Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-3041-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3041-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Adam Emmer
CORRESPONDING AUTHOR
Institute of Geography and Regional Science, University of Graz, Graz, Austria
Simon K. Allen
Department of Geography, University of Zurich, Zurich, Switzerland
Institute for Environmental Sciences, University of Geneva, Geneva,
Switzerland
Mark Carey
Environmental Studies Program and Geography Department, University of Oregon, Eugene, Oregon, USA
Holger Frey
Department of Geography, University of Zurich, Zurich, Switzerland
Christian Huggel
Department of Geography, University of Zurich, Zurich, Switzerland
Oliver Korup
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Martin Mergili
Institute of Geography and Regional Science, University of Graz, Graz, Austria
Ashim Sattar
Department of Geography, University of Zurich, Zurich, Switzerland
Georg Veh
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Thomas Y. Chen
Columbia University, New York, New York, USA
Simon J. Cook
Geography and Environmental Science, University of Dundee, Dundee, UK
UNESCO Centre for Water Law, Policy and Science, University of Dundee, Dundee, UK
Mariana Correas-Gonzalez
Instituto Argentino de Nivología Glaciología y Ciencias
Ambientales (IANIGLA), CONICET, UNCUYO, Gobierno de Mendoza, Mendoza,
Argentina
Soumik Das
Centre for the Study of Regional Development, JNU, New Delhi, India
Alejandro Diaz Moreno
Reynolds International Ltd., Mold, UK
Fabian Drenkhan
Geography and the Environment, Department of Humanities, Pontificia Universidad
Católica del Perú, Lima, Peru
Melanie Fischer
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Walter W. Immerzeel
Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Eñaut Izagirre
Department of Geology, University of the Basque Country UPV/EHU,
Leioa, Spain
Ramesh Chandra Joshi
Department of Geography, Kumaun University, Nainital, India
Ioannis Kougkoulos
Department of Science and Mathematics, The American College of
Greece, Greece
Riamsara Kuyakanon Knapp
Department of Social Anthropology, University of Cambridge,
Cambridge, UK
Department of Culture Studies and Oriental Languages (IKOS), University of
Oslo, Oslo, Norway
Dongfeng Li
Department of Geography, National University of Singapore, Singapore, Singapore
Ulfat Majeed
Department of Geoinformatics, University of Kashmir, Srinagar, India
Stephanie Matti
University of Iceland, Reykjavík, Iceland
Holly Moulton
Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
Faezeh Nick
Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Valentine Piroton
University of Liège, Liège, Belgium
Irfan Rashid
Department of Geoinformatics, University of Kashmir, Srinagar, India
Masoom Reza
Department of Geography, Kumaun University, Nainital, India
Anderson Ribeiro de Figueiredo
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Christian Riveros
Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña (INAIGEM), Lima, Peru
National Agrarian University La Molina, Lima, Peru
Finu Shrestha
International Centre for Integrated Mountain Development (ICIMOD),
Kathmandu, Nepal
Milan Shrestha
School of Sustainability, Arizona State University, Tempe, Arizona, USA
Jakob Steiner
International Centre for Integrated Mountain Development (ICIMOD),
Kathmandu, Nepal
Noah Walker-Crawford
University College London, London, UK
Joanne L. Wood
Centre for Geography and Environmental Science, University of Exeter, Exeter, UK
Jacob C. Yde
Western Norway University of Applied Sciences, Bergen, Norway
Related authors
No articles found.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
This article is included in the Encyclopedia of Geosciences
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
This article is included in the Encyclopedia of Geosciences
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025, https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical or machine learning techniques. Our results show that this approach outperforms traditional methods, especially in remote ungauged areas, suggesting that it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
This article is included in the Encyclopedia of Geosciences
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Simon Allen, Sonam Wangchuk, and Ashim Sattar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3206, https://doi.org/10.5194/egusphere-2025-3206, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study redefines dangerous glacial lakes in Bhutan by integrating flood modelling with downstream exposure and vulnerability data. It finds that around 22,399 people, 2,613 buildings, and critical infrastructure are at risk from GLOFs. Thorthormi Tsho is classified as very high danger, with five other lakes posing high threats. Fourteen LGUs face high or very high GLOF danger, including six and three lakes not previously recognized, highlighting the need for stronger GLOF preparedness.
This article is included in the Encyclopedia of Geosciences
Jakob Steiner, Jakob Abermann, and Rainer Prinz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2424, https://doi.org/10.5194/egusphere-2025-2424, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ice in Greenland either ends in the ocean or on land and in lakes. We show that more than 95% of the margin ends on land. Ice ending in lakes is much rarer, but with 1.4% quite similar to the 2.2% ending in oceans. We also see that more than 20% of the margin ends in extremely steep, often vertical cliffs. We will now be able to compare these maps against local ice velocities, mass loss and climate to understand whether the margin shape teaches us something about the health of ice in the region.
This article is included in the Encyclopedia of Geosciences
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025, https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
Short summary
We modelled multiple glacial lake outburst flood (GLOF) scenarios (84 simulations) and tested the effect of nine key input parameters on the modelling results using r.avaflow. Our results highlight that GLOF modelling results are subject to uncertainty from the multiple input parameters. The variation in the volume of mass movement entering the lake causes the highest uncertainty in the modelled GLOF, followed by the DEM dataset and the origin of mass movement.
This article is included in the Encyclopedia of Geosciences
Oriol Pomarol Moya, Madlene Nussbaum, Siamak Mehrkanoon, Philip D. A. Kraaijenbrink, Isabelle Gouttevin, Derek Karssenberg, and Walter W. Immerzeel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1845, https://doi.org/10.5194/egusphere-2025-1845, 2025
Short summary
Short summary
Two hybrid Machine Learning (ML) approaches using meteorological data and snowpack simulations from the Crocus snow model were evaluated for daily snow water equivalent (SWE) prediction at ten locations in the Northern Hemisphere, where they improved both Crocus and traditional ML approaches. In particular, a hybrid setup augmenting the measured data with Crocus simulations considerably enhanced prediction on unseen locations, paving the way for better long-term SWE monitoring.
This article is included in the Encyclopedia of Geosciences
Maria Isabel Arango-Carmona, Paul Voit, Marcel Hürlimann, Edier Aristizábal, and Oliver Korup
EGUsphere, https://doi.org/10.5194/egusphere-2025-1698, https://doi.org/10.5194/egusphere-2025-1698, 2025
Short summary
Short summary
We studied 22 cascading landslide and torrential events in tropical mountains to understand how rainfall, slopes, and soil types interact to trigger them. We found that extreme rainfall alone is not always the cause, but long wet periods and sediment type also play a role. Our findings can help improve warning systems and reduce disaster risks in vulnerable regions.
This article is included in the Encyclopedia of Geosciences
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025, https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
Short summary
We describe in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analysing its preconditions and consequences, as well as the role of the changing climate. Our study contributes to understanding GLOF occurrence patterns in space and time and corroborates reports detailing the increasing frequency of such events in changing mountains.
This article is included in the Encyclopedia of Geosciences
Titouan Biget, Fanny Brun, Walter Immerzeel, Leo Martin, Hamish Pritchard, Emily Colier, Yanbin Lei, and Tandong Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-863, https://doi.org/10.5194/egusphere-2025-863, 2025
Short summary
Short summary
This study explore the precipitation in the southern Tibetan plateau using the water pressure of an high altitude lake and meteorological models and shows that snowfall could be much stronger on the Plateau than what is predicted by the models.
This article is included in the Encyclopedia of Geosciences
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025, https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste than by overall mass loss over the entire glacier surface.
This article is included in the Encyclopedia of Geosciences
Laura Niggli, Holger Frey, Simon Allen, Nazgul Alybaeva, Christian Huggel, Bolot Moldobekov, and Vitalii Zaginaev
EGUsphere, https://doi.org/10.5194/egusphere-2025-290, https://doi.org/10.5194/egusphere-2025-290, 2025
Short summary
Short summary
Glacial lake outburst floods pose significant risks to communities and infrastructure. Our study explores how effective different measures are in reducing such risks. Using numerical modelling, we evaluate three strategies: lowering lake levels, building a deflection dam, and creating a retention basin. We compared their hazard and exposure reduction and their costs and benefits. This offers insights that can improve GLOF risk management worldwide and support better decision-making.
This article is included in the Encyclopedia of Geosciences
Miaomiao Qi, Shiyin Liu, Zhifang Zhao, Yongpeng Gao, Fuming Xie, Georg Veh, Letian Xiao, Jinlong Jing, Yu Zhu, and Kunpeng Wu
Hydrol. Earth Syst. Sci., 29, 969–982, https://doi.org/10.5194/hess-29-969-2025, https://doi.org/10.5194/hess-29-969-2025, 2025
Short summary
Short summary
Here we propose a new mathematically robust and cost-effective model to improve glacial lake water storage estimation. We have also provided a dataset of measured water storage in glacial lakes through field depth measurements. Our model incorporates an automated calculation process and outperforms previous ones, achieving an average relative error of only 14 %. This research offers a valuable tool for researchers seeking to improve the risk assessment of glacial lake outburst floods.
This article is included in the Encyclopedia of Geosciences
Henning Åkesson, Kamilla Hauknes Sjursen, Thomas Vikhamar Schuler, Thorben Dunse, Liss Marie Andreassen, Mette Kusk Gillespie, Benjamin Aubrey Robson, Thomas Schellenberger, and Jacob Clement Yde
EGUsphere, https://doi.org/10.5194/egusphere-2025-467, https://doi.org/10.5194/egusphere-2025-467, 2025
Short summary
Short summary
We model the historical and future evolution of the Jostedalsbreen ice cap in Norway, projecting substantial and largely irreversible mass loss for the 21st century, and that the ice cap will split into three parts. Further mass loss is in the pipeline, with a disappearance during the 22nd century under high emissions. Our study demonstrates an approach to model complex ice masses, highlights uncertainties due to precipitation, and calls for further research on long-term future glacier change.
This article is included in the Encyclopedia of Geosciences
Martin Mergili, Hanna Pfeffer, Andreas Kellerer-Pirklbauer, Christian Zangerl, and Shiva Prasad Pudasaini
EGUsphere, https://doi.org/10.5194/egusphere-2025-213, https://doi.org/10.5194/egusphere-2025-213, 2025
Short summary
Short summary
We present a new version of the landslide model r.avaflow. It includes a model where different materials move on top of each other instead of mixing; a model supporting the entire range from block sliding to flowing; a model for slow-moving processes; and an interface for virtual reality visualization. Based on the results for four case studies we conclude that, at the moment, our enhancements are very useful for visualization of landslides for awareness building and environmental education.
This article is included in the Encyclopedia of Geosciences
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Brahma Dutt Vishwakarma, Jeffrey Kargel, Dan Shugar, Umesh Haritishaya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
EGUsphere, https://doi.org/10.5194/egusphere-2024-4033, https://doi.org/10.5194/egusphere-2024-4033, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the eventual disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock-ice mixtures called rock glaciers. This paper explores these scenarios.
This article is included in the Encyclopedia of Geosciences
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103, https://doi.org/10.5194/egusphere-2024-3103, 2025
Short summary
Short summary
The 1987 Parraguirre ice-rock avalanche developed into a devastating debris-flow causing loss of many lives and inflicting severe damage near Santiago, Chile. Here, we revise this event combining various observational records with modelling techniques. In this year, important snow cover coincided with warm days in spring. We further quantify the total solid volume, and forward important upward corrections for the trigger and flood volumes. Finally, river damming was key for high flow mobility.
This article is included in the Encyclopedia of Geosciences
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024, https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Short summary
We present an extensive ice thickness dataset from Jostedalsbreen ice cap that will serve as a baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 ± 22 m and an ice volume of 70.6 ±10.2 km3. Ice of less than 50 m thickness covers two narrow regions of Jostedalsbreen, and the ice cap is likely to separate into three parts in a warming climate.
This article is included in the Encyclopedia of Geosciences
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
This article is included in the Encyclopedia of Geosciences
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024, https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be the key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall–melt extremes, high snowmelt and glacier melt, freeze–thaw-modulated snow-melt and precipitation, and late-season glacier melt.
This article is included in the Encyclopedia of Geosciences
Imtiyaz Ahmad Bhat, Irfan Rashid, RAAJ Ramsankaran, Argha Banerjee, and Saurabh Vijay
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-522, https://doi.org/10.5194/essd-2023-522, 2024
Preprint withdrawn
Short summary
Short summary
A comprehensive rock glacier inventory (n = 5492) has been generated through manual delineation in a GIS environment for the western Himalayan region. The inventory has characterized each rock glacier with 22 attributes following the standard protocols. This inventory shall serve as a baseline for the future research related to rock glacier dynamics, their hydrological contribution and response to climate change.
This article is included in the Encyclopedia of Geosciences
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
This article is included in the Encyclopedia of Geosciences
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
This article is included in the Encyclopedia of Geosciences
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
This article is included in the Encyclopedia of Geosciences
Monika Pfau, Georg Veh, and Wolfgang Schwanghart
The Cryosphere, 17, 3535–3551, https://doi.org/10.5194/tc-17-3535-2023, https://doi.org/10.5194/tc-17-3535-2023, 2023
Short summary
Short summary
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the length of shadows from surrounding mountains can be used to detect gains or losses in glacier elevation.
This article is included in the Encyclopedia of Geosciences
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
This article is included in the Encyclopedia of Geosciences
Anushilan Acharya, Jakob F. Steiner, Khwaja Momin Walizada, Salar Ali, Zakir Hussain Zakir, Arnaud Caiserman, and Teiji Watanabe
Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, https://doi.org/10.5194/nhess-23-2569-2023, 2023
Short summary
Short summary
All accessible snow and ice avalanches together with previous scientific research, local knowledge, and existing or previously active adaptation and mitigation solutions were investigated in the high mountain Asia (HMA) region to have a detailed overview of the state of knowledge and identify gaps. A comprehensive avalanche database from 1972–2022 is generated, including 681 individual events. The database provides a basis for the forecasting of avalanche hazards in different parts of HMA.
This article is included in the Encyclopedia of Geosciences
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
This article is included in the Encyclopedia of Geosciences
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
This article is included in the Encyclopedia of Geosciences
Z. Xiong, D. Stober, M. Krstić, O. Korup, M. I. Arango, H. Li, and M. Werner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-W1-2023, 75–81, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, 2023
Midhat Fayaz, Shakil A. Romshoo, Irfan Rashid, and Rakesh Chandra
Nat. Hazards Earth Syst. Sci., 23, 1593–1611, https://doi.org/10.5194/nhess-23-1593-2023, https://doi.org/10.5194/nhess-23-1593-2023, 2023
Short summary
Short summary
Earthquakes cause immense loss of lives and damage to properties, particularly in major urban centres. The city of Srinagar, which houses around 1.5 million people, is susceptible to high seismic hazards due to its peculiar geological setting, urban setting, demographic profile, and tectonic setting. Keeping in view all of these factors, the present study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the northwestern Himalayas, India.
This article is included in the Encyclopedia of Geosciences
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
This article is included in the Encyclopedia of Geosciences
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
This article is included in the Encyclopedia of Geosciences
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
This article is included in the Encyclopedia of Geosciences
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
This article is included in the Encyclopedia of Geosciences
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
This article is included in the Encyclopedia of Geosciences
Iwo Wieczorek, Mateusz Czesław Strzelecki, Łukasz Stachnik, Jacob Clement Yde, and Jakub Małecki
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-364, https://doi.org/10.5194/tc-2021-364, 2022
Manuscript not accepted for further review
Short summary
Short summary
Glacial lakes development around the World has been observed since the end of the Little Ice Age. The whole process is especially rapid in Arctic region what shows last researches. One of the last regions which still has not been covered by data about changes of glacial lakes is the Svalbard Archipelago (Norway). We used remote sensing materials and methods to provide information's about changes of glacial lakes and to show major activity of glacial lakes outburst floods.
This article is included in the Encyclopedia of Geosciences
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
This article is included in the Encyclopedia of Geosciences
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021, https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
This article is included in the Encyclopedia of Geosciences
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
This article is included in the Encyclopedia of Geosciences
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
This article is included in the Encyclopedia of Geosciences
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Short summary
We explored differences in the damaging process across different flood types, regions within Germany, and six flood events through a numerical model in which the groups can learn from each other. Differences were found mostly across flood types, indicating the importance of identifying them, but there is great overlap across regions and flood events, indicating either that socioeconomic or temporal information was not well represented or that they are in fact less different within our cases.
This article is included in the Encyclopedia of Geosciences
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
This article is included in the Encyclopedia of Geosciences
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020, https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Short summary
Glaciers worldwide are shrinking, yet glaciers in parts of High Mountain Asia are growing. Using models of the regional climate and glacier growth, we reproduce the observed patterns of glacier growth and shrinkage in High Mountain Asia of the last decades. Increases in snow, in part from water that comes from lowland agriculture, have probably been more important than changes in temperature to explain the growing glaciers. We now better understand changes in the crucial mountain water cycle.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abdel-Fattah, D., Trainor, S., Hood, E., Hock, R., and Kienholz, C.: User
Engagement in Developing Use-Inspired Glacial Lake Outburst Flood Decision
Support Tools in Juneau and the Kenai Peninsula, Alaska, Front. Earth
Sci., 9, 635163, https://doi.org/10.3389/feart.2021.635163, 2021.
Aggarwal, A., Frey, H., McDowell, G., Drenkhan, F., Nüsser, M.,
Racoviteanu, A., and Hoelzle, M.: Adaptation to climate change induced water
stress in major glacierized mountain regions, Clim. Dev., 14, 665–677,
https://doi.org/10.1080/17565529.2021.1971059, 2021.
Aggarwal, S., Rai, S., Thakur, P. K., and Emmer, A.: Inventory and recently
increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya,
Geomorphology, 30, 39–54, https://doi.org/10.1016/j.geomorph.2017.06.014, 2017.
Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., and Kumari, A.: Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats, Natural Hazards, 84, 1741–1763, https://doi.org/10.1007/s11069-016-2511-x, 2016.
Allen, S. K., Zhang, G., Wang, W., Yao, T., and Bolch, T.: Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach, Sci. Bull., 64, 435–445, https://doi.org/10.1016/j.scib.2019.03.011, 2019.
Allison, E. A.: The spiritual significance of glaciers in an age of climate
change, WIREs Climate Change, 6, 493–508, https://doi.org/10.1002/wcc.354, 2015.
Anacona, P. I., Kinney, J., Schaefer, M., Harrison, S., Wilson, R., Segovia,
A., Mazzorana, B., Guerra, F., Farias, D., Reynolds, J. M., and Glasser, N. F.:
Glacier protection laws: Potential conflicts in managing glacial hazards and
adapting to climate change, Ambio, 47, 835–845,
https://doi.org/10.1007/s13280-018-1043-x, 2018.
Andreassen, L. M., Nagy, T., Kjøllmoen, B., and Leigh, J. R.: An inventory
of Norway's glaciers and ice-marginal lakes from 2018-2019 Sentinel-2 data,
J. Glaciol., 1–22, https://doi.org/10.1017/jog.2022.20, 2022.
Anyia, M., Dusaillant, A., O'Kuinghttons, J., Barcaza, G., and Bravo, S.:
GLOFs of Laguna Témpanos, glacier-dammed side lake of Glaciar Steffen,
Hielo Patagónico Norte, Chile, since 1974, Bull. Glaciol.
Res., 38, 13–24, https://doi.org/10.5331/bgr.20R01, 2020.
Atenstaedt, R.: Word cloud analysis of the BJGP: 5 years on, Br. J. Gen.
Pract., 67, 231–232, https://doi.org/10.3399/bjgp17X690833, 2017.
Bat'ka, J., Vilímek, V., Štefanová, E., Cook, S. J., and Emmer,
A.: Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru:
Historic Events and Current Susceptibility, Water, 12, 2664,
https://doi.org/10.3390/w12102664, 2020.
Blauvelt, D. J., Russell, A. J., Large, A. R. G., Tweed, F. S., Hiemstra, J. F.,
Kulessa, B., Evans, D. J. A., and Waller, R. I.: Controls on
jokulhlaup-transported buried ice melt-out at Skeioararsandur, Iceland:
Implications for the evolution of ice-marginal environments, Geomorphology,
360, 107164, https://doi.org/10.1016/j.geomorph.2020.107164, 2020.
Buckel, J., Otto, J. C., Prasicek, G., and Keuschnig, M.: Glacial lakes in
Austria – Distribution and formation since the Little Ice Age, Global
Planet. Change, 164, 39–51, https://doi.org/10.1016/j.gloplacha.2018.03.003, 2018.
Bureau of Reclamation: Guidelines for defining inundated areas downstream from Bureau of Reclamation dams, Reclamation Planning Instruction No. 82–11, U.S. Department of the Interior, Bureau of Reclamation, Denver, 25, 1982.
Byers, A. C., Rounce, D.R., Shugar, D. H., Lala, J. M., Byers, E. A., and Regmi, D.: A rockfall-induced glacial lake outburst flood, Upper Barun Valley,
Nepal, Landslides, 16, 533–549, https://doi.org/10.1007/s10346-018-1079-9, 2019.
Carey, M.: Living and dying with glaciers: people's historical
vulnerability to avalanches and outburst floods in Peru, Glob. Planet.
Change, 47, 122–134, https://doi.org/10.1016/j.gloplacha.2004.10.007, 2005.
Carey, M.: In the Shadow of Melting Glaciers: Climate Change and Andean
Society, Oxford University Press, New York, USA,
https://doi.org/10.1093/acprof:oso/9780195396065.001.0001, 2010.
Carey, M., Huggel, C., Bury, J., Portocarrero, C., and Haeberli, W.: An
Integrated Socio-Environmental Framework for Glacier Hazard Management and
Climate Change Adaptation: Lessons from Lake 513, Cordillera Blanca, Peru,
Clim. Change, 112, 733–767, https://doi.org/10.1007/s10584-011-0249-8, 2012.
Carey, M., Moulton, H., Barton, J., Craig, D., Provant, Z., Shoop, C.,
Travers, J., Trombley, J., and Uscanga, A.: Justicia glaciar en Los Andes y
más allá, Ambiente, Comportamiento y Sociedad, 3, 28–38,
https://doi.org/10.51343/racs.v3i2.584, 2020.
Carey, M., McDowell, G., Huggel, C., Marshall, B., Moulton, H.,
Portocarrero, C., Provant, Z., Reynolds, J. M., and Vicuña, L.: A
socio-cryospheric systems approach to glacier hazards, glacier runoff
variability, and climate change, in: Snow
and Ice-Related Hazards, Risks, and Disasters, edited by: Haeberli, W., Whiteman, C., Elsevier, Amsterdam, the Netherlands, 215–257,
https://doi.org/10.1016/B978-0-12-817129-5.00018-4 2021.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts
of glacier outburst floods, Glob. Planet. Chang., 144, 1–16,
https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Carrivick, J. L. and Tweed, F. S.: A review of glacier outburst floods in
Iceland and Greenland with a megafloods perspective, Earth-Sci. Rev.,
196, 102876, https://doi.org/10.1016/j.earscirev.2019.102876, 2019.
Carrivick, J. L., Tweed, F. S., Ng, F., Quincey, D. J., Mallalieu, J.,
Ingeman-Nielsen, T., Mikkelsen, A. B., Palmer, S. J., Yde, J. C., Homer, R.,
Russell, A. J., and Hubbard, A.: Ice-dammed lake drainage evolution at Russell
Glacier, West Greenland, Front. Earth Sci., 5, 100,
https://doi.org/10.3389/feart.2017.00100, 2017.
Cenderelli D. A. and Wohl E. E.: Flow hydraulics and geomorphic effects of
glacial-lake outburst floods in the Mount Everest region, Nepal, Earth
Surf. Proc. Land., 28, 385–407, https://doi.org/10.1002/esp.448, 2003.
Cicoira, A., Blatny, L., Li, X., Trottet, B., and Gaume, J.: Towards a
predictive multi-phase model for alpine mass movements and process cascades,
preprint, https://doi.org/10.31223/X59S51, 2021.
Clague, J. J. and Evans, S. G.: A review of catastrophic drainage of
moraine-dammed lakes in British Columbia, Quat. Sci. Rev., 19,
1763–1783, https://doi.org/10.1016/S0277-3791(00)00090-1, 2000.
Clague, J. J. and O'Connor, J. E.: Glacier-related outburst floods, in: Snow and ice-related hazards, risks, and disasters, edited by: Haeberli, W. and Whiteman, C., Elsevier, Amsterdam, The Netherlands, 487–519,
https://doi.org/10.1016/B978-0-12-817129-5.00019-6, 2015.
Clague, J. J., Huggel, C., Korup, O., and McGuire, B.: Climate change and
hazardous processes in high mountains, Revista de la Asociación
Geológica Argentina, 69, 328–338, https://doi.org/10.5167/uzh-77920, 2012.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.:
Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya,
Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Correas-Gonzalez, M., Moreiras, S., Jomelli, V., and Arnaud-Fassetta, G.:
Ice-dammed lake outburst flood risk in the Plomo basin, Central Andes
(33∘ S): Perspectives from historical events, Cuadernos de
Investigación Geográfica, 46, 223–249, 2020.
Costa, J. E.: Floods from dam failures, U.S. Geological Survey, Open-File Rep. No. Denver, 54, 85–560, 1985.
Costa, J. E. and Schuster, R. L.: The formation and failure of natural dams,
Geol. Soc. Am. Bull., 100, 1054–1068, https://doi.org/10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2, 1988.
Da Silva, J. A. T. and Dobranszki, J.: Multiple versions of the h-index:
Cautionary use for formal academic purposes, Scientometrics, 115,
1107–1113, https://doi.org/10.1007/s11192-018-2680-3, 2018.
Dayirov, M. and Narama, C.: Formation and Outburst of the Toguz-Bulak
Glacial Lake in the Northern Teskey Range, Tien Shan, Kyrgyzstan,
Geosciences, 10, 468, https://doi.org/10.3390/geosciences10110468, 2020.
Drenkhan, F., Huggel, C., Guardamino, L., and Haeberli, W.: Managing risks
and future options from new lakes in the deglaciating Andes of Peru: The
example of the Vilcanota-Urubamba basin, Sci. Total Environ.,
665, 465–483, https://doi.org/10.1016/j.scitotenv.2019.02.070, 2019.
Emmer, A.: Geomorphologically effective floods from moraine-dammed lakes in
the Cordillera Blanca, Peru. Quat. Sci. Rev., 177, 220–234,
https://doi.org/10.1016/j.quascirev.2017.10.028, 2017.
Emmer, A.: GLOFs in the WOS: bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of Science, 1979–2016), Nat. Hazards Earth Syst. Sci., 18, 813–827, https://doi.org/10.5194/nhess-18-813-2018, 2018.
Emmer, A.: The careers behind and the impact of solo author articles in
Nature and Science, Scientometrics, 120, 825–840, https://doi.org/10.1007/s11192-019-03145-5, 2019.
Emmer, A., Cuřín, V., Daněk, J., Duchková, H., and Krpec,
P.: The Top-Viewed Cryosphere Videos on YouTube: An Overview, Geosciences,
9, 181, https://doi.org/10.3390/geosciences9040181, 2019.
Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H. and Huggel, C.:
70 years of lake evolution and glacial lake outburst floods in the
Cordillera Blanca (Peru) and implications for the future, Geomorphology,
365, 107178, https://doi.org/10.1016/j.geomorph.2020.107178, 2020.
Emmer, A., Wood, J. L., Cook, S. J., Harrison, S., Wilson, R., Diaz-Moreno,
A., Reynolds, J. M., Torres, J. C., Yarleque, C., Mergili, M., Jara, H. W.,
Bennett, G., Caballero, A., Glasser, N. F., Melgarejo, E., Riveros, C.,
Shannon, S., Turpo, E., Tinoco, T., Torres, L., Garay, D., Villafane, H.,
Garrido, H., Martinez, C., Apaza, N., Araujo, J., and Poma, C.: 160 Glacial
lake outburst floods (GLOFs) across the Tropical Andes since the Little Ice
Age, Global Planet. Change, 208, 103722,
https://doi.org/10.1016/j.gloplacha.2021.103722, 2022.
Evans, S. G. and Clague, J. J.: Recent climatic change and catastrophic
processes in mountain environments, Geomorphology, 10, 107–128,
https://doi.org/10.1016/0169-555X(94)90011-6, 1994.
Figueiredo, A. R., Simões, J. C., Menegat, R., Strauss, S., and
Rodrigues, B. B.: Perceptions of and adaptation to climate change in the
Cordillera Blanca, Peru, Sociedade & Natureza, 31, 1–22,
https://doi.org/10.14393/SN-v31-2019-45623, 2019.
Fire, M. and Guestrin, C.: Over-optimization of academic publishing metrics:
observing Goodhart's Law in action, Gigascience, 8, giz053,
https://doi.org/10.1093/gigascience/giz053, 2019.
Fischer, M., Korup, O., Veh, G., and Walz, A.: Controls of outbursts of moraine-dammed lakes in the greater Himalayan region, The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, 2021.
Frey, H., Huggel, C., Chisolm, R. E., Baer, P., McArdell, B., Cochachin, A.,
and Portocarrero, C.: Multi-Source Glacial Lake Outburst Flood Hazard
Assessment and Mapping for Huaraz, Cordillera Blanca, Peru, Front. Earth Sci., 6, 210, https://doi.org/10.3389/feart.2018.00210, 2018.
Frey, L., Frey, H., Huss, M., Allen, S., Farinotti, D., Huggel, C., Emmer, A., and Shugar, D.: A global inventory of potential future glacial lakes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4774, https://doi.org/10.5194/egusphere-egu21-4774, 2021.
Froehlich, D. C.: Peak outflow from breached embankment dam, J. Water Resour. Plan. Manage. Div., 121, 90–97, https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(90), 1995.
Furian, W., Loibl, D. and Schneider, C.: Future glacial lakes in High
Mountain Asia: an inventory and assessment of hazard potential from
surrounding slopes, J. Glaciol., 67, 653–670,
https://doi.org/10.1017/jog.2021.18, 2021.
Gagné, K.: Caring for Glaciers: Land, Animals, and Humanity in the
Himalayas, University of Washington Press, Seattle, 258 p., ISBN 9780295744001, 2019.
Gall, M., Nguyen, K. H., and Cutter, L. S.: Integrated research on disaster
risk: Is it really integrated?, Int. J. Disast. Risk Re., 12, 255–267, https://doi.org/10.1016/j.ijdrr.2015.01.010, 2015.
GAPHAZ: Assessment of Glacier and Permafrost Hazards in Mountain
Regions – Technical Guidance Document, in: Standing Group on Glacier and Permafrost Hazards in
Mountains (GAPHAZ) of the International Association of Cryospheric Sciences
(IACS) and the International Permafrost Association (IPA), prepared and edited by: Allen, S., Frey, H.,
Huggel, C. et al., Zurich,
Switzerland/Lima, Peru, 72 p., https://doi.org/10.13140/RG.2.2.26332.90245, 2017.
Gaume, J., Gast, T., Teran, J., van Herwijnen, A., and Jiang, C.: Dynamic
anticrack propagation in snow, Nat. Commun., 9, 3047,
https://doi.org/10.1038/s41467-018-05181-w, 2018.
Gearheard, S. F., Kielsen Holm, L., Huntington, H., Mello Leavitt, J.,
Mahoney, A. R., Opie, M., Oshima, T., and Sanguya, J.: The Meaning of Ice:
People and Sea Ice in Three Arctic Communities, Hanover, Germany, NH: International Polar Institute Press, 366 p., ISBN 9780982170397, 2013.
Geertsema, M., Menounous, B., Bullard, G., Carrivick, J. L., Clague, J. J.,
Dai, C., Donati, D., Ekstrom, G., Jackson, J. M., Lynett, P., Pichierri, M.,
Pon, A., Shugar, D. H., Stead, D., Del Bel Belluz, J., Friele, P.,
Giesbrecht, I., Heathfield, D., Millard, T., Nasonova, S., Schaeffer, A. J.,
Ward, B. C., Blaney, E., Brillon, C., Bunn, C., Floyd, W., Higman, B.,
Hughes, K. E., McInnes, W., Mukherjee, K., and Sharp, M. A.: The 28 November 2020 Landslide, Tsunami, and Outburst Flood – A Hazard Cascade Associated With Rapid Deglaciation at Elliot Creek, British Columbia, Canada, Geophys.
Res. Lett., 49, e2021GL096716, doi: e2021GL096716, 2022.
Gharehchahi, S., James, W., Bhardwaj, A., Jensen, J., Sam, L., Ballinger,
T. J., and Butler, D. R.: Glacier Ice Thickness Estimation and Future Lake
Formation in Swiss Southwestern Alps-The Upper Rhône Catchment: A VOLTA
Application, Remote Sens., 12, 3443, https://doi.org/10.3390/rs12203443, 2020.
Ghosh, T. K., Jakobsen, F., Joshi, M., and Pareta, K.: Extreme rainfall and
vulnerability assessment: case study of Uttarakhand rivers, Nat. Hazard.,
99, 665–687, https://doi.org/10.1007/s11069-019-03765-3, 2019.
Gruber, F. E. and Mergili, M.: Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS, Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, 2013.
Haeberli, W.: Frequency characteristics of glacier floods in The Swiss Alps, Ann. Glaciol., 4, 85–90, 1983.
Haeberli, W. and Drenkhan, F.: Future Lake Development in Deglaciating
Mountain Ranges, in: Oxford research encyclopedias –
natural hazard science, edited by: Cutter, L. S., Oxford University Press, 1–45, https://doi.org/10.1093/acrefore/9780199389407.013.361, 2022.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to
landslides from degrading permafrost into new lakes in de-glaciating
mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017.
Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts, R. A., Emmer, A., Glasser, N., Haritashya, U. K., Klimeš, J., Reinhardt, L., Schaub, Y., Wiltshire, A., Regmi, D., and Vilímek, V.: Climate change and the global pattern of moraine-dammed glacial lake outburst floods, The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, 2018.
Haverkamp, J.: Collaborative survival and the politics of livability:
Towards adaptation otherwise, World Development, 137, 1–14,
https://doi.org/10.1016/j.worlddev.2020.105152, 2021.
Hewitt, K.: Natural dams and outburst floods of the Karakoram Himalaya, in: Aspects of Alpine and High Mountain Areas, Proceedings of the Exeter Symposium Hydrological, July 1982, IAHS, Great Yarmouth (UK), 259–269, 1983.
Holm, L. K., Grenoble, L. A., and Virginia, R. A.: A praxis for ethical research
and scientific conduct in Greenland, Etudes Inuit, Inuit Studies, 35,
187–200, https://doi.org/10.7202/1012841ar, 2011.
Hovden, A. and Havnevik, H.: Balancing the sacred landscape: environmental
management in Limi, North-Western Nepal, in: Cosmopolitical Ecologies Across Asia: Places and Practices of Power in Changing Environments, edited by: Kuyakanon, R., Diemberger, H., and Sneath, D., Routledge, New York, 83–101, eBook ISBN 9781003036272, 2021.
How, P., Messerli, A., Mätzler, E., Santoro, M., Wiesmann, A., Caduff,
R., Langley, K., Bojesen, M. H., Kääb, A., and Carrivick, J.:
Greenland-wide inventory of ice marginal lakes using a multi-method
approach, Sci. Rep., 11, 4481, https://doi.org/10.1038/s41598-021-83509-1, 2021.
Huggel, C., Carey, M., Clague, J., and Kääb, A.: The
High-Mountain Cryosphere: Environmental Changes and Human Risks, New York,
Cambridge University Press, 376 p., https://doi.org/10.1017/CBO9781107588653, 2015.
Huggel, C., Carey, M., Emmer, A., Frey, H., Walker-Crawford, N., and Wallimann-Helmer, I.: Anthropogenic climate change and glacier lake outburst flood risk: local and global drivers and responsibilities for the case of lake Palcacocha, Peru, Nat. Hazards Earth Syst. Sci., 20, 2175–2193, https://doi.org/10.5194/nhess-20-2175-2020, 2020a.
Huggel, C., Cochachin, A., Drenkhan, F., Fluixá-Sanmartín, J.,
Frey, H., García Hernández, J., Jurt, C., Muñoz, R., Price, K.,
and Vicuña, L.: Glacier Lake 513, Peru: Lessons for early warning
service development, WMO Bull., 69, 45–52, 2020b.
Jacquet, J., McCoy, S. W., McGrath, D., Nimick, D. A., Fahey, M.,
O'Kuinghttons, J., Friesen, B. A., and Leidich, J.: Hydrologic and geomorphic
changes resulting from episodic glacial lake outburst floods: Rio Colonia,
Patagonia, Chile, Geophys. Res. Lett., 44, 854–864,
https://doi.org/10.1002/2016GL071374, 2017.
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E. J., Fujita, K., Geertsema, M., Miles, E. S., Steiner, J., Anderson, E., Bajracharya, S., Bawden,B. W., Breashears, D. F., Byers, A., Collins, B., Dhital, M. R., Donnellan, A., Evans, T. L., Geai, M. L., Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut, K., Huyck, C., Immerzeel, W. W., Li, J., Jibson, R., Kaab, A., Khanal, N. R., Kirschbaum, D., Kraaijenbrink, P. D. A., Lamsal, D., Shiyin, L., Mingyang, L., McKinney, D., Nahirnick, D. K., Zhuotong, N., Ojha, S., Olsenholler, J., Painter, T. H., Pleasants, M., Pratima, K. C., Yuan, Q. I., Raup, B. H., Regmi, D., Rounce, D. R., Sakai, A., Donghui, S., Shea, J. M., Shrestha, A. B., Shukla, A., Stumm, D., van der Kooij, M., Voss, K., Xin, W., Weihs, B., Lizong, W., Xiaojun, Y., Yoder, M. R., and Young, N.: Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake, Science, 351, aac8353-1–aac8353-10, https://doi.org/10.1126/science.aac8353, 2016.
Kelman, I., Mercer, J., and Gaillard, J. C.: Indigenous knowledge and disaster risk reduction, Geography, 97, 12–21, 2012.
Khan, G., Ali, S., Xu, X. K., Qureshi, J. A., Ali, M., and Karim, I.: Expansion
of Shishper Glacier lake and recent glacier lake outburst flood (GLOF),
Gilgit-Baltistan, Pakistan, Environ. Sci. Pollut. Res.,
28, 20290–20298, https://doi.org/10.1007/s11356-020-11929-z, 2021.
Kienholz, C., Pierce, J., Hood, E., Amundson, J. M., Wolken, G. J., Jacobs,
A., Hart, S., Jones, K. W., Abdel-Fattah, D., Johnson, C., and Conaway, J. S.:
Deglacierization of a Marginal Basin and Implications for Outburst Floods,
Mendenhall Glacier, Alaska. Front. Earth Sci., 8, 137,
https://doi.org/10.3389/feart.2020.00137, 2020.
Kirschbaum, D., Watson, C. S., Rounce, D. R., Shugar, D. H., Kargel, J. S., Haritashya, U. K., Amatya, P., Shean, D., Anderson, E. R., and Jo, M.: The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia. Frontiers in Earth Science, 7, 197, https://doi.org/10.3389/feart.2019.00197, 2019.
Klimeš, J., Novotný, J., Cochachin, A. R., Balek, J.,
Zahradníček, P., Sana, H., Frey, H., René, M.,
Štěpánek, P., Meitner, J., and Junghardt, J.: Paraglacial Rock
Slope Stability Under Changing Environmental Conditions, Safuna Lakes,
Cordillera Blanca Peru, Front. Earth Sci., 9, 607277,
https://doi.org/10.3389/feart.2021.607277, 2021.
Kougkoulos, I., Cook, S. J., Edwards, L. A., Clarke, L. J., Symeonakis, E.,
Dortch, J. M., and Nesbitt, K.: Modelling glacial lake outburst flood impacts
in the Bolivian Andes, Nat. Hazard., 94, 1415–1438,
https://doi.org/10.1007/s11069-018-3486-6, 2018a.
Kougkoulos, I., Cook, S. J., Jomelli, V., Clarke, L., Symeonakis, E., Dortch,
J. M., Edwards, L. A., and Merad, M.: Use of multi-criteria decision analysis
to identify potentially dangerous glacial lakes, Sci. Total Environ., 621, 1453–1466, https://doi.org/10.1016/j.scitotenv.2017.10.083, 2018b.
Kumar, R., Bahuguna, I. M., Ali, S. N., and Singh, R.: Lake Inventory and
Evolution of Glacial Lakes in the Nubra-Shyok Basin of Karakoram Range,
Earth Sys. Environ., 4, 57–70, https://doi.org/10.1007/s41748-019-00129-6,
2020.
Lambert, S. J. and Scott, J. C.: International Disaster Risk Reduction
Strategies and Indigenous Peoples, International Indigenous Policy Journal,
10, 2, https://doi.org/10.18584/iipj.2019.10.2.2, 2019.
Li, D. Y. and Zhou, X. L.: “Leave your footprints in my words” – A
georeferenced word-cloud approach, Environ. Plan. A, 49, 489–492,
https://doi.org/10.1177/0308518X16662273, 2017.
Li, D., Lu, X., Overeem, I., Walling, D. E., Syvitski, J., Kettner, A. J.,
Bookhagen, B., Zhou, Y., and Zhang, T.: Exceptional increases in fluvial
sediment fluxes in a warmer and wetter High Mountain Asia, Science,
374, 599–603, https://doi.org/10.1126/science.abi9649, 2021.
Li, D., Lu, X., Walling, D. E., Zhang, T., Steiner, J. F., Wasson, R. J.,
Harrison, S., Nepal, S., Nie, Y., Immerzeel, W. W., Shugar, D. H., Koppes, M.,
Lane, S., Zeng, Z., Sun, W., Yegorov, A., and Bolch, T:: High Mountain Asia
hydropower systems threatened by climate-driven landscape instability, Nat.
Geosci., 15, 520–530, 2022.
Lindgren, P. R., Farquharson, L. M., Romanovsky, V. E., and Grosse, G.:
Landsat-based lake distribution and changes in western Alaska permafrost
regions between the 1970s and 2010s, Environ. Res. Lett., 16,
025006, https://doi.org/10.1088/1748-9326/abd270, 2021.
MacDonald, T. C. and Langridge-Monopolis, J.: Breaching Charateristics of Dam Failures, J. Hydraul. Eng., 110, 567–586, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567), 1984.
Maharjan, S. B., Steiner, J. F., Shrestha, A. B., Maharjan, A., Nepal, S.,
Shrestha, M. S., Bajracjarya, B., Rasul, G., Shrestha, M., Jackson, M., and
Gupta, N.: The Melamchi flood disaster: cascading hazard and the need for
multihazard risk management. International Centre for Integrated Mountain
Development (ICIMOD), Kathmandu, 19 p., https://doi.org/10.53055/ICIMOD.981, 2021.
Mal, S., Allen, S., Frey, H., Huggel, C., and Dimri, A. P.: Sector-wise
assessment of Glacial Lake Outburst Flood danger in the Indian Himalayan
Region, Mt. Res. Dev., 41, R1–R12, https://doi.org/10.1659/MRD-JOURNAL-D-20-00043.1, 2021.
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., and Delgado
López-Córzar, E.: Google Scholar, Web of Science, and Scopus: A
systematic comparison of citations in 252 subject categories, J.
Informetrics, 12, 1160–1177, https://doi.org/10.1016/j.joi.2018.09.002, 2018.
Matti, S. and Ögmundardóttir, H.: Local knowledge of emerging
hazards: Instability above an Icelandic glacier, Int. J. Disast. Risk Reduction, 58, 102187, https://doi.org/10.1016/j.ijdrr.2021.102187, 2021.
Matti, S., Ögmundardóttir, H., Aðalgeirsdóttir, G., and
Reichardt, U.: Psychosocial response to a no-build zone: Managing landslide
risk in Iceland, Land Use Policy, 117, 106078,
https://doi.org/10.1016/j.landusepol.2022.106078, 2022a.
Matti, S., Ögmundardóttir, H., Aðalgeirsdóttir, G., and
Reichardt, U.: Communicating the risk of a large landslide above a glacier
with foreign tourism employees in Iceland, Mt. Res. Dev., 42, D1–D12, https://doi.org/10.1659/MRD-JOURNAL-D-21-00051.1, 2022b.
McGee, R. G. and Craig, J. C.: What is being published? A word cloud of titles
from the journal of paediatrics and child health, J. Paediatr. Child Health,
48, 452, https://doi.org/10.1111/j.1440-1754.2012.02455.x, 2012.
McKillop, R. J. and Clague, J. J.: Statistical, remote sensing-based
approach for estimating the probability of catastrophic drainage
from moraine-dammed lakes in southwestern British Columbia,
Global Planet. Change, 56, 153–171, 2007a.
McKillop, R. J. and Clague, J. J.: A procedure for making objective
preliminary assessments of outburst flood hazard from moraine-dammed lakes in southwestern British Columbia, Nat. Hazards,
41, 131–157, 2007b.
Mercer, J., Kelman, I., Taranis, L., and Suchet-Pearson, S.: Framework for
integrating indigenous and scientific knowledge for disaster risk reduction,
Disasters, 34, 214–239, https://doi.org/10.1111/j.1467-7717.2009.01126.x, 2010.
Mergili, M., Krenn, J., and Chu, H.-J.: r.randomwalk v1, a multi-functional conceptual tool for mass movement routing, Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, 2015.
Mergili, M. and Pudasaini, S. P.: r.avaflow – The open source mass flow
simulation model, https://www.avaflow.org/, last access: 1 October 2021.
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017.
Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J.-T.,
Huggel, C., and Pudasaini, S. P.: How well can we simulate complex
hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the
Santa Cruz Valley (Cordillera Blanca, Perú), Earth Surf. Proc.
Land., 43, 1373–1389, https://doi.org/10.1002/esp.4318, 2018a.
Mergili, M., Frank, B., Fischer, J.-T., Huggel, C., and Pudasaini, S. P.:
Computational experiments on the 1962 and 1970 landslide events at
Huascarán (Peru) with r.avaflow: Lessons learned for predictive mass
flow simulations, Geomorphology, 322, 15–28,
https://doi.org/10.1016/j.geomorph.2018.08.032, 2018b.
Mergili, M., Pudasaini, S. P., Emmer, A., Fischer, J.-T., Cochachin, A., and Frey, H.: Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru), Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, 2020.
Mölg, N., Huggel, C., Herold, T., Storck, F., Allen, S., Haeberli, W.,
Schaub, Y., and Odermatt, D.: Inventory and evolution of glacial lakes since
the Little Ice Age: Lessons from the case of Switzerland, Earth Surf.
Proc. Land., 46, 2551–2564, https://doi.org/10.1002/esp.5193, 2021.
Mongeon, P. and Paul-Hus, A.: The journal coverage of Web of Science and
Scopus: a comparative analysis, Scientometrics, 106, 213–228,
https://doi.org/10.1007/s11192-015-1765-5, 2016.
Moulton, H., Carey, M., Huggel, C., and Motschmann, A.: Narratives of ice
loss: New approaches to shrinking glaciers and climate change adaptation,
Geoforum, 125, 47–56, https://doi.org/10.1016/j.geoforum.2021.06.011, 2021.
Motschmann, A., Huggel, C., Carey, M., Moulton, H., Walker-Crawford, N., and
Muñoz, R.: Losses and damages connected to glacier retreat in the
Cordillera Blanca, Peru, Clim. Change, 162, 837–858,
https://doi.org/10.1007/s10584-020-02770-x, 2020a.
Motschmann, A., Huggel, C., Muñoz, R., and Thür, A.: Towards
integrated assessments of water risks in deglaciating mountain areas: water
scarcity and GLOF risk in the Peruvian Andes, Geoenviron. Dis., 7,
1–18, https://doi.org/10.1186/s40677-020-00159-7, 2020b.
Muhammad, S., Li, J., Steiner, J. F., Shrestha, F., Shah, G. M., Berthier, E.,
Guo, L., Wu, L.-X., and Tian, L.: A holistic view of Shisper Glacier surge
and outburst floods: from physical processes to downstream impacts,
Geomat., Nat. Hazard. Risk, 12, 2755–2775,
https://doi.org/10.1080/19475705.2021.1975833, 2021.
Muneeb, F., Baig, S. U., Khan, J. A., and Khokhar, F.: Inventory and GLOF
Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum,
Remote Sens., 13, 1794, https://doi.org/10.3390/rs13091794, 2021.
Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., and Liu, S.: An inventory
of historical glacial lake outburst floods in the Himalayas based on remote
sensing observations and geomorphological analysis, Geomorphology, 308,
91–106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
Ogier, C., Werder, M. A., Huss, M., Kull, I., Hodel, D., and Farinotti, D.: Drainage of an ice-dammed lake through a supraglacial stream: hydraulics and thermodynamics, The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, 2021.
Otto, J.-C., Helfricht, K., Prasicek, G., Binder, D., and Kueschnig, M.:
Testing the performance of ice thickness models to estimate the formation of
potential future glacial lakes in Austria, Earth Surf. Proc.
Land., 47, 723–741, https://doi.org/10.1002/esp.5266, 2021.
Papathoma-Köhle, M., Schlögl, M., Dosser, L., Roesch, F., Borga, M.,
Erlicher, M., Keiler, M., and Fuchs, S.: Physical vulnerability to dynamic
flooding: Vulnerability curves and vulnerability indices, J.
Hydrol., 607, 127501, https://doi.org/10.1016/j.jhydrol.2022.127501, 2022.
Petrov, M. A., Sabitov, T. Y., Tomashevskaya, I. G., Glazirin, G. E.,
Chernomorets, S. S., Savernyuk, E. A., Tutubalina, O. V., Petrakov, D. A.,
Sokolov, L. S., Dokukin, M. D., Mountrakis, G., Ruiz-Villanueva, V. and
Stoffel, M.: Glacial lake inventory and lake outburst potential in
Uzbekistan, Sci. Total Environ., 592, 228–242,
https://doi.org/10.1016/j.scitotenv.2017.03.068, 2017.
Pudasaini, S. P.: A general two-phase debris flow model, J.
Geophys. Res., 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P.: A full description of generalized drag in mixture mass
flows, Engin. Geol., 265, 105429, https://doi.org/10.1016/j.enggeo.2019.105429,
2020.
Pudasaini, S. P. and Fischer, J. T.: A mechanical erosion model for two-phase
mass flows, Int. J. Multiphase Flow., 132, 103416,
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103416, 2020a.
Pudasaini, S. P. and Fischer, J. T.: A mechanical model for phase separation
in debris flow, Int. J. Multiphase Flow., 129, 103292,
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103292, 2020b.
Pudasaini, S. P. and Krautblatter, M.: The Mechanics of Landslide Mobility
with Erosion, [physics.geo-ph], Perprint, arXiv:2103.14842, https://doi.org/10.48550/arXiv.2103.14842, 2021.
Pudasaini, S. P. and Mergili, M.: A Multi-Phase Mass Flow Model, JGR Earth Surface, 124, 2920–2942, https://doi.org/10.1029/2019JF005204, 2019.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the
Himalayas, Quaternary International, 65/66, 31–47,
https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Rinzin, S., Zhang, G., and Wangchuk, S.: Glacial Lake Area Change and Potential
Outburst Flood Hazard Assessment in the Bhutan Himalaya, Front. Earth Sci., 9, 775195, https://doi.org/10.3389/feart.2021.775195, 2021.
Roe, G. H., Christian, J. E., and Marzeion, B.: On the attribution of industrial-era glacier mass loss to anthropogenic climate change, The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, 2021.
Sandstrom, U. and van den Besselaar, P.: Quantity and/or quality? The
importance of publishing many papers, PLoS ONE, 11, e0166149,
https://doi.org/10.1371/journal.pone.0166149, 2016.
Sattar, A., Goswami, A., and Kulkarni, A.: Application of 1D and 2D
hydrodynamic modeling to study glacial lake outburst flood (GLOF) and its
impact on a hydropower station in Central Himalaya, Nat. Hazard., 97,
535–553, https://doi.org/10.1007/s11069-019-03657-6, 2019a.
Sattar, A., Goswami, A., and Kulkarni, A.: Hydrodynamic moraine-breach
modeling and outburst flood routing – A hazard assessment of the South
Lhonak lake, Sikkim. Sci. Total Environ., 668, 362–378,
https://doi.org/10.1016/j.scitotenv.2019.02.388, 2019b.
Sattar, A., Goswami, A., Kulkarni, A.V., and Emmer, A.: Lake Evolution,
Hydrodynamic Outburst Flood Modeling and Sensitivity Analysis in the Central
Himalaya: A Case Study, Water, 12, 237, https://doi.org/10.3390/w12010237, 2020.
Sattar, A., Haritashya, U. K., Kargel, J. S., Leonard, G. J., Shugar, D. H., and
Chase, D. V.: Modeling lake outburst and downstream hazard assessment of the
Lower Barun Glacial Lake, Nepal Himalaya, J. Hydrology, 598, 126208,
https://doi.org/10.1016/j.jhydrol.2021.126208, 2021.
Schaub, Y., Huggel, C., and Cochachin, A.: Ice-avalanche scenario elaboration
and uncertainty propagation in numerical simulation of
rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513,
Peru, Landslides 13, 1445–1459, https://doi.org/10.1007/s10346-015-0658-2, 2016.
Schmidt, S., Nusser, M., Baghel, R., and Dame, J.: Cryosphere hazards in
Ladakh: the 2014 Gya glacial lake outburst flood and its implications for
risk assessment, Nat. Hazard., 104, 2071–2095,
https://doi.org/10.1007/s11069-020-04262-8, 2020.
Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J.: Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru, Adv. Geosci., 35, 145–155, https://doi.org/10.5194/adgeo-35-145-2014, 2014.
Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Korup, O.:
Uncertainty in the Himalayan energy–water nexus: Estimating regional
exposure to glacial lake outburst floods, Environ. Res. Lett.,
11, 074005, https://doi.org/10.1088/1748-9326/11/7/074005, 2016.
Scopus: Scopus – abstract and citation database, Elsevier, Scopus [data set], https://www.scopus.com/home.uri, last access: 1 July 2022.
Sherpa, S. F., Shrestha, M., Eakin, H., and Boone, C. G.: Cryospheric hazards
and risk perceptions in the Sagarmatha (Mt. Everest) National Park and
Buffer Zone, Nepal, Nat. Hazard., 96, 607–626, https://doi.org/10.1007/s11069-018-3560-0, 2019.
Sherry, J., Curtis, A., Mendham, E., and Toman, E.: Cultural landscapes at
risk: Exploring the meaning of place in a sacred valley of Nepal, Global
Environmental Change, 52, 190–200, 10.1016/j.gloenvcha.2018.07.007, 2018.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman, K.:
Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar,
A., Schwanghart, W., McBride, S., Van Wyk de Vries, M., Mergili, M., Emmer,
A., Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier,
E., Carrivick, J. L., Clague, J.J., Dokukin, M., Dunning, S. A., Frey, H.,
Gascoin, S., Haritashya, U. K., Huggel, C., Kääb, A., Kargel, J. S.,
Kavanaugh, J. L., Lacroix, P., Petley, D., Rupper, S., Azam, M. F., Cook,
S. J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes, J., Gnyawali, K. R.,
Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal,
S., Muhuri, A., Noetzli, J., Paul, F., Rashid, I., Sain, K., Steiner, J.,
Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice avalanche
caused the 2021 disaster at Chamoli, Indian Himalaya, Science, 373,
300–306, https://doi.org/10.1126/science.abh4455, 2021.
Stefaniak, A. M., Robson, B. A., Cook, S. J., Clutterbuck, B., Midgley, N. G., and Labadz, J. C.: Mass balance and surface evolution of the debris-covered Miage Glacier, 1990–2018, Geomorphology, 373, 107474,
https://doi.org/10.1016/j.geomorph.2020.107474, 2021.
Steffen, T., Huss, M., Estermann, R., Hodel, E., and Farinotti, D.: Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century, Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, 2022.
Stuart-Smith, R. F., Roe, G. H., and Allen, M. R.: Increased outburst flood
hazard from Lake Palcacocha due to human-induced glacier retreat, Nat. Clim. Change, 14, 85–90, https://doi.org/10.1038/s41561-021-00686-4, 2021.
Taylor, L. S., Quincey, D. J., Smith, M. W., Baumhoer, C. A., McMillian, M., and Mansell, D. T.: Remote sensing of the mountain cryosphere: Current capabilities and future opportunities for research, Progress in Physical Geography-Earth and Environment, 45, 931–964, https://doi.org/10.1177/03091333211023690, 2021.
Thelwall, M. and Sud, P.: National, disciplinary and temporal variations in the
extent to which articles with more authors have more impact: Evidence from a
geometric field normalised citation indicator, J. Informetrics,
10, 48–61, https://doi.org/10.1016/j.joi.2015.11.007, 2016.
Thompson, I., Shrestha, M., Chhetri, N., and Agusdinata, D. B.: An institutional
analysis of glacial floods and disaster risk management in the Nepal
Himalaya, Int. J. Disast. Risk Reduct., 47, 101567,
https://doi.org/10.1016/j.ijdrr.2020.101567, 2020.
Tomczyk, A. M., Ewertowski, M. W., and Carrivick, J. L.: Geomorphological impacts
of a glacier lake outburst flood in the high arctic Zackenberg River, NE
Greenland, J. Hydrology, 591, 125300,
https://doi.org/10.1016/j.jhydrol.2020.125300, 2021.
Troilo, F.: The Grand Croux Lake Outburst flood: monitoring and protection
measure from the 2016 event to future scenarios, The GLOF conference and
workshop, 7–9 July 2021, online, 2021.
Vandekerkhove, E., Bertrand, S., Torrejon, F., Kylander, M. E., Reid, B., and
Saunders, K. M.: Signature of modern glacial lake outburst floods in fjord
sediments (Baker River, southern Chile), Sedimentology, 68, 2798–2819, https://doi.org/10.1111/sed.12874, 2021.
Veh, G., Korup, O., Roessner, S., and Walz, A.: Detecting Himalayan glacial lake outburst floods from Landsat time series, Remote Sens. Environ., 207, 84–97, https://doi.org/10.1016/j.rse.2017.12.025, 2018.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Change, 9, 379–383, https://doi.org/10.1038/s41558-019-0437-5, 2019.
Veh, G., Lützov, N., Kharlamova, V., Petrakov, D., Hugonnet, R., and
Korup, O.: Trends, breaks, and biases in the frequency of reported glacier
lake outburst floods, Earth's Future, 10, e2021EF002426,
https://doi.org/10.1029/2021EF002426, data available at: glofs.geoecology.uni-potsdam.de/, 2022.
Vilca, O., Mergili, M., Emmer, A., Frey, H., Huggel, C.: The 2020
glacial lake outburst flood process chain at Lake Salkantaycocha (Cordillera
Vilcabamba, Peru), Landslides, 18, 2211–2223,
https://doi.org/10.1007/s10346-021-01670-0, 2021.
Von Thun, J. L. and Gillette, D. R.: Guidance on breach parameters, Internal Memorandum, U.S. Dept. of the Interior, Bureau of Reclamation, Denver, p. 17, 1990.
Wang, W. C., Gao, Y., Anacona, P. I., Lei, Y. B., Xiang, Y., Zhang, G. Q., and
Li, S. H.: Integrated hazard assessment of Cirenmaco glacial lake in
Zhangzangbo valley, Central Himalayas, Geomorphology, 306, 292–305,
https://doi.org/10.1016/j.geomorph.2015.08.013, 2018.
Whyte, K.: Too Late for Indigenous Climate Justice: Ecological and
Relational Tipping Points, WIREs Clim. Change, 11, e603,
https://doi.org/10.1002/wcc.603, 2020.
Wilson, R., Glasser, N. F., Reynolds, J. M., Harrison, S., Anacona, P. I.,
Schaefer, M., and Shannon, S.: Glacial lakes of the Central and Patagonian
Andes, Global Planet. Change, 162, 275–291,
https://doi.org/10.1016/j.gloplacha.2018.01.004, 2018.
Wood, J. L., Harrison, S., Wilson, R., Emmer, A., Yarleque, C., Glasser,
N. F., Torres, J. C., Caballero, A., Araujo, J., Bennett, G. L., Diaz, A.,
Garay, D., Jara, H., Poma, C., Reynolds, J. M., Riveros, C. A., Romero, E.,
Shannon, S., Tinoco, T., Turpo, E., and Villafane, H.: Contemporary
glacial lakes in the Peruvian Andes, Global Planet. Change, 204,
103574, https://doi.org/10.1016/j.gloplacha.2021.103574, 2021.
Worni, R., Huggel, C., Clague, J. J., Schaub, Y., and Stoffel, M.: Coupling
glacial lake impact, dam breach, and flood processes: A modeling
perspective, Geomorphology, 224, 161–176, https://doi.org/10.1016/j.geomorph.2014.06.031,
2014.
WOS: Web of Science – citation database, Clarivate Analytics, WOB [data set], https://www.webofscience.com/wos/woscc/basic-search, last access: 1 July 2022.
Wrathall, D. J., Bury, J., Carey, M., Mark, B. G., McKenzie, J., Young, K.,
Baraer, M., French, A., and Rampini, C.: Migration Amidst Climate Rigidity
Traps: Resource Politics and Social-Ecological Possibilism in Honduras and
Peru, Ann. Assoc. Am. Geogr., 104, 292–304,
https://doi.org/10.1080/00045608.2013.873326, 2014.
Yin, B. L., Zeng, J., Zhang, Y. L., Huai, B. J., and Wang, Y. T.: Recent Kyagar
glacier lake outburst flood frequency in Chinese Karakoram unprecedented
over the last two centuries, Nat. Hazard., 95, 877–881,
https://doi.org/10.1007/s11069-018-3505-7, 2019.
Zhang, G., Bolch, T., Allen, S., Linsbauer, A., Chen, W., and Wang, W.: Glacial
lake evolution and glacier-lake interactions in the Poiqu River basin,
central Himalaya, 1964–2017, J. Glaciol., 65, 347–365,
https://doi.org/10.1017/jog.2019.13.
Zheng, G., Bao, A., Allen, S., Ballesteros-Canovas, J. A., Yuan, Y., Jiapaer,
G., and Stoffel, M.: Numerous unreported glacial lake outburst floods in the
Third Pole revealed by high-resolution satellite data and geomorphological
evidence, Sci. Bull., 66, 1270–1273,
https://doi.org/10.1016/j.scib.2021.01.014, 2021a.
Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., and Stoffel, M.: The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment, The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, 2021b.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M.,
Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W. and Stoffel, M.:
Increasing risk of glacial lake outburst floods from future Third Pole
deglaciation, Nat. Clim. Change, 11, 411–417, https://doi.org/10.1038/s41558-021-01028-3, 2021c.
Executive editor
I also agree with tha handling editor.
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In...
Altmetrics
Final-revised paper
Preprint