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Abstract. Glacial lake outburst floods (GLOFs) are among
the most concerning consequences of retreating glaciers in
mountain ranges worldwide. GLOFs have attracted signifi-
cant attention amongst scientists and practitioners in the past
2 decades, with particular interest in the physical drivers
and mechanisms of GLOF hazard and in socioeconomic
and other human-related developments that affect vulnera-
bilities to GLOF events. This increased research focus on
GLOFs is reflected in the gradually increasing number of pa-
pers published annually. This study offers an overview of re-
cent GLOF research by analysing 594 peer-reviewed GLOF
studies published between 2017 and 2021 (Web of Science
and Scopus databases), reviewing the content and geograph-
ical focus as well as other characteristics of GLOF studies.
This review is complemented with perspectives from the first
GLOF conference (7–9 July 2021, online) where a global
GLOF research community of major mountain regions gath-
ered to discuss the current state of the art of integrated GLOF
research. Therefore, representatives from 17 countries identi-
fied and elaborated trends and challenges and proposed pos-
sible ways forward to navigate future GLOF research, in
four thematic areas: (i) understanding GLOFs – timing and
processes; (ii) modelling GLOFs and GLOF process chains;
(iii) GLOF risk management, prevention and warning; and
(iv) human dimensions of GLOFs and GLOF attribution to
climate change.

1 Introduction

Sudden releases of water from a glacial lake, commonly
referred to as glacial lake outburst floods (GLOFs), have
become emblematic symptoms of climate change in many
mountain areas throughout the world (Clague et al., 2012;
Harrison et al., 2018). GLOFs are described as low-
frequency, high-magnitude events with major geomorphic
consequences (Costa and Schuster, 1988; Evans and Clague,
1994; Clague and Evans, 2000), extreme hydrological char-
acteristics (Richardson and Reynolds, 2000; Cenderelli and
Wohl, 2003; Cook et al., 2018) and possibly adverse im-
pacts on societies (Carey, 2005; Huggel et al., 2015; Car-
rivick and Tweed, 2016). While more than 1300 historical
GLOFs have been catalogued throughout the world by Car-
rivick and Tweed (2016), recent studies show that this num-
ber is likely a lower bound for many regions (Emmer, 2017;
Nie et al., 2018; Veh et al., 2019; Zheng et al., 2021a; Emmer
et al., 2022). Recently Veh et al. (2022) compiled a dataset
of more than 2800 GLOFs globally. These studies indicate
that GLOFs may be more frequent than previously thought

(Carrivick and Tweed, 2016; Emmer et al., 2022; Veh et al.,
2022).

Research on GLOFs has been rapidly growing in recent
2 decades (Emmer, 2018), driven in part by the urgent need
to improve understanding trends in GLOF occurrence under
climate change and its links to retreating glaciers and the
formation of thousands of new lakes globally (Clague and
O’Connor, 2015; Harrison et al., 2018; Shugar et al., 2020).
At the same time increasing urbanization, land and water
demand, migration, mountain tourism, and other socioeco-
nomic and human-related forces exacerbate human exposure
and raise vulnerabilities to GLOFs, especially in low-income
countries such as Peru or Nepal (Carey, 2010; Sherry et al.,
2018; Motschmann et al., 2020a; Sherpa et al., 2020; Carey
et al., 2021). However, possible synergies and trade-offs be-
tween climate change adaptation (Moulton et al., 2021; Ag-
garwal et al., 2021), sustainable water use and management
(Drenkhan et al., 2019; Haeberli and Drenkhan, 2022), hy-
dropower generation (Schwanghart et al., 2016; Li et al.,
2022), glacier protection (Anacona et al., 2018), and GLOF
hazard mitigation are still under discussion.

Our goal is to provide a state-of-the-art review of GLOF
research for charting future research directions. We provide
insights into current trends within the GLOF research com-
munity gained from a bibliometric analysis and the first con-
ference on GLOFs (7–9 July 2021, online, convened by the
University of Graz, Austria; the University of Potsdam, Ger-
many; the University of Zurich, Switzerland; and the Univer-
sity of Oregon, USA). This paper addresses four key ques-
tions: (i) what are the characteristics of the GLOF research
community and recently published (2017–2021) GLOF pa-
pers? (ii) What are current trends in GLOF research and pub-
lished GLOF papers? (iii) Where are the geographical and
thematic research gaps, challenges, and emerging directions
in GLOF research? (iv) Where should GLOF research move
next?

2 Data and methods

2.1 WOS and Scopus databases analysis

As a first step, we conducted a scoping review to iden-
tify the most relevant GLOF studies in Clarivate’s Web
of Science (WOS) Core Collection database (https://www.
webofscience.com/wos/woscc/basic-search, last access: 1
July 2022) and Elsevier’s Scopus database (https://www.
scopus.com/home.uri, last access: 1 July 2022). These
databases cover selected peer-reviewed scholarly journals,
books and proceedings in the fields of natural sciences, so-
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cial sciences, arts and humanities (WOS, 2022) and present
themselves as the most reliable, relevant and up-to-date re-
search databases (Scopus, 2022) that are broadly used. Both
WOS and Scopus databases are among the largest avail-
able databases and are broadly used for bibliometric analysis
and studying research and publishing trends across research
fields (Sandstrom and van den Besselaar, 2016; Thelwall and
Sud, 2016; Da Silva and Dobranszki, 2018; Martín-Martín
et al., 2018; Fire and Guestrin, 2019). Yet, these databases
have several limitations: (i) they do not capture technical re-
ports, white papers, grey literature, and local and indigenous
knowledge; (ii) they are strongly oriented towards English-
language literature, while many journals published in other
languages are not indexed; (iii) they do not necessarily cap-
ture books which are the standard form of publishing in many
disciplines (for instance in humanities and social sciences);
and (iv) the representation of authors from different geo-
graphic regions is uneven (Mongeon and Paul-Hus, 2016).

To ensure consistency with the analysis of GLOF data
previously analysed by Emmer (2018) for the period 1970–
2016, we used an identical search string:

TOPIC: (glaci* AND outburst* AND flood* OR jökulh-
laup*).

The period of interest was limited to publication date
2017–2021, returning 516 results in the WOS database and
427 in the Scopus database (search performed in August
2022). In the next step, we combined the outcomes of these
databases and removed duplicates. The resulting dataset of
594 GLOF papers is further considered in the analytical part
of this study. Each GLOF paper in the database is described
by several qualitative and quantitative characteristics which
are summarized in Table 1. Some of those were derived au-
tomatically from the databases (e.g. document type, access
mode), while some had to be assigned manually in the sec-
ond step of the dataset-building procedure (e.g. geographical
focus, international cooperation).

Titles and abstracts of individual papers (all papers in-
cluded a title, and 593 out of 594 papers included an ab-
stract) were used for qualitative content analysis. We used
a free word cloud generator (https://www.wordclouds.com/,
last access: 1 July 2022) in order to identify frequently oc-
curring words among the abstracts and titles of GLOF pa-
pers. After automatic removal of general verbs, pronouns and
prepositions, we manually removed other irrelevant words
and clustered words with identical roots. Word clouds of the
50 most frequently occurring words were visualized sepa-
rately for titles and abstracts. This method has been success-
fully employed in characterizing and visualizing the content
of large textual datasets across other scientific fields (McGee
and Craig, 2012; Atenstaedt, 2017), including geosciences
(Li and Zhou, 2017; Emmer et al., 2019). Clearly, word
clouds can only illustrate priorities and the choice of word-
ing of the group under study. Scientific-paper word clouds
(including those presented in this study) can thus differ sub-

stantially from those of local communities (e.g. Gearheard et
al., 2013).

2.2 The GLOF conference and workshop

The GLOF conference and workshop took place from
7 to 9 July 2021 (online), was completely open-access
upon pre-registration, and was co-organized by the Uni-
versity of Graz (Austria), the University of Potsdam
(Germany), the University of Zurich (Switzerland) and the
University of Oregon (USA). The main objective was to
gather researchers dealing with GLOFs to exchange recent
knowledge and progress in GLOF research as well as to
identify gaps, challenges, emerging directions and ways
forward in GLOF research. This conference was organized
under the patronage of the scientific standing group on
Glacier and Permafrost Hazards in Mountains (GAPHAZ;
http://www.gaphaz.org/, last access: 1 July 2022) and has
been disseminated primarily via the GAPHAZ web page, via
the GAPHAZ community consisting of about 150 contacts
and through ResearchGate (https://www.researchgate.net/
project/GLOF-conference-workshop-7-9-July-2021-online,
last access: 1 July 2022; about 400 reads at the time of the
conference).

The conference programme consisted of four conference
sessions (7 and 8 July 2021) and two discussion sessions (9
July 2021). These sessions focused on the following topics:
(i) understanding GLOFs – timing and processes; (ii) mod-
elling GLOFs and GLOF process chains; (iii) GLOF risk
management, prevention and warning; and (iv) human di-
mensions of GLOFs and GLOF attribution to climate change.
These topics were previously identified based on the analysis
of published GLOF papers (see Sect. 2.1).

The timing of individual sessions facilitated access for
diverse time zones, thereby allowing organizers to en-
gage with colleagues from across the globe and across di-
verse disciplines such as the geosciences, environmental
sciences, engineering, social sciences and humanities. In-
dividual conference sessions had between 45 and 65 at-
tendees and consisted of five presentations each (see the
conference programme: http://www.gaphaz.org/files/GLOF_
conference_programme.pdf, last access: 1 July 2022). A to-
tal of 37 participants from 17 countries across the globe and
different scientific backgrounds and career stages took part
in two moderated sessions, during which a research commu-
nity perspective on trends and challenges in GLOF research
was discussed.

3 GLOF papers published in 2017–2021: results from
WOS and Scopus databases analysis

3.1 General characteristics

Our dataset consists of 594 GLOF papers, of which the
vast majority are classified as articles (n= 503; 84.7 %), 41
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Table 1. Characteristics of GLOF papers analysed in this study.

Characteristics Description Values

Characteristics derived from the database

Title Title of the paper 594 titles

Abstract Published abstracts summarizing the work 593 abstracts

Author(s) List of authors 2173 unique authors

Year published Year of publication in the journal 2017 to 2021

Publication title Name of the journal, proceeding, book 217 journal titles, proceeding titles and book titles

Subject area/category Scopus subject area/Web of Science category in
which the publication is indexed

15 subject areas/35 WOS categories

Document type Classification of studies according to the structure
of the content

4 document types (article, review, proceedings pa-
per, other)

WOS research domain The WOS All Databases classification of indexed
papers; each paper is assigned to one or more re-
search domains

6 research domains (Science Technology, Physical
Sciences, Life Sciences Biomedicine, Social Sci-
ences, Technology, Arts Humanities)

Language Language of the paper 5 languages (English, Chinese, Russian, Spanish,
French)

Access mode Access mode by which a paper was published GLOF paper published in any kind of open-access
mode (gold, green, hybrid) or not

Manually assigned characteristics

No. of authors Number of authors that co-authored a GLOF paper Single-author or co-authored GLOF paper (1 author
to 21 co-authors)

International cooperation Paper is written by author(s) from one country or by
authors from several countries

National or international GLOF paper

Geographical focus Regional focus of a GLOF paper assigned to 1,
more than 1 or none of 11 GLOF hotspots (Emmer,
2018) based on the titles and abstracts

1, more than 1 or none of 11 GLOF hotspots
(Alaska, North American Cordillera, Tropical An-
des, Southern Andes, Iceland, Greenland, Scandi-
navia, European Alps, Hindu Kush–Karakoram, Hi-
malaya, Central Asia)

(6.9 %) as reviews, 28 (4.7 %) as conference papers and 16
(2.7 %) as book chapters, and the remaining 6 papers (1.0 %)
are classified as others (corrections, editorials). Considering
WOS research domains (unavailable for papers indexed in
the Scopus database), the majority of papers are assigned un-
der the Physical Sciences domain (95.2 %; Earth and Plan-
etary Sciences, Geosciences Multidisciplinary, Physical Ge-
ography and Environmental Sciences), while fewer than half
(47.0 %) of all published papers are assigned to the Social
Sciences domain, suggesting that GLOF research is currently
dominated by physical science, rather than social science, re-
search.

The journals that published GLOF research most fre-
quently were Geomorphology (n= 32), Remote Sensing
(n= 22), Quaternary Science Reviews (n= 20), Frontiers in
Earth Science (n= 19), Earth-Science Reviews (n= 17) and
The Cryosphere (n= 16). Six other journals published 10 or

more GLOF papers (Natural Hazards, Science of the Total
Environment, Earth Surface Processes and Landforms, Jour-
nal of Glaciology, Water, Global and Planetary Change).
While some of these journals are well-established in publish-
ing GLOF research (e.g. Geomorphology, Quaternary Sci-
ence Reviews), others experienced a recent growth in pub-
lishing GLOF papers, especially MDPI journals (Remote
Sensing, Water) and Frontiers publishing house (Frontiers in
Earth Science).

An increasing trend is observed in the number of GLOF
papers published in individual years: while 85 GLOF pa-
pers were published in 2017, this number increased to 96
in 2018, 107 in 2019, 143 in 2020 and 163 in 2021 (see
Fig. 1a). In comparison, Emmer (2018) identified a total of
52 papers published in 2010, 24 papers in 2000 and only
2 papers in 1990. While this is a general publishing trend
(Fire and Guestrin, 2019), the number of published GLOF
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Figure 1. Basic characteristics of published GLOF papers covered by WOS and Scopus databases. (a) Published GLOF papers in each year;
(b) share of open-access papers; (c) average number of co-authors (Sect. 3.4); (d) share of papers (co-)authored by authors from countries in
High Mountain Asia (see Sect. 3.4 for more details).

papers seems to be increasing even more remarkably com-
pared to other research fields. The gradually increasing num-
ber of GLOF papers may be explained by (i) increasing inter-
est of research community and funding agencies in GLOFs,
(ii) a growing GLOF research community, and (iii) chang-
ing publication habits (increasing need to publish induced by
changing research evaluation indicators (Emmer, 2018; Fire
and Guestrin, 2019). It can also be explained by possibly ex-
panding coverage of analysed databases. Slightly more than
half of all GLOF papers (n= 310; 52.1 %) were published in
any kind of open-access mode, with the share varying from
44.9 % in 2019 to 58.9 % in 2021 (see Fig. 1b).

3.2 Word cloud analysis – insights into study content

The word cloud analysis is a visual representation of the
most frequent words in the abstracts and titles of 594 anal-
ysed GLOF papers (see Fig. 2). We grouped these most
frequent words into thematic clusters: (i) glacier-related
words; (ii) lake- and GLOF-related words; (iii) system- and
change-/dynamics-related words; (iv) data-, methods- and

approach-related words; (v) scale-related words; and (vi) ge-
ographic names. Clearly, some of the recurring words may
be assigned to more than one cluster (e.g. retreat* can be in-
terpreted as a glacier-related word as well as a system- and
change-/dynamics-related word) and are, therefore, marked
in two colours in Fig. 2.

The most frequent words are related to lakes, floods and
glaciers in both word clouds. Words related to data, methods
and approaches (e.g. model*, hazard(s), assessment(s), in-
ventory and risk(s)) confirmed the interest in lake and GLOF
inventorying, hazard (susceptibility, risk) assessments (Frey
et al., 2018; Wang et al., 2018; Schmidt et al., 2020) and
modelling of GLOFs (both back-calculations and predictive;
e.g. Kougkoulos et al., 2018a; Mergili et al., 2018a, 2020;
Sattar et al., 2019a, b). However, studies addressing vul-
nerabilities to GLOFs are still rare (only mentioned in 11
abstracts and 3 titles; e.g. Ghosh et al., 2019), while flood
vulnerabilities studies focusing on mountain environments
in general are more common (e.g. Papathoma-Köhle et al.,
2022).
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Figure 2. Word clouds of abstracts (a) and titles (b) of GLOF papers. The size of individual words indicates frequency of occurrence while
the background colour groups individual words into thematic clusters. The 50 most frequently occurring words are shown in both word
clouds.

The scale of GLOF studies varies from valley, river, basin
and mountain range to region, while global studies are less
frequent (e.g. Harrison et al., 2018; Shugar et al., 2020).
The word clouds of titles also indicate a geographical focus
with the dominant occurrence of Himalaya* (113 titles, i.e.
19.0 % of all), followed by Peru, Andes, Nepal, India, Asia
and Greenland (see Fig. 2). Within the system and change/-
dynamics cluster, words such as evolution and dynamics are
among the most frequently occurring, mostly referring to dy-
namics of glacier retreat and associated lake evolution (e.g.
Aggarwal et al., 2017; Kumar et al., 2020), though they al-
low for broader interpretations. Both word clouds contain
climate and change(s), illustrating the overarching storyline
of many GLOF studies (Harrison et al., 2018; Zheng et al.,
2021c). Word cloud analysis also showed decreasing use of
the word jökulhlaup(s) (i.e. floods induced by subglacial vol-
canic activity) in recent years. While up to 83.3 % of pub-
lished GLOF papers in the 2000–2004 period included this
keyword, this share decreased to 47.2 % in the 2010–2015
period and to less than 25 % in 2017–2021 period (with a
12.3 % share in 2021). This trend could indicate proportion-
ally less focus on floods induced by subglacial volcanic activ-
ity compared to other GLOF triggers and mechanisms, pro-
portionally less focus on Iceland (Emmer, 2018), or a change
in terminology towards the use of the more general term
“GLOF”.

3.3 Geographical focus

Following previously observed trends (Emmer, 2018), a
prominent hotspot of GLOF research in 2017–2021 has been

in the Himalaya – a total of 215 papers (36.2 % of all) fo-
cus on this region, far exceeding the number of studies fo-
cusing on any other region (Fig. 3a). About 10 % of GLOF
studies focus on the European Alps, followed by the Hindu
Kush–Karakoram, the Tropical Andes, Iceland, the South-
ern Andes, the North American Cordillera and Central Asia.
The fewest studies focus on Scandinavia and Alaska. This
observation is in strong contrast with the number of reported
GLOFs, which show most GLOFs have occurred in Alaska
(Veh et al., 2022; Fig. 3b). Hence, the geographical focus
of research appears to be driven by potential societal im-
pacts and relevance of GLOFs and the size of these mountain
regions, rather than by the physical GLOF processes them-
selves.

Tens of individual GLOF events have been reported since
2017 in different parts of the world including the Hindu
Kush–Karakoram–Himalaya (Byers et al., 2019; Yin et al.,
2019; Khan et al., 2021; Maharjan et al., 2021; Muhammad
et al., 2021), the Tien Shan (Dayirov and Narama, 2020), the
Tibetan Plateau (Zheng et al., 2021b), the Tropical Andes
(Vilca et al., 2021; Emmer et al., 2022), the Southern An-
des (Anyia et al., 2020; Vandekerkhove et al., 2021), the Eu-
ropean Alps (Troilo, 2021; Ogier et al., 2021; Stefaniak et
al., 2021), Alaska (Kienholz et al., 2020; Abdel-Fattah et al.,
2021), British Columbia (Geertsema et al., 2022), Greenland
(Tomczyk et al., 2021) and Scandinavia (Andreassen et al.,
2022). Recently, Veh et al. (2022) compiled globally by far
the most complete GLOF inventory (total of >2800 GLOFs
until March 2022; available from http://glofs.geoecology.
uni-potsdam.de/, last access: 1 July 2020). This compilation
shows that most of the recent GLOFs have been documented
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Figure 3. Geographical focus of published GLOF papers (a) and reported GLOFs which happened from 2017 to 2021 (b) (data from Veh et
al., 2022, in May 2022; HKK denotes the Hindu Kush and Karakoram).

in Alaska, followed by Iceland, Scandinavia (mainly Nor-
way), the North American Cordillera and the Hindu Kush–
Karakoram (Fig. 3b). Most of these GLOFs originated from
ice-dammed lakes, whereas GLOFs from other lake types
(moraine- or bedrock-dammed) are less frequent, partly ow-
ing to the recurrence of multiple GLOFs from individual
ice-dammed lakes. Repeated GLOFs from ice-dammed lakes
were documented for the Karakoram (e.g. Yin et al., 2019;
Khan et al., 2021), Alaska (Kienholz et al., 2020; Abdel-
Fattah et al., 2021), the Southern Andes (Anyia et al., 2020;
Correas-Gonzalez et al., 2020; Vandekerkhove et al., 2021)
and the European Alps (Stefaniak et al., 2021).

3.4 Authors of GLOF papers and international
cooperation

The 594 GLOF papers were published by a total of 2173 au-
thors, resulting in an average of about 3.7 authors per pa-
per. However, a total of 455 researchers published more than

1 GLOF paper each, 61 researchers published 5 or more pa-
pers each, and 11 researchers published 10 or more papers
each. The most productive 11 researchers published together
about one-fifth of all papers, and the most productive 61 au-
thors (2.8 % of all) published all together almost two-fifths of
all papers. Noticeably, these papers are frequently character-
ized by above-average citations per year, indicating influence
of a relatively small group of researchers in determining the
progress direction of this growing research field.

Most GLOF papers are written by a group of co-authors,
while only 4.7 % are single-authored (Fig. 1b). Compared to
the previous period 1970–2016 analysed by Emmer (2018),
this share decreased from 16.4 % and is further expected
to decrease considering the general declining trend in pub-
lishing single-author papers (Emmer, 2019). A GLOF paper
is written by 5.07 co-authors on average. However, a ten-
dency towards more co-authors involved in GLOF papers is
observed (Fig. 1c). While on average 3.49 co-authors were
involved in a GLOF paper in 1970–2016 (Emmer, 2018),
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on average 4.89 co-authors were involved in a GLOF pa-
per published in 2017; this increased up to on average 5.29
co-authors among GLOF papers published in 2021, possibly
indicating (i) more complexity (and more interdisciplinarity)
in GLOF papers being published or (ii) influence of research
performance assessments (further strengthened by journal
marketing), which account for the number of published pa-
pers but do not take into account the number of researchers
involved. Figure 1b also reveals that the share of GLOF pa-
pers written by international research teams oscillates around
30 %, which is comparable to the previous period (29.1 %;
Emmer, 2018).

According to the WOS Core Collection database, a total
of 786 unique institutes located in 58 countries published
their GLOF research from 2017 to 2021. GLOF research was
dominated by researchers affiliated with institutes located in
the USA (one in four papers co-authored), followed by China
(one in five papers), England, India (one in six papers each)
and Switzerland (one in eight papers). Authors affiliated with
institutes in these five countries all together produced about
70 % of GLOF papers. Researchers from five other coun-
tries (Germany, Canada, Czechia, Norway and Pakistan) con-
tributed to >5 % of GLOF papers each. Thirty top productive
institutes contributed to 10 or more GLOF papers each. A
nearly identical geographical pattern is also observed among
the papers covered by the Scopus database.

The share of papers (co-)authored by researchers from
countries in High Mountain Asia (India, Nepal, Bhutan, Pak-
istan, Kazakhstan, Kyrgyzstan, Uzbekistan) oscillated be-
tween 23 % (2020) and 31 % (2019; Fig. 1d). However,
we observe a clearly increasing trend of publications (co-
)authored by local researchers in some of these countries on
a longer timescale. While the share of Himalaya-focused pa-
pers written by local researchers was about 15 % in the late
1990s, it increased to a >30 % share in the 2000s (plus an-
other 20 % published by international teams including local
researchers) and a >40 % share in the early 2010s (plus an-
other 15 % published by international teams including local
researchers; Emmer, 2018). Our study reveals that >60 % of
India-focused GLOF papers published in 2017–2021 were
written by researchers affiliated with institutions based in
India, another 20 % of papers were published by interna-
tional teams including Indian researchers, and the remain-
ing <20 % of India-focused papers were written by foreign
researchers (without the involvement of local researchers).
This is important progress because studies undertaken by
local researchers are by default often very close to govern-
ment actions on disaster risk reduction and climate adapta-
tion (see also Sect. 4.6). Similarly, increasing research atten-
tion to GLOFs