Walters, R. J., Milledge, D., and Densmore, A. L.: A systematic
exploration of satellite radar coherence methods for rapid landslide detection, Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020, 2020.
Caputo, T., Marino, E., Matano, F., Somma, R., Troise, C., and De Natale, G.: Terrestrial Laser Scanning (TLS) data for the analysis of coastal tuff cliff retreat: application to Coroglio cliff, Naples, Italy, Ann. Geophys., 2018, 61, https://doi.org/10.4401/ag-7494, 2018.
Cecić, I. and Musson, R.: Macroseismic surveys in theory and practice, Nat. Hazards, 31, 39–61, 2004.
Chang, M., Zhou, Y., Zhou, C., and Hales, T. C.: Coseismic landslides induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: spatial distribution, key factors weight, and susceptibility regionalization, Landslides, 18, 755–772, https://doi.org/10.1007/s10346-020-01522-3, 2021.
Cottam, M., Hall, R., Sperber, C., and Armstrong, R.: Pulsed emplacement of
the Mount Kinabalu granite, northern Borneo, J. Geol. Soc., 167, 49–60, https://doi.org/10.1144/0016-76492009-028, 2010.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in
science communication, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Earthquake Hazard Program: Search Earthquake Catalog,
https://earthquake.usgs.gov/earthquakes/search/, last access: July 2022.
Fan, X., Scaringi, G., Xu, Q., Zhan, W., Dai, L., Li, Y., Pei, X., Yang, Q.,
and Huang, R.: Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification, Landslides, 15, 967–983, doi10.1007/s10346-018-0960-x, 2018.
Fan, X., Scaringi, G., Korup, O., West, A. J., Westen, C. J., Tanyas, H.,
Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans,
S. G., Xu, C., Li, G., Pei, X., Xu, Q., and Huang, R.: Earthquake-Induced
Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts, Rev. Geophys., 57, 421–503, https://doi.org/10.1029/2018RG000626, 2019.
Ferrario, M. F.: Landslides triggered by multiple earthquakes: insights from
the 2018 Lombok (Indonesia) events, Nat. Hazards, 98, 575–592, https://doi.org/10.1007/s11069-019-03718-w, 2019.
Ferrario, M. F.: Inventory of landslides triggered by the 2015 Mw 6.0 Sabah earthquake (Malaysia), Zenodo [data set], https://doi.org/10.5281/zenodo.6107187, 2022.
Ferrario, M. F., Livio, F., and Michetti, A. M.: Fifteen years of Environmental Seismic Intensity (ESI-07) scale: Dataset compilation and
insights from empirical regressions, Quatern. Int., 625, 107–199,
https://doi.org/10.1016/j.quaint.2022.04.011, 2021.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004
to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Ghaedi Vanani, A. A., Shoaei, G., and Zare, M.: Statistical analyses of
landslide size and spatial distribution triggered by 1990 Rudbar-Manjil (Mw 7.3) earthquake, northern Iran: revised inventory, and controlling factors, Bull. Eng. Geol. Environ., 80, 3381–3403, https://doi.org/10.1007/s10064-021-02106-8, 2021.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.:
Landslide volumes and landslide mobilization rates in Umbria, central Italy,
Earth Planet. Sc. Lett., 279, 222–229, https://doi.org/10.1016/j.epsl.2009.01.005, 2009.
Hall, R.: Contraction and extension in northern Borneo driven by subduction
rollback, J. Asian Earth Sci., 76, 399–411, https://doi.org/10.1016/j.jseaes.2013.04.010, 2013.
Hancox, G. T., Perrin, N. D., and Dellow, G. D.: Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand, Bull. NZ Soc. Earthq. Eng., 35, 59–95, https://doi.org/10.5459/bnzsee.35.2.59-95, 2002.
Handwerger, A. L., Jones, S. Y., Huang, M.-H., Amatya, P., Kerner, H. R., and Kirschbaum, D. B.: Rapid landslide identification using synthetic aperture radar amplitude change detection on the Google Earth Engine, Nat. Hazards Earth Syst. Sci. Discuss. preprint], https://doi.org/10.5194/nhess-2020-315, 2020.
Harp, E. L., Keefer, D. K., Sato, H. P., and Yagi, H.: Landslide inventories: The essential part of seismic landslide hazard analyses, Eng. Geol., 122, 9–21, https://doi.org/10.1016/j.enggeo.2010.06.013, 2011.
Harrison, C. G. and Williams, P. R.: A systems approach to natural disaster
resilience, Simul. Model. Pract. Theory, 65, 11–31, https://doi.org/10.1016/j.simpat.2016.02.008, 2016.
Hutchison, C. S., Bergman, S. C., Swauger, D. A., and Graves, J. E.: A
Miocene collisional belt in north Borneo: uplift mechanism and isostatic
adjustment quantified by thermochronology, J. Geol. Soc., 157, 783–793, https://doi.org/10.1144/jgs.157.4.783, 2000.
JAXA – Japan Aerospace Exploration Agency: ALOS Global Digital Surface Model “ALOS World 3D – 30 m (AW3D30)”, March 2021 release, v 3.2, JAXA [data set], https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm, last access: October 2021.
Keefer, D. K.: Landslides caused by earthquakes, GSA Bulletin,
GeoScienceWorld, https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/95/4/406/202914
(last access: January 2022), 1984.
Keefer, D. K.: Investigating landslides caused by earthquakes – a historical
review, Surv. Geophys., 23, 473–510, https://doi.org/10.1023/A:1021274710840, 2002.
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247–251, https://doi.org/10.1038/ngeo776, 2010.
Lehan, N. F. A. M., Razak, K. A., and Kamarudin, K. H.: Business continuity
and resiliency planning in disaster prone area of Sabah, Malaysia, Disast.
Adv., 13, 25–32, 2020.
Lombardo, L., Tanyas, H., Huser, R., Guzzetti, F., and Castro-Camilo, D.:
Landslide size matters: A new data-driven, spatial prototype, Eng. Geol., 293, 106288, https://doi.org/10.1016/j.enggeo.2021.106288, 2021.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004a.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslides, earthquakes, and erosion, Earth Planet. Sc. Lett., 229, 45–59, https://doi.org/10.1016/j.epsl.2004.10.018, 2004b.
Marano, K. D., Wald, D. J., and Allen, T. I.: Global earthquake casualties
due to secondary effects: a quantitative analysis for improving rapid loss
analyses, Nat. Hazards, 52, 319–328,
doi10.1007/s11069-009-9372-5, 2010.
doi10.1007/s11069-009-9372-5, 2010.
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, 2015.
Massey, C. I., Townsend, D., Jones, K., Lukovic, B., Rhoades, D., Morgenstern, R., Rosser, B., Ries, W., Howarth, J., Hamling, I., Petley, D.,
Clark, M., Wartman, J., Litchfield, N., and Olsen, M.: Volume Characteristics of Landslides Triggered by the MW 7.8 2016 Kaikōura Earthquake, New Zealand, Derived From Digital Surface Difference Modeling, J. Geophys. Res.-Earth, 125, 1630–1648, https://doi.org/10.1029/2019JF005163, 2020.
Mathew, M. J., Menier, D., Siddiqui, N., Kumar, S. G., and Authemayou, C.:
Active tectonic deformation along rejuvenated faults in tropical Borneo:
Inferences obtained from tectono-geomorphic evaluation, Geomorphology, 267,
1–15, https://doi.org/10.1016/j.geomorph.2016.05.016, 2016.
Menier, D., Mathew, M., Pubellier, M., Sapin, F., Delcaillau, B., Siddiqui,
N., Ramkumar, Mu., and Santosh, M.: Landscape response to progressive
tectonic and climatic forcing in NW Borneo: Implications for geological and
geomorphic controls on flood hazard, Sci. Rep. 7, 457, https://doi.org/10.1038/s41598-017-00620-y, 2017.
Michetti, A. M., Esposito, E., Gurpinar, A., Mohammadioun, B., Mohammadioun,
G., Porfido, S., Roghozin, E., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Comerci, V., Marco, S., Mccalpin, J., and Morner, N. A.: The
INQUA Scale. An innovative approach for assessing earthquake intensities
based on seismically-induced ground effects in natural environment, in:
Memorie Descrittive della Carta Geologica d'Italia, Special Volume 67, edited by: Vittori, E. and Comerci, V., APAT, Rome, 1–118, ISBN 978-88-240-2641-3,
https://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/the-inqua-scale-1
(last access: October 2021), 2004.
Michetti, A. M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCalpin, J., Mohammadioun, B., Mörner, N. A., Ota, Y., and Roghozin, E.: Environmental seismic intensity scale-ESI 2007, Memorie descrittive della carta geologica d'Italia, 74, 41 pp.,
ISBN 978-88-240-2903-2, https://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/intensity-scale-esi-2007
(last access: October 2021), 2007.
Mustafar, M. A., Simons, W. J. F., Tongkul, F., Satirapod, C., Omar, K. M.,
and Visser, P. N. A. M.: Quantifying deformation in North Borneo with GPS, J.
Geod., 91, 1241–1259, https://doi.org/10.1007/s00190-017-1024-z, 2017.
Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson,
S. M., Tanyas, H., Hearne, M., and Thompson, E. M.: A Global Empirical Model
for Near-Real-Time Assessment of Seismically Induced Landslides, J. Geophys.
Res.-Earth, 123, 1835–1859, https://doi.org/10.1029/2017JF004494, 2018.
Ota, Y., Azuma, T., and Lin, Y. N.: Application of INQUA Environmental Seismic Intensity Scale to recent earthquakes in Japan and Taiwan, Geol. Soc. Lond. Spec. Publ., 316, 55–71, https://doi.org/10.1144/SP316.4, 2009.
Papathanassiou, G., Valkaniotis, S., and Ganas, A.: Spatial patterns,
controlling factors, and characteristics of landslides triggered by strike-slip faulting earthquakes: case study of Lefkada island, Greece, Bull.
Eng. Geol. Environ., 80, 3747–3765, https://doi.org/10.1007/s10064-021-02181-x, 2021.
Pescaroli, G. and Alexander, D.: Critical infrastructure, panarchies and the
vulnerability paths of cascading disasters, Nat. Hazards, 82, 175–192,
https://doi.org/10.1007/s11069-016-2186-3, 2016.
Quigley, M. C., Attanayake, J., King, A., and Prideaux, F.: A multi-hazards
earth science perspective on the COVID-19 pandemic: the potential for
concurrent and cascading crises, Environ. Syst. Decis., 40, 199–215, 2020.
Rosli, M. I., Che Ros, F., Razak, K. A., Ambran, S., Kamaruddin, S. A., Nor Anuar, A., Marto, A., Tobita, T., and Ono, Y.: Modelling Debris Flow Runout: A Case Study on the Mesilau Watershed, Kundasang, Sabah, Water, 13, 2667, https://doi.org/10.3390/w13192667, 2021a.
Rosli, M. I., Mohd Kamal, N. A., and Razak, K. A.: Assessing Earthquake-induced Debris Flow Risk in the first UNESCO World Heritage in
Malaysia, Remote Sens. Appl.: Soc. Environ., 23, 100550, https://doi.org/10.1016/j.rsase.2021.100550, 2021b.
Sapin, F., Hermawan, I., Pubellier, M., Vigny, C., and Ringenbach, J.-C.:
The recent convergence on the NW Borneo Wedge – a crustal-scale gravity
gliding evidenced from GPS, Geophys. J. Int., 193, 549–556, https://doi.org/10.1093/gji/ggt054, 2013.
Schmitt, R. G., Tanyas, H., Jessee, M. A. N., Zhu, J., Biegel, K. M., Allstadt, K. E., Jibson, R. W., Thompson, E.M., van Westen, C. J., Sato, H. P., Wald, D. J., Godt, J. W., Gorum, T., Xu, C., Rathje, E. M., and Knudsen, K. L.: An open repository of earthquake-triggered ground-failure inventories, No. 1064, US Geological Survey, https://doi.org/10.3133/ds1064, 2017.
Serva, L., Vittori, E., Comerci, V., Esposito, E., Guerrieri, L., Michetti,
A. M., Mohammadioun, B., Mohammadioun, G. C., Porfido, S., and Tatevossian,
R. E.: Earthquake Hazard and the Environmental Seismic Intensity (ESI)
Scale, Pure Appl. Geophys., 173, 1479–1515, https://doi.org/10.1007/s00024-015-1177-8, 2016.
Shah, A., Zhafri, M., Delson, J., and Navakanesh, B.: Major Strike-Slip Faults Identified Using Satellite Data in Central Borneo, SE Asia, Geosciences, 8, 156, https://doi.org/10.3390/geosciences8050156, 2018.
Silva, P. G., Pérez-López, R., Rodríguez-Pascua, M. A., Giner, J. L., Huerta, P., Bardají, T., and Martín-González, F.: Earthquake environmental effects (EEEs) triggered by the 2011 Lorca earthquake (Mw 5.2, Betic Cordillera, SE Spain): Application of the ESI-07
macroseismic scale, in: 4th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, Vol. 4: PATA Days – Seismic Hazard, Critical Facilities and Slow Active Faults, editee by: Grützner, C., Rudersdorf, A., Pérez-López, R., and Reicherter, K., 9–14 October 2013, Aachen, Germany, ISBN 978-3-00-042796-1, 2013.
Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Haji Abu, S.,
Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P., and
Spakman, W.: A decade of GPS in Southeast Asia: Resolving Sundaland motion
and boundaries, J. Geophys. Res., 112, B06420, https://doi.org/10.1029/2005JB003868, 2007.
Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M.,
Görüm, T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. G.,
Marc, O., and Hovius, N.: Presentation and Analysis of a Worldwide Database
of Earthquake-Induced Landslide Inventories: Earthquake-Induced Landslide
Inventories, J. Geophys. Res.-Earth, 122, 1991–2015, https://doi.org/10.1002/2017JF004236, 2017.
Tanyaş, H., Görüm, T., Kirschbaum, D., and Lombardo, L.: Could
road constructions be more hazardous than an earthquake in terms of mass
movement?, Nat. Hazards, 112, 639–663, https://doi.org/10.1007/s11069-021-05199-2, 2022.
Tjia, H. D.: Kundasang (Sabah) at the intersection of regional fault zones
of Quaternary age, Bull. Geol. Soc. Malaysia, 53, 59–66, https://doi.org/10.7186/bgsm53200710, 2007.
Tongkul, F.: The 2015 Ranau Earthqauke: Cause and Impact, Sabah Society J., 32, 1–28, 2016.
Tongkul, F.: Active tectonics in Sabah – seismicity and active faults, Bull. Geol. Soc. Malaysia, 64, 27–36, https://doi.org/10.7186/bgsm64201703, 2017.
USGS: M 6.0–14 km WNW of Ranau, Malaysia, USGS [data set], https://earthquake.usgs.gov/earthquakes/eventpage/us20002m5s/executive (last access: March 2022), 2018.
Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A.,
Dai, L., Xu, Q., and Huang, R.: Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism, Landslides, 16, 1551–1566, https://doi.org/10.1007/s10346-019-01187-7, 2019.
Wang, Y., Wei, S., Wang, X., Lindsey, E. O., Tongkul, F., Tapponnier, P.,
Bradley, K., Chan, C.-H., Hill, E. M., and Sieh, K.: The 2015 Mw 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia, Geosci. Lett., 4, 6, https://doi.org/10.1186/s40562-017-0072-9, 2017.
Williams, J. G., Rosser, N. J., Kincey, M. E., Benjamin, J., Oven, K. J.,
Densmore, A. L., Milledge, D. G., Robinson, T. R., Jordan, C. A., and Dijkstra, T. A.: Satellite-based emergency mapping using optical imagery:
experience and reflections from the 2015 Nepal earthquakes, Nat. Hazards
Earth Syst. Sci., 18, 185–205, https://doi.org/10.5194/nhess-18-185-2018, 2018.
Xu, C.: Preparation of earthquake-triggered landslide inventory maps using
remote sensing and GIS technologies: Principles and case studies, Geosci.
Front., 6, 825–836, https://doi.org/10.1016/j.gsf.2014.03.004, 2015.
Xu, C., Xu, X., Zhou, B., and Yu, G.: Revisions of the M 8.0 Wenchuan
earthquake seismic intensity map based on co-seismic landslide abundance, Nat. Hazards, 69, 1459–1476, https://doi.org/10.1007/s11069-013-0757-0, 2013.
Xu, C., Shyu, J. B. H., and Xu, X.: Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw=7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis, Nat. Hazards Earth Syst. Sci., 14, 1789–1818, https://doi.org/10.5194/nhess-14-1789-2014, 2014.
Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai,
J., Gao, M., and Li, K.: Optimized volume models of earthquake-triggered
landslides, Sci. Rep., 6, 29797, https://doi.org/10.1038/srep29797, 2016.
Yusoff, H. H. M., Razak, K. A., Yuen, F., Harun, A., Talib, J., Mohamad, Z.,
Ramli, Z., and Razab, R. A.: Mapping of post-event earthquake induced landslides in Sg. Mesilou using LiDAR, IOP Conf. Ser.: Earth Environ. Sci.,
37, 012068, https://doi.org/10.1088/1755-1315/37/1/012068, 2016.
Zuccaro, G., De Gregorio, D., and Leone, M. F.: Theoretical model for
cascading effects analyses, Int. J. Disast. Risk Reduct., 30, 199–215, https://doi.org/10.1016/j.ijdrr.2018.04.019, 2018.
Short summary
I mapped over 5000 landslides triggered by a moment magnitude 6.0 earthquake that occurred in 2015 in the Sabah region (Malaysia). I analyzed their number, dimension and spatial distribution by dividing the territory into 1 km2 cells. I applied the Environmental Seismic Intensity (ESI-07) scale, which allows the categorization of earthquake damage due to environmental effects. The presented approach promotes the collaboration among the experts in landslide mapping and in ESI-07 assignment.
I mapped over 5000 landslides triggered by a moment magnitude 6.0 earthquake that occurred in...
Altmetrics
Final-revised paper
Preprint