Articles | Volume 22, issue 10
Nat. Hazards Earth Syst. Sci., 22, 3527–3542, 2022
https://doi.org/10.5194/nhess-22-3527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Earthquake-induced hazards: ground motion amplification and...
Research article
25 Oct 2022
Research article
| 25 Oct 2022
Landslides triggered by the 2015 Mw 6.0 Sabah (Malaysia) earthquake: inventory and ESI-07 intensity assignment
Maria Francesca Ferrario
Related authors
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Related subject area
Earthquake Hazards
Pseudo-prospective testing of 5-year earthquake forecasts for California using inlabru
An updated area-source seismogenic model (MA4) for seismic hazard of Italy
Identifying plausible historical scenarios for coupled lake level and seismicity rate changes: the case for the Dead Sea during the last 2 millennia
Analysis of seismic strain release related to the tidal stress preceding the 2008 Wenchuan earthquake
A morphotectonic approach to the study of earthquakes in Rome
Fault slip potential induced by fluid injection in the Matouying enhanced geothermal system (EGS) field, Tangshan seismic region, North China
Magnitude and source area estimations of severe prehistoric earthquakes in the western Austrian Alps
Hidden-state modeling of a cross-section of geoelectric time series data can provide reliable intermediate-term probabilistic earthquake forecasting in Taiwan
Sensitivity analysis of input ground motion on surface motion parameters in high seismic regions: a case of Bhutan Himalaya
Earthquake-induced landslide monitoring and survey by means of InSAR
Ground motion variability in Israel from 3-D simulations of M 6 and M 7 earthquakes
Ground motion prediction maps using seismic-microzonation data and machine learning
A sanity check for earthquake recurrence models used in PSHA of slowly deforming regions: the case of SW Iberia
Development of a seismic site-response zonation map for the Netherlands
Characterization of fault plane and coseismic slip for the 2 May 2020, Mw 6.6 Cretan Passage earthquake from tide gauge tsunami data and moment tensor solutions
Probabilistic Fault Displacement Hazard Analysis for North Tabriz Fault
Geologic and geodetic constraints on the seismic hazard of Malawi’s active faults: The Malawi Seismogenic Source Database (MSSD)
Urban search and rescue (USAR) simulation system: spatial strategies for agent task allocation under uncertain conditions
Modelling earthquake rates and associated uncertainties in the Marmara Region, Turkey
Vulnerability and site effects in earthquake disasters in Armenia (Colombia) – Part 2 : Observed damage and vulnerability
Integrating macroseismic intensity distributions with a probabilistic approach: an application in Italy
Spatiotemporal heterogeneity of b values revealed by a data-driven approach for the 17 June 2019 MS 6.0 Changning earthquake sequence, Sichuan, China
A harmonised instrumental earthquake catalogue for Iceland and the northern Mid-Atlantic Ridge
A homogeneous earthquake catalogue for Turkey
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
Reliability-based strength modification factor for seismic design spectra considering structural degradation
Fault network reconstruction using agglomerative clustering: applications to southern Californian seismicity
Style of faulting of expected earthquakes in Italy as an input for seismic hazard modeling
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Spatiotemporal changes of seismicity rate during earthquakes
Deep learning of the aftershock hysteresis effect based on the elastic dislocation theory
Measuring the seismic risk along the Nazca–South American subduction front: Shannon entropy and mutability
Macrozonation of seismic transient and permanent ground deformation of Iran
Spatial database and website for reservoir-triggered seismicity in Brazil
Probabilistic tsunami hazard analysis for Tuzla test site using Monte Carlo simulations
Seismic hazard maps of Peshawar District for various return periods
Contrasting seismic risk for Santiago, Chile, from near-field and distant earthquake sources
The spatial–temporal total friction coefficient of the fault viewed from the perspective of seismo-electromagnetic theory
Non-stationary extreme value analysis applied to seismic fragility assessment for nuclear safety analysis
Real-time probabilistic seismic hazard assessment based on seismicity anomaly
The impact of topography on seismic amplification during the 2005 Kashmir earthquake
Assessment of seismic sources and capable faults through hierarchic tectonic criteria: implications for seismic hazard in the Levant
Analysis of spatiotemporal variations in middle-tropospheric to upper-tropospheric methane during the Wenchuan Ms = 8.0 earthquake by three indices
Infrasound and seismoacoustic signatures of the 28 September 2018 Sulawesi super-shear earthquake
Estimation of near-surface attenuation in the tectonically complex contact area of the northwestern External Dinarides and the Adriatic foreland
Difficulties in explaining complex issues with maps: evaluating seismic hazard communication – the Swiss case
Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
Probabilistic seismic hazard analysis using the logic tree approach – Patna district (India)
A review and upgrade of the lithospheric dynamics in context of the seismo-electromagnetic theory
Revised earthquake sources along Manila trench for tsunami hazard assessment in the South China Sea
Kirsty Bayliss, Mark Naylor, Farnaz Kamranzad, and Ian Main
Nat. Hazards Earth Syst. Sci., 22, 3231–3246, https://doi.org/10.5194/nhess-22-3231-2022, https://doi.org/10.5194/nhess-22-3231-2022, 2022
Short summary
Short summary
We develop probabilistic earthquake forecasts that include different spatial information (e.g. fault locations, strain rate) using a point process method. The performance of these models is tested over three different periods and compared with existing forecasts. We find that our models perform well, with those using simulated catalogues that make use of uncertainty in model parameters performing better, demonstrating potential to improve earthquake forecasting using Bayesian approaches.
Francesco Visini, Carlo Meletti, Andrea Rovida, Vera D'Amico, Bruno Pace, and Silvia Pondrelli
Nat. Hazards Earth Syst. Sci., 22, 2807–2827, https://doi.org/10.5194/nhess-22-2807-2022, https://doi.org/10.5194/nhess-22-2807-2022, 2022
Short summary
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
Mariana Belferman, Amotz Agnon, Regina Katsman, and Zvi Ben-Avraham
Nat. Hazards Earth Syst. Sci., 22, 2553–2565, https://doi.org/10.5194/nhess-22-2553-2022, https://doi.org/10.5194/nhess-22-2553-2022, 2022
Short summary
Short summary
Internal fluid pressure in pores leads to breaking. With this mechanical principle and a correlation between historical water level changes and seismicity, we explore possible variants for water level reconstruction in the Dead Sea basin. Using the best-correlated variant, an additional indication is established regarding the location of historical earthquakes. This leads us to propose a certain forecast for the next earthquake in view of the fast and persistent dropping level of the Dead Sea.
Xuezhong Chen, Yane Li, and Lijuan Chen
Nat. Hazards Earth Syst. Sci., 22, 2543–2551, https://doi.org/10.5194/nhess-22-2543-2022, https://doi.org/10.5194/nhess-22-2543-2022, 2022
Short summary
Short summary
When the tectonic stress in the crust increases, the b value will decrease, meaning the effects of tidal stresses are enhanced gradually. Increase in the tidal Coulomb failure stress might promote the occurrence of earthquakes, whereas its decrease could have an opposite effect. This observation may provide an insight into the processes leading to the Wenchuan earthquake and its precursors.
Fabrizio Marra, Alberto Frepoli, Dario Gioia, Marcello Schiattarella, Andrea Tertulliani, Monica Bini, Gaetano De Luca, and Marco Luppichini
Nat. Hazards Earth Syst. Sci., 22, 2445–2457, https://doi.org/10.5194/nhess-22-2445-2022, https://doi.org/10.5194/nhess-22-2445-2022, 2022
Short summary
Short summary
Through the analysis of the morphostructural setting in which the seismicity of Rome is framed, we explain why the city should not expect to suffer damage from a big earthquake.
Chengjun Feng, Guangliang Gao, Shihuai Zhang, Dongsheng Sun, Siyu Zhu, Chengxuan Tan, and Xiaodong Ma
Nat. Hazards Earth Syst. Sci., 22, 2257–2287, https://doi.org/10.5194/nhess-22-2257-2022, https://doi.org/10.5194/nhess-22-2257-2022, 2022
Short summary
Short summary
We show how FSP (Fault Slip Potential) software can be used in quantitative screening to estimate the fault slip potential in a region with some uncertainties in the ambient stress field and to assess the reactivation potential on these faults of presumably higher criticality in response to fluid injection. The case study of the Matouying enhanced geothermal system (EGS) field has important implications for deep geothermal exploitation in China, especially for the Gonghe EGS in Qinghai Province.
Patrick Oswald, Michael Strasser, Jens Skapski, and Jasper Moernaut
Nat. Hazards Earth Syst. Sci., 22, 2057–2079, https://doi.org/10.5194/nhess-22-2057-2022, https://doi.org/10.5194/nhess-22-2057-2022, 2022
Short summary
Short summary
This study provides the first regional earthquake catalogue of the eastern Alps spanning 16 000 years by using three lake paleoseismic records. Recurrence statistics reveal that earthquakes recur every 1000–2000 years in an aperiodic pattern. The magnitudes of paleo-earthquakes exceed the historically documented values. This study estimates magnitude and source areas for severe paleo-earthquakes, and their shaking effects are explored in the broader study area.
Haoyu Wen, Hong-Jia Chen, Chien-Chih Chen, Massimo Pica Ciamarra, and Siew Ann Cheong
Nat. Hazards Earth Syst. Sci., 22, 1931–1954, https://doi.org/10.5194/nhess-22-1931-2022, https://doi.org/10.5194/nhess-22-1931-2022, 2022
Short summary
Short summary
Recently, there has been growing interest from earth scientists to use the electric field deep underground to forecast earthquakes. We go one step further by using the electric fields, which can be directly measured, to separate/classify time periods with two labels only according to the statistical properties of the electric fields. By checking against historical earthquake records, we found time periods covered by one of the two labels to have significantly more frequent earthquakes.
Karma Tempa, Komal Raj Aryal, Nimesh Chettri, Giovanni Forte, and Dipendra Gautam
Nat. Hazards Earth Syst. Sci., 22, 1893–1909, https://doi.org/10.5194/nhess-22-1893-2022, https://doi.org/10.5194/nhess-22-1893-2022, 2022
Short summary
Short summary
This paper performs site response analysis and studies soil amplification for Bhutan Himalaya. A sensitivity study is performed to assess the effect of variation in strong ground motion.
Tayeb Smail, Mohamed Abed, Ahmed Mebarki, and Milan Lazecky
Nat. Hazards Earth Syst. Sci., 22, 1609–1625, https://doi.org/10.5194/nhess-22-1609-2022, https://doi.org/10.5194/nhess-22-1609-2022, 2022
Short summary
Short summary
The Sentinel-1 SAR datasets and Sentinel-2 data are used in this study to investigate the impact of natural hazards (earthquakes and landslides) on struck areas. In InSAR processing, the use of DInSAR, CCD methods, and the LiCSBAS tool permit generation of time-series analysis of ground changes. Three land failures were detected in the study area. CCD is suitable to map landslides that may remain undetected using DInSAR. In Grarem, the failure rim is clear in coherence and phase maps.
Jonatan Glehman and Michael Tsesarsky
Nat. Hazards Earth Syst. Sci., 22, 1451–1467, https://doi.org/10.5194/nhess-22-1451-2022, https://doi.org/10.5194/nhess-22-1451-2022, 2022
Short summary
Short summary
Due to an insufficient number of recorded moderate–strong earthquakes in Israel, estimating the ground motions and the subsequent seismic hazard mitigation becomes a challenge. To fill this gap, we performed a series of 3-D numerical simulations of moderate and moderate–strong earthquakes. We examined the ground motions and their variability through a self-developed statistical model. However, the model cannot fully capture the ground motion variability due to the local seismotectonic setting.
Federico Mori, Amerigo Mendicelli, Gaetano Falcone, Gianluca Acunzo, Rose Line Spacagna, Giuseppe Naso, and Massimiliano Moscatelli
Nat. Hazards Earth Syst. Sci., 22, 947–966, https://doi.org/10.5194/nhess-22-947-2022, https://doi.org/10.5194/nhess-22-947-2022, 2022
Short summary
Short summary
This work addresses the problem of the ground motion estimation over large areas as an important tool for seismic-risk reduction policies. In detail, the near-real-time estimation of ground motion is a key issue for emergency system management. Starting from this consideration, the present work proposes the application of a machine learning approach to produce ground motion maps, using nine input proxies. Such proxies consider seismological, geophysical, and morphological parameters.
Margarida Ramalho, Luis Matias, Marta Neres, Michele M. C. Carafa, Alexandra Carvalho, and Paula Teves-Costa
Nat. Hazards Earth Syst. Sci., 22, 117–138, https://doi.org/10.5194/nhess-22-117-2022, https://doi.org/10.5194/nhess-22-117-2022, 2022
Short summary
Short summary
Probabilistic seismic hazard assessment (PSHA) is the most common tool used to decide on the acceptable seismic risk by society and mitigation measures. In slowly deforming regions, such Iberia, the earthquake generation models (EGMs) for PSHA suffer from great uncertainty. In this work we propose two sanity tests to be applied to EGMs, comparing the EGM moment release with constrains derived from GNSS observations or neotectonic modelling. Similar tests should be part of other region studies.
Janneke van Ginkel, Elmer Ruigrok, Jan Stafleu, and Rien Herber
Nat. Hazards Earth Syst. Sci., 22, 41–63, https://doi.org/10.5194/nhess-22-41-2022, https://doi.org/10.5194/nhess-22-41-2022, 2022
Short summary
Short summary
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting in increased ground shaking. Therefore, this paper presents a workflow in order to obtain a map classifying the response of the subsurface based on local geology, earthquake signals, and background noise recordings for the Netherlands. The resulting map can be used as a first assessment in regions with earthquake hazard potential by mining or geothermal energy activities, for example.
Enrico Baglione, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Roberto Basili, Beatriz Brizuela, Roberto Tonini, Manuela Volpe, Hafize Basak Bayraktar, and Alessandro Amato
Nat. Hazards Earth Syst. Sci., 21, 3713–3730, https://doi.org/10.5194/nhess-21-3713-2021, https://doi.org/10.5194/nhess-21-3713-2021, 2021
Short summary
Short summary
We investigated the seismic fault structure and the rupture characteristics of the MW 6.6, 2 May 2020, Cretan Passage earthquake through tsunami data inverse modelling. Our results suggest a shallow crustal event with a reverse mechanism within the accretionary wedge rather than on the Hellenic Arc subduction interface. The study identifies two possible ruptures: a steeply sloping reverse splay fault and a back-thrust rupture dipping south, with a more prominent dip angle.
Mohamadreza Hosseyni and Habib Rahimi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-351, https://doi.org/10.5194/nhess-2021-351, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Earthquakes, not only because of earth-shaking but also because of surface ruptures, are a serious threat to many human activities. Reducing earthquake losses and damages requires predicting the amplitude and location of ground movements and possible surface displacements in the future. Using the probabilistic approach and earthquake method, the surface displacement of the North Tabriz fault has been investigated, and the possible displacement in different scenarios has been estimated.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-306, https://doi.org/10.5194/nhess-2021-306, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates either side of the East African Rift in Malawi diverge from one another. Low divergence rates (0.5–1.5 mm/yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1,000–10,000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Navid Hooshangi, Ali Asghar Alesheikh, Mahdi Panahi, and Saro Lee
Nat. Hazards Earth Syst. Sci., 21, 3449–3463, https://doi.org/10.5194/nhess-21-3449-2021, https://doi.org/10.5194/nhess-21-3449-2021, 2021
Short summary
Short summary
Task allocation under uncertain conditions is a key problem for agents attempting to achieve harmony in disaster environments. This paper presents an agent-based simulation to investigate task allocation considering appropriate spatial strategies to manage uncertainty in urban search and rescue (USAR) operations.
Thomas Chartier, Oona Scotti, Hélène Lyon-Caen, Keith Richard-Dinger, James H. Dieterich, and Bruce E. Shaw
Nat. Hazards Earth Syst. Sci., 21, 2733–2751, https://doi.org/10.5194/nhess-21-2733-2021, https://doi.org/10.5194/nhess-21-2733-2021, 2021
Short summary
Short summary
In order to evaluate the seismic risk, we first model the annual rate of occurrence of earthquakes on the faults near Istanbul. By using a novel modelling approach, we consider the fault system as a whole rather than each fault individually. We explore the hypotheses that are discussed in the scientific community concerning this fault system and compare the modelled results with local recorded data and a physics-based model, gaining new insights in particular on the largest possible earthquake.
Francisco J. Chávez-García, Hugo Monsalve-Jaramillo, and Joaquín Vila-Ortega
Nat. Hazards Earth Syst. Sci., 21, 2345–2354, https://doi.org/10.5194/nhess-21-2345-2021, https://doi.org/10.5194/nhess-21-2345-2021, 2021
Short summary
Short summary
We analyze earthquake damage observed in Armenia, Colombia, during the 1999 event. We investigate the reasons behind the damage and the possibility of predicting it using vulnerability studies. We show that vulnerability was a major factor and that observed damage was predicted by a vulnerability study made in 1993, which sadly had no societal impact. The comparison between two vulnerability studies, in 1993 and 2004, suggests that Armenia may still be highly vulnerable to future earthquakes.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 21, 2299–2311, https://doi.org/10.5194/nhess-21-2299-2021, https://doi.org/10.5194/nhess-21-2299-2021, 2021
Short summary
Short summary
We present a probabilistic approach for integrating incomplete intensity distributions by means of the Bayesian combination of estimates provided by intensity prediction equations (IPEs) and data documented at nearby localities, accounting for the relevant uncertainties. The performance of the proposed methodology is tested at 28 Italian localities with long and rich seismic histories and for the strong 1980 and 2009 earthquakes in Italy. An application of this approach is also illustrated.
Changsheng Jiang, Libo Han, Feng Long, Guijuan Lai, Fengling Yin, Jinmeng Bi, and Zhengya Si
Nat. Hazards Earth Syst. Sci., 21, 2233–2244, https://doi.org/10.5194/nhess-21-2233-2021, https://doi.org/10.5194/nhess-21-2233-2021, 2021
Short summary
Short summary
The b value is a controversial parameter that has the potential to identify the location of an upcoming strong earthquake. We conducted a case study using a newly developed algorithm that can overcome the subjectivity of calculation. The results confirmed the scientific significance of the b value for seismic hazard analysis and revealed that fluid intrusion may have been the cause of the overactive aftershocks of the studied earthquake.
Kristján Jónasson, Bjarni Bessason, Ásdís Helgadóttir, Páll Einarsson, Gunnar B. Guðmundsson, Bryndís Brandsdóttir, Kristín S. Vogfjörd, and Kristín Jónsdóttir
Nat. Hazards Earth Syst. Sci., 21, 2197–2214, https://doi.org/10.5194/nhess-21-2197-2021, https://doi.org/10.5194/nhess-21-2197-2021, 2021
Short summary
Short summary
Local information on epicentres and Mw magnitudes from international catalogues have been combined to compile a catalogue of earthquakes in and near Iceland in the years 1900–2019. The magnitudes are either moment-tensor modelled or proxy values obtained with regression on Ms or exceptionally on mb. The catalogue also covers the northern Mid-Atlantic Ridge with less accurate locations but similarly harmonised magnitudes.
Onur Tan
Nat. Hazards Earth Syst. Sci., 21, 2059–2073, https://doi.org/10.5194/nhess-21-2059-2021, https://doi.org/10.5194/nhess-21-2059-2021, 2021
Short summary
Short summary
Turkey is one of the most seismically active regions. In this study, an extended and homogenized earthquake catalogue, which is essential for seismic hazard studies, is presented in an easily manageable format for a wide range of researchers in earth sciences. It is the most comprehensive catalogue for Turkey and contains approximately ~ 378 000 events between 1900 and 2018.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Ali Rodríguez-Castellanos, Sonia E. Ruiz, Edén Bojórquez, Miguel A. Orellana, and Alfredo Reyes-Salazar
Nat. Hazards Earth Syst. Sci., 21, 1445–1460, https://doi.org/10.5194/nhess-21-1445-2021, https://doi.org/10.5194/nhess-21-1445-2021, 2021
Short summary
Short summary
Seismic design guidelines for building structures present simplified approaches to include relevant structural behavior that affects the structural response through design spectra modification factors. The objective of this study is to propose simplified mathematical expressions to modify the design spectra to consider the stiffness and strength-degrading behavior of structures. Additionally, these expressions are proposed to be included in the next version of the Mexico City Building Code.
Yavor Kamer, Guy Ouillon, and Didier Sornette
Nat. Hazards Earth Syst. Sci., 20, 3611–3625, https://doi.org/10.5194/nhess-20-3611-2020, https://doi.org/10.5194/nhess-20-3611-2020, 2020
Short summary
Short summary
Earthquakes cluster in space highlighting fault structures in the crust. We introduce a method to identify such patterns. The method follows a bottom-up approach that starts from many small clusters and, by repeated mergings, produces a larger, less complex structure. We test the resulting fault network model by investigating its ability to forecast the location of earthquakes that were not used in the study. We envision that our method can contribute to future studies relying on fault patterns.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020, https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Short summary
This paper examines the roles of earth science information (data, knowledge, advice) in land-use decision-making in Christchurch, New Zealand, in response to the 2010–2011 Canterbury earthquake sequence. A detailed timeline of scientific activities and information provisions relative to key decision-making events is provided. We highlight the importance and challenges of the effective provision of science to decision makers in times of crisis.
Chieh-Hung Chen, Yang-Yi Sun, Strong Wen, Peng Han, Li-Ching Lin, Huaizhong Yu, Xuemin Zhang, Yongxin Gao, Chi-Chia Tang, Cheng-Horng Lin, and Jann-Yenq Liu
Nat. Hazards Earth Syst. Sci., 20, 3333–3341, https://doi.org/10.5194/nhess-20-3333-2020, https://doi.org/10.5194/nhess-20-3333-2020, 2020
Short summary
Short summary
Scientists demystify stress changes before mainshocks and utilize the foreshocks as an indicator. We investigate changes in seismicity far from mainshocks by using tens of thousands of M ≥ 2 quakes for 10 years in Taiwan and Japan. The results show that wide areas exhibit increased seismicity occurring more than several times in areas of the fault rupture. The stressed crust triggers resonance at frequencies varying from ~ 5 × 10–4 to ~ 10–3 Hz that is supported by the resonant frequency model.
Jin Chen, Hong Tang, and Wenkai Chen
Nat. Hazards Earth Syst. Sci., 20, 3117–3134, https://doi.org/10.5194/nhess-20-3117-2020, https://doi.org/10.5194/nhess-20-3117-2020, 2020
Short summary
Short summary
The spatial and temporal distribution characteristics of aftershocks around the fault are analyzed according to the stress changes after the main earthquake. The model can be used to predict the multi-timescale anisotropy distribution of aftershocks fairly. The finite fault model of the main earthquake is used in the construction of the prediction model. The model is a deep neural network; the inputs are the stress components of each point; and the output is the probability of an aftershock.
Eugenio E. Vogel, Felipe G. Brevis, Denisse Pastén, Víctor Muñoz, Rodrigo A. Miranda, and Abraham C.-L. Chian
Nat. Hazards Earth Syst. Sci., 20, 2943–2960, https://doi.org/10.5194/nhess-20-2943-2020, https://doi.org/10.5194/nhess-20-2943-2020, 2020
Short summary
Short summary
The Nazca–South American subduction front is one of the most active in the world. We have chosen four zones along this front to do a comparative study on possible different dynamics. Data are public and well tested in the last decades. The methods are original since mutability and Shannon entropy are not always used in this kind of problem, and, to our knowledge, this is the first time they are combined. The north of Chile could be a zone with greater chances of a large earthquake.
Saeideh Farahani, Behrouz Behnam, and Ahmad Tahershamsi
Nat. Hazards Earth Syst. Sci., 20, 2889–2903, https://doi.org/10.5194/nhess-20-2889-2020, https://doi.org/10.5194/nhess-20-2889-2020, 2020
Short summary
Short summary
Iran is located on the Alpide earthquake belt, in the active collision zone between the Eurasian and Arabian plates. Due to the rapid demands for new lifelines, a risk assessment should be performed to reduce the probable damage in advance. In this study, a precise GIS-based map is proposed by employing the HAZUS methodology.
Eveline Sayão, George Sand França, Maristela Holanda, and Alexandro Gonçalves
Nat. Hazards Earth Syst. Sci., 20, 2001–2019, https://doi.org/10.5194/nhess-20-2001-2020, https://doi.org/10.5194/nhess-20-2001-2020, 2020
Short summary
Short summary
One of the biggest challenges in studying reservoir-triggered seismicity (RTS) is to identify factors that can trigger seismicity. A spatial database and a web viewer were created, gathering the data pertinent to the RTS study. Results were obtained in processing these data; for example, the occurrence of RTS increases with the height of the dam, the minimum limiting volume value is 1 × 10−4 km3 for occurrence of RTS, and for geology no correlations were found, among other results.
Hafize Basak Bayraktar and Ceren Ozer Sozdinler
Nat. Hazards Earth Syst. Sci., 20, 1741–1764, https://doi.org/10.5194/nhess-20-1741-2020, https://doi.org/10.5194/nhess-20-1741-2020, 2020
Short summary
Short summary
In this study, probabilistic tsunami hazard analysis was performed for the Tuzla region in case of a Prince Island fault rupture, which is the closest fault zone to the megacity Istanbul, and it has been silent for centuries. A synthetic earthquake catalog is generated using Monte Carlo simulations, and these events are used for tsunami analysis. The results of the study show that the probability of exceedance of 0.3 m tsunami wave height is bigger than 90 % for the next 50 and 100 years.
Khalid Mahmood, Naveed Ahmad, Usman Khan, and Qaiser Iqbal
Nat. Hazards Earth Syst. Sci., 20, 1639–1661, https://doi.org/10.5194/nhess-20-1639-2020, https://doi.org/10.5194/nhess-20-1639-2020, 2020
Short summary
Short summary
The paper presents probabilistic-based seismic hazard maps prepared for Peshawar for various return periods using classical PSHA. The study considered both shallow and deep earthquakes, represented by area sources, while using recent ground motion prediction equations. The hazard map for a 475-year return period was compared with the hazard map given in the Building Code of Pakistan; they were found to be in close agreement. The obtained maps may be used for infrastructure risk assessment.
Ekbal Hussain, John R. Elliott, Vitor Silva, Mabé Vilar-Vega, and Deborah Kane
Nat. Hazards Earth Syst. Sci., 20, 1533–1555, https://doi.org/10.5194/nhess-20-1533-2020, https://doi.org/10.5194/nhess-20-1533-2020, 2020
Short summary
Short summary
Many of the rapidly expanding cities around the world are located near active tectonic faults that have not produced an earthquake in recent memory. But these faults are generally small, and so most previous seismic-hazard analysis has focussed on large, more distant faults. In this paper we show that a moderate-size earthquake on a fault close to the city of Santiago in Chile has a greater impact on the city than a great earthquake on the tectonic boundary in the ocean, about a 100 km away.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 20, 1485–1496, https://doi.org/10.5194/nhess-20-1485-2020, https://doi.org/10.5194/nhess-20-1485-2020, 2020
Short summary
Short summary
Over the past few years, a number of data have emerged on predicting large earthquakes using the magnetic field. These measurements are becoming strongly supported by rock electrification mechanisms experimentally and theoretically in seismo-electromagnetic theory. However, the processes that occur within the faults have yet to be elucidated. That is why this work theoretically links the friction changes of the faults with the lithospheric magnetic anomalies that surround the faults.
Jeremy Rohmer, Pierre Gehl, Marine Marcilhac-Fradin, Yves Guigueno, Nadia Rahni, and Julien Clément
Nat. Hazards Earth Syst. Sci., 20, 1267–1285, https://doi.org/10.5194/nhess-20-1267-2020, https://doi.org/10.5194/nhess-20-1267-2020, 2020
Short summary
Short summary
Fragility curves (FCs) are key tools for seismic probabilistic safety assessments that are performed at the level of the nuclear power plant (NPP). These statistical methods relate the probabilistic seismic hazard loading at the given site to the required performance of the NPP safety functions. In the present study, we investigate how the tools of
non-stationary extreme value analysis can be used to model in a flexible manner the FCs for NPP.
Yu-Sheng Sun, Hsien-Chi Li, Ling-Yun Chang, Zheng-Kai Ye, and Chien-Chih Chen
Nat. Hazards Earth Syst. Sci., 20, 743–753, https://doi.org/10.5194/nhess-20-743-2020, https://doi.org/10.5194/nhess-20-743-2020, 2020
Short summary
Short summary
Real-time probabilistic seismic hazard assessment (PSHA) was developed in consideration of its practicability for daily life and the rate of seismic activity with time. We selected the 2016 Meinong (ML 6.6) and the 2018 Hualien (ML 6.2) earthquakes in Taiwan as examples. The seismic intensity forecasting maps produced by the real-time PSHA facilitated the forecast of the maximum expected seismic intensity for the following 90 d. Compared with real data the maps showed considerable effectiveness.
Saad Khan, Mark van der Meijde, Harald van der Werff, and Muhammad Shafique
Nat. Hazards Earth Syst. Sci., 20, 399–411, https://doi.org/10.5194/nhess-20-399-2020, https://doi.org/10.5194/nhess-20-399-2020, 2020
Short summary
Short summary
On 8 October 2005 the region of Kashmir was struck by a devastating earthquake of magnitude 7.6. Northern Pakistan and the region of Kashmir were severely damaged. The official death toll according to the Pakistani government was 87 350. It was thought that the terrain could have played a crucial role in the damage caused by the earthquake directly or indirectly. In this article we found that the terrain played a crucial role in intensifying the devastation of the earthquake.
Matty Sharon, Amir Sagy, Ittai Kurzon, Shmuel Marco, and Marcelo Rosensaft
Nat. Hazards Earth Syst. Sci., 20, 125–148, https://doi.org/10.5194/nhess-20-125-2020, https://doi.org/10.5194/nhess-20-125-2020, 2020
Short summary
Short summary
We present a methodology for mapping faults that constitute far-field (ground motion) and near-field (surface rupture) hazards to structures, particularly for critical facilities. For categorising faults, the criteria are adjusted to local tectonic characteristics, combining data of geological maps, instrumental seismicity, geodesy and past earthquakes. Our results adhere to international standards of hazard assessment for nuclear power plants and improve the regional tectonic understanding.
Jing Cui, Xuhui Shen, Jingfa Zhang, Weiyu Ma, and Wei Chu
Nat. Hazards Earth Syst. Sci., 19, 2841–2854, https://doi.org/10.5194/nhess-19-2841-2019, https://doi.org/10.5194/nhess-19-2841-2019, 2019
Christoph Pilger, Peter Gaebler, Lars Ceranna, Alexis Le Pichon, Julien Vergoz, Anna Perttu, Dorianne Tailpied, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 19, 2811–2825, https://doi.org/10.5194/nhess-19-2811-2019, https://doi.org/10.5194/nhess-19-2811-2019, 2019
Short summary
Short summary
This paper provides infrasound data analysis, modeling, and interpretation of the source characteristics of the 28 September 2018 magnitude 7.5 Sulawesi earthquake. Epicentral ground movement by the earthquake rupture as well as the secondary shaking of nearby mountainous topography is responsible for the strong infrasound generated. Findings allow one to improve knowledge of infrasonic and seismoacoustic source processes and the monitoring capabilities of the infrasound arrays used.
Snježana Markušić, Davor Stanko, Tvrtko Korbar, and Ivica Sović
Nat. Hazards Earth Syst. Sci., 19, 2701–2714, https://doi.org/10.5194/nhess-19-2701-2019, https://doi.org/10.5194/nhess-19-2701-2019, 2019
Short summary
Short summary
Based on κ values, estimated from local earthquakes recorded by seismological stations situated in the western part of Croatia, regional near-surface attenuation is defined. It shows that attenuation properties of rocks in the northwestern External Dinarides are far from isotropic. The most likely anisotropy sources are the preferential orientations of cracks and fractures under the local tectonic stress field, trapping of waves along major faults, and/or attenuation within the fault zones.
Michèle Marti, Michael Stauffacher, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 19, 2677–2700, https://doi.org/10.5194/nhess-19-2677-2019, https://doi.org/10.5194/nhess-19-2677-2019, 2019
Short summary
Short summary
Maps are an established way to illustrate natural hazards and regularly used to communicate with non-experts. However, there is evidence that they are frequently misconceived. Using a real case, our study shows that applying or disregarding best practices in visualization, editing, and presentation significantly impacts the comprehensibility of seismic hazard information. We suggest scrutinizing current natural-hazard communication strategies and empirically testing new products.
Josh Borella, Mark Quigley, Zoe Krauss, Krystina Lincoln, Januka Attanayake, Laura Stamp, Henry Lanman, Stephanie Levine, Sam Hampton, and Darren Gravley
Nat. Hazards Earth Syst. Sci., 19, 2249–2280, https://doi.org/10.5194/nhess-19-2249-2019, https://doi.org/10.5194/nhess-19-2249-2019, 2019
Short summary
Short summary
Here we evaluate geologic, geomorphic, and anthropogenic controls on rockfall hazard and highlight the complexity of interpreting future rockfall hazard based on former boulder distributions. To evaluate how past rockfall deposits relate to contemporary rockfall hazard, we mapped then compared the locations, physical characteristics, and lithologies of rockfall boulders deposited during the 2010–2011 Canterbury earthquake sequence (n = 185) with their prehistoric counterparts (n = 1093).
Panjamani Anbazhagan, Ketan Bajaj, Karanpreet Matharu, Sayed S. R. Moustafa, and Nassir S. N. Al-Arifi
Nat. Hazards Earth Syst. Sci., 19, 2097–2115, https://doi.org/10.5194/nhess-19-2097-2019, https://doi.org/10.5194/nhess-19-2097-2019, 2019
Short summary
Short summary
In the present study, mapping of probability of exceedance of peak ground acceleration and spectral acceleration for the Patna district is presented considering both classical and zoneless approaches through the logic tree framework to capture the epistemic uncertainty.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 19, 1639–1651, https://doi.org/10.5194/nhess-19-1639-2019, https://doi.org/10.5194/nhess-19-1639-2019, 2019
Short summary
Short summary
Several authors have shown evidence of electromagnetic measurements prior to earthquakes. However, these investigations lack a physical mechanism to support them. That is why we developed a theory that could explain many of these phenomena. Specifically, we demonstrate that the generation of microcracks in the lithosphere due to stress changes can explain and describe these electromagnetic phenomena.
Qiang Qiu, Linlin Li, Ya-Ju Hsu, Yu Wang, Chung-Han Chan, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 19, 1565–1583, https://doi.org/10.5194/nhess-19-1565-2019, https://doi.org/10.5194/nhess-19-1565-2019, 2019
Short summary
Short summary
The accuracy of tsunami hazard assessments is highly dependent on the reliability of earthquake source models. In this study, we combine the most updated geological and geophysical data of the Manila subduction zone to propose a series of possible rupture scenarios. These rupture models facilitate an improved understanding of the potential tsunami hazard in the South China Sea. The results highlight the grave consequences faced by the SCS, one of the world's most densely populated coastlines.
Cited articles
Ahlenius, H.: World tectonic plates and boundaries, GitHub [data set], https://github.com/fraxen/tectonicplates (last access: July 2022), 2014.
Avşar, U., Jónsson, S., Avşar, Ö., and Schmidt, S.:
Earthquake-induced soft-sediment deformations and seismically amplified
erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey): Earthquake Records in Lacustrine Varves, J. Geophys. Res.-Solid, 121, 4767–4779, https://doi.org/10.1002/2016JB012820, 2016.
Benjamin, J., Rosser, N. J., and Brain, M. J.: Rockfall detection and
volumetric characterisation using LiDAR, in: Landslides and Engineered Slopes, Experience, Theory and Practice, CRC Press, 389–395, ISBN 978-1-138-02988-0, 2018.
Bessette-Kirton, E. K., Cerovski-Darriau, C., Schulz, W. H., Coe, J. A.,
Kean, J. W., Godt, J. W., Thomas, M. A., and Hughes, K. S.: Landslides
triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico,
GSA Today, 29, 4–10, https://doi.org/10.1130/GSATG383A.1, 2019.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: Earthquake-and-landslide events are associated with more fatalities than
earthquakes alone, Nat. Hazards, 72, 895–914, https://doi.org/10.1007/s11069-014-1044-4, 2014.
Burrows, K., Walters, R. J., Milledge, D., and Densmore, A. L.: A systematic
exploration of satellite radar coherence methods for rapid landslide detection, Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020, 2020.
Caputo, T., Marino, E., Matano, F., Somma, R., Troise, C., and De Natale, G.: Terrestrial Laser Scanning (TLS) data for the analysis of coastal tuff cliff retreat: application to Coroglio cliff, Naples, Italy, Ann. Geophys., 2018, 61, https://doi.org/10.4401/ag-7494, 2018.
Cecić, I. and Musson, R.: Macroseismic surveys in theory and practice, Nat. Hazards, 31, 39–61, 2004.
Chang, M., Zhou, Y., Zhou, C., and Hales, T. C.: Coseismic landslides induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: spatial distribution, key factors weight, and susceptibility regionalization, Landslides, 18, 755–772, https://doi.org/10.1007/s10346-020-01522-3, 2021.
Cottam, M., Hall, R., Sperber, C., and Armstrong, R.: Pulsed emplacement of
the Mount Kinabalu granite, northern Borneo, J. Geol. Soc., 167, 49–60, https://doi.org/10.1144/0016-76492009-028, 2010.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in
science communication, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Earthquake Hazard Program: Search Earthquake Catalog,
https://earthquake.usgs.gov/earthquakes/search/, last access: July 2022.
Fan, X., Scaringi, G., Xu, Q., Zhan, W., Dai, L., Li, Y., Pei, X., Yang, Q.,
and Huang, R.: Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification, Landslides, 15, 967–983, doi10.1007/s10346-018-0960-x, 2018.
Fan, X., Scaringi, G., Korup, O., West, A. J., Westen, C. J., Tanyas, H.,
Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans,
S. G., Xu, C., Li, G., Pei, X., Xu, Q., and Huang, R.: Earthquake-Induced
Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts, Rev. Geophys., 57, 421–503, https://doi.org/10.1029/2018RG000626, 2019.
Ferrario, M. F.: Landslides triggered by multiple earthquakes: insights from
the 2018 Lombok (Indonesia) events, Nat. Hazards, 98, 575–592, https://doi.org/10.1007/s11069-019-03718-w, 2019.
Ferrario, M. F.: Inventory of landslides triggered by the 2015 Mw 6.0 Sabah earthquake (Malaysia), Zenodo [data set], https://doi.org/10.5281/zenodo.6107187, 2022.
Ferrario, M. F., Livio, F., and Michetti, A. M.: Fifteen years of Environmental Seismic Intensity (ESI-07) scale: Dataset compilation and
insights from empirical regressions, Quatern. Int., 625, 107–199,
https://doi.org/10.1016/j.quaint.2022.04.011, 2021.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004
to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Ghaedi Vanani, A. A., Shoaei, G., and Zare, M.: Statistical analyses of
landslide size and spatial distribution triggered by 1990 Rudbar-Manjil (Mw 7.3) earthquake, northern Iran: revised inventory, and controlling factors, Bull. Eng. Geol. Environ., 80, 3381–3403, https://doi.org/10.1007/s10064-021-02106-8, 2021.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.:
Landslide volumes and landslide mobilization rates in Umbria, central Italy,
Earth Planet. Sc. Lett., 279, 222–229, https://doi.org/10.1016/j.epsl.2009.01.005, 2009.
Hall, R.: Contraction and extension in northern Borneo driven by subduction
rollback, J. Asian Earth Sci., 76, 399–411, https://doi.org/10.1016/j.jseaes.2013.04.010, 2013.
Hancox, G. T., Perrin, N. D., and Dellow, G. D.: Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand, Bull. NZ Soc. Earthq. Eng., 35, 59–95, https://doi.org/10.5459/bnzsee.35.2.59-95, 2002.
Handwerger, A. L., Jones, S. Y., Huang, M.-H., Amatya, P., Kerner, H. R., and Kirschbaum, D. B.: Rapid landslide identification using synthetic aperture radar amplitude change detection on the Google Earth Engine, Nat. Hazards Earth Syst. Sci. Discuss. preprint], https://doi.org/10.5194/nhess-2020-315, 2020.
Harp, E. L., Keefer, D. K., Sato, H. P., and Yagi, H.: Landslide inventories: The essential part of seismic landslide hazard analyses, Eng. Geol., 122, 9–21, https://doi.org/10.1016/j.enggeo.2010.06.013, 2011.
Harrison, C. G. and Williams, P. R.: A systems approach to natural disaster
resilience, Simul. Model. Pract. Theory, 65, 11–31, https://doi.org/10.1016/j.simpat.2016.02.008, 2016.
Hutchison, C. S., Bergman, S. C., Swauger, D. A., and Graves, J. E.: A
Miocene collisional belt in north Borneo: uplift mechanism and isostatic
adjustment quantified by thermochronology, J. Geol. Soc., 157, 783–793, https://doi.org/10.1144/jgs.157.4.783, 2000.
JAXA – Japan Aerospace Exploration Agency: ALOS Global Digital Surface Model “ALOS World 3D – 30 m (AW3D30)”, March 2021 release, v 3.2, JAXA [data set], https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm, last access: October 2021.
Keefer, D. K.: Landslides caused by earthquakes, GSA Bulletin,
GeoScienceWorld, https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/95/4/406/202914
(last access: January 2022), 1984.
Keefer, D. K.: Investigating landslides caused by earthquakes – a historical
review, Surv. Geophys., 23, 473–510, https://doi.org/10.1023/A:1021274710840, 2002.
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, Nat. Geosci., 3, 247–251, https://doi.org/10.1038/ngeo776, 2010.
Lehan, N. F. A. M., Razak, K. A., and Kamarudin, K. H.: Business continuity
and resiliency planning in disaster prone area of Sabah, Malaysia, Disast.
Adv., 13, 25–32, 2020.
Lombardo, L., Tanyas, H., Huser, R., Guzzetti, F., and Castro-Camilo, D.:
Landslide size matters: A new data-driven, spatial prototype, Eng. Geol., 293, 106288, https://doi.org/10.1016/j.enggeo.2021.106288, 2021.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004a.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslides, earthquakes, and erosion, Earth Planet. Sc. Lett., 229, 45–59, https://doi.org/10.1016/j.epsl.2004.10.018, 2004b.
Marano, K. D., Wald, D. J., and Allen, T. I.: Global earthquake casualties
due to secondary effects: a quantitative analysis for improving rapid loss
analyses, Nat. Hazards, 52, 319–328,
doi10.1007/s11069-009-9372-5, 2010.
doi10.1007/s11069-009-9372-5, 2010.
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, 2015.
Massey, C. I., Townsend, D., Jones, K., Lukovic, B., Rhoades, D., Morgenstern, R., Rosser, B., Ries, W., Howarth, J., Hamling, I., Petley, D.,
Clark, M., Wartman, J., Litchfield, N., and Olsen, M.: Volume Characteristics of Landslides Triggered by the MW 7.8 2016 Kaikōura Earthquake, New Zealand, Derived From Digital Surface Difference Modeling, J. Geophys. Res.-Earth, 125, 1630–1648, https://doi.org/10.1029/2019JF005163, 2020.
Mathew, M. J., Menier, D., Siddiqui, N., Kumar, S. G., and Authemayou, C.:
Active tectonic deformation along rejuvenated faults in tropical Borneo:
Inferences obtained from tectono-geomorphic evaluation, Geomorphology, 267,
1–15, https://doi.org/10.1016/j.geomorph.2016.05.016, 2016.
Menier, D., Mathew, M., Pubellier, M., Sapin, F., Delcaillau, B., Siddiqui,
N., Ramkumar, Mu., and Santosh, M.: Landscape response to progressive
tectonic and climatic forcing in NW Borneo: Implications for geological and
geomorphic controls on flood hazard, Sci. Rep. 7, 457, https://doi.org/10.1038/s41598-017-00620-y, 2017.
Michetti, A. M., Esposito, E., Gurpinar, A., Mohammadioun, B., Mohammadioun,
G., Porfido, S., Roghozin, E., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Comerci, V., Marco, S., Mccalpin, J., and Morner, N. A.: The
INQUA Scale. An innovative approach for assessing earthquake intensities
based on seismically-induced ground effects in natural environment, in:
Memorie Descrittive della Carta Geologica d'Italia, Special Volume 67, edited by: Vittori, E. and Comerci, V., APAT, Rome, 1–118, ISBN 978-88-240-2641-3,
https://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/the-inqua-scale-1
(last access: October 2021), 2004.
Michetti, A. M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCalpin, J., Mohammadioun, B., Mörner, N. A., Ota, Y., and Roghozin, E.: Environmental seismic intensity scale-ESI 2007, Memorie descrittive della carta geologica d'Italia, 74, 41 pp.,
ISBN 978-88-240-2903-2, https://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/intensity-scale-esi-2007
(last access: October 2021), 2007.
Mustafar, M. A., Simons, W. J. F., Tongkul, F., Satirapod, C., Omar, K. M.,
and Visser, P. N. A. M.: Quantifying deformation in North Borneo with GPS, J.
Geod., 91, 1241–1259, https://doi.org/10.1007/s00190-017-1024-z, 2017.
Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson,
S. M., Tanyas, H., Hearne, M., and Thompson, E. M.: A Global Empirical Model
for Near-Real-Time Assessment of Seismically Induced Landslides, J. Geophys.
Res.-Earth, 123, 1835–1859, https://doi.org/10.1029/2017JF004494, 2018.
Ota, Y., Azuma, T., and Lin, Y. N.: Application of INQUA Environmental Seismic Intensity Scale to recent earthquakes in Japan and Taiwan, Geol. Soc. Lond. Spec. Publ., 316, 55–71, https://doi.org/10.1144/SP316.4, 2009.
Papathanassiou, G., Valkaniotis, S., and Ganas, A.: Spatial patterns,
controlling factors, and characteristics of landslides triggered by strike-slip faulting earthquakes: case study of Lefkada island, Greece, Bull.
Eng. Geol. Environ., 80, 3747–3765, https://doi.org/10.1007/s10064-021-02181-x, 2021.
Pescaroli, G. and Alexander, D.: Critical infrastructure, panarchies and the
vulnerability paths of cascading disasters, Nat. Hazards, 82, 175–192,
https://doi.org/10.1007/s11069-016-2186-3, 2016.
Quigley, M. C., Attanayake, J., King, A., and Prideaux, F.: A multi-hazards
earth science perspective on the COVID-19 pandemic: the potential for
concurrent and cascading crises, Environ. Syst. Decis., 40, 199–215, 2020.
Rosli, M. I., Che Ros, F., Razak, K. A., Ambran, S., Kamaruddin, S. A., Nor Anuar, A., Marto, A., Tobita, T., and Ono, Y.: Modelling Debris Flow Runout: A Case Study on the Mesilau Watershed, Kundasang, Sabah, Water, 13, 2667, https://doi.org/10.3390/w13192667, 2021a.
Rosli, M. I., Mohd Kamal, N. A., and Razak, K. A.: Assessing Earthquake-induced Debris Flow Risk in the first UNESCO World Heritage in
Malaysia, Remote Sens. Appl.: Soc. Environ., 23, 100550, https://doi.org/10.1016/j.rsase.2021.100550, 2021b.
Sapin, F., Hermawan, I., Pubellier, M., Vigny, C., and Ringenbach, J.-C.:
The recent convergence on the NW Borneo Wedge – a crustal-scale gravity
gliding evidenced from GPS, Geophys. J. Int., 193, 549–556, https://doi.org/10.1093/gji/ggt054, 2013.
Schmitt, R. G., Tanyas, H., Jessee, M. A. N., Zhu, J., Biegel, K. M., Allstadt, K. E., Jibson, R. W., Thompson, E.M., van Westen, C. J., Sato, H. P., Wald, D. J., Godt, J. W., Gorum, T., Xu, C., Rathje, E. M., and Knudsen, K. L.: An open repository of earthquake-triggered ground-failure inventories, No. 1064, US Geological Survey, https://doi.org/10.3133/ds1064, 2017.
Serva, L., Vittori, E., Comerci, V., Esposito, E., Guerrieri, L., Michetti,
A. M., Mohammadioun, B., Mohammadioun, G. C., Porfido, S., and Tatevossian,
R. E.: Earthquake Hazard and the Environmental Seismic Intensity (ESI)
Scale, Pure Appl. Geophys., 173, 1479–1515, https://doi.org/10.1007/s00024-015-1177-8, 2016.
Shah, A., Zhafri, M., Delson, J., and Navakanesh, B.: Major Strike-Slip Faults Identified Using Satellite Data in Central Borneo, SE Asia, Geosciences, 8, 156, https://doi.org/10.3390/geosciences8050156, 2018.
Silva, P. G., Pérez-López, R., Rodríguez-Pascua, M. A., Giner, J. L., Huerta, P., Bardají, T., and Martín-González, F.: Earthquake environmental effects (EEEs) triggered by the 2011 Lorca earthquake (Mw 5.2, Betic Cordillera, SE Spain): Application of the ESI-07
macroseismic scale, in: 4th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, Vol. 4: PATA Days – Seismic Hazard, Critical Facilities and Slow Active Faults, editee by: Grützner, C., Rudersdorf, A., Pérez-López, R., and Reicherter, K., 9–14 October 2013, Aachen, Germany, ISBN 978-3-00-042796-1, 2013.
Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Haji Abu, S.,
Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P., and
Spakman, W.: A decade of GPS in Southeast Asia: Resolving Sundaland motion
and boundaries, J. Geophys. Res., 112, B06420, https://doi.org/10.1029/2005JB003868, 2007.
Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M.,
Görüm, T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. G.,
Marc, O., and Hovius, N.: Presentation and Analysis of a Worldwide Database
of Earthquake-Induced Landslide Inventories: Earthquake-Induced Landslide
Inventories, J. Geophys. Res.-Earth, 122, 1991–2015, https://doi.org/10.1002/2017JF004236, 2017.
Tanyaş, H., Görüm, T., Kirschbaum, D., and Lombardo, L.: Could
road constructions be more hazardous than an earthquake in terms of mass
movement?, Nat. Hazards, 112, 639–663, https://doi.org/10.1007/s11069-021-05199-2, 2022.
Tjia, H. D.: Kundasang (Sabah) at the intersection of regional fault zones
of Quaternary age, Bull. Geol. Soc. Malaysia, 53, 59–66, https://doi.org/10.7186/bgsm53200710, 2007.
Tongkul, F.: The 2015 Ranau Earthqauke: Cause and Impact, Sabah Society J., 32, 1–28, 2016.
Tongkul, F.: Active tectonics in Sabah – seismicity and active faults, Bull. Geol. Soc. Malaysia, 64, 27–36, https://doi.org/10.7186/bgsm64201703, 2017.
USGS: M 6.0–14 km WNW of Ranau, Malaysia, USGS [data set], https://earthquake.usgs.gov/earthquakes/eventpage/us20002m5s/executive (last access: March 2022), 2018.
Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A.,
Dai, L., Xu, Q., and Huang, R.: Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism, Landslides, 16, 1551–1566, https://doi.org/10.1007/s10346-019-01187-7, 2019.
Wang, Y., Wei, S., Wang, X., Lindsey, E. O., Tongkul, F., Tapponnier, P.,
Bradley, K., Chan, C.-H., Hill, E. M., and Sieh, K.: The 2015 Mw 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia, Geosci. Lett., 4, 6, https://doi.org/10.1186/s40562-017-0072-9, 2017.
Williams, J. G., Rosser, N. J., Kincey, M. E., Benjamin, J., Oven, K. J.,
Densmore, A. L., Milledge, D. G., Robinson, T. R., Jordan, C. A., and Dijkstra, T. A.: Satellite-based emergency mapping using optical imagery:
experience and reflections from the 2015 Nepal earthquakes, Nat. Hazards
Earth Syst. Sci., 18, 185–205, https://doi.org/10.5194/nhess-18-185-2018, 2018.
Xu, C.: Preparation of earthquake-triggered landslide inventory maps using
remote sensing and GIS technologies: Principles and case studies, Geosci.
Front., 6, 825–836, https://doi.org/10.1016/j.gsf.2014.03.004, 2015.
Xu, C., Xu, X., Zhou, B., and Yu, G.: Revisions of the M 8.0 Wenchuan
earthquake seismic intensity map based on co-seismic landslide abundance, Nat. Hazards, 69, 1459–1476, https://doi.org/10.1007/s11069-013-0757-0, 2013.
Xu, C., Shyu, J. B. H., and Xu, X.: Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw=7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis, Nat. Hazards Earth Syst. Sci., 14, 1789–1818, https://doi.org/10.5194/nhess-14-1789-2014, 2014.
Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai,
J., Gao, M., and Li, K.: Optimized volume models of earthquake-triggered
landslides, Sci. Rep., 6, 29797, https://doi.org/10.1038/srep29797, 2016.
Yusoff, H. H. M., Razak, K. A., Yuen, F., Harun, A., Talib, J., Mohamad, Z.,
Ramli, Z., and Razab, R. A.: Mapping of post-event earthquake induced landslides in Sg. Mesilou using LiDAR, IOP Conf. Ser.: Earth Environ. Sci.,
37, 012068, https://doi.org/10.1088/1755-1315/37/1/012068, 2016.
Zuccaro, G., De Gregorio, D., and Leone, M. F.: Theoretical model for
cascading effects analyses, Int. J. Disast. Risk Reduct., 30, 199–215, https://doi.org/10.1016/j.ijdrr.2018.04.019, 2018.
Short summary
I mapped over 5000 landslides triggered by a moment magnitude 6.0 earthquake that occurred in 2015 in the Sabah region (Malaysia). I analyzed their number, dimension and spatial distribution by dividing the territory into 1 km2 cells. I applied the Environmental Seismic Intensity (ESI-07) scale, which allows the categorization of earthquake damage due to environmental effects. The presented approach promotes the collaboration among the experts in landslide mapping and in ESI-07 assignment.
I mapped over 5000 landslides triggered by a moment magnitude 6.0 earthquake that occurred in...
Altmetrics
Final-revised paper
Preprint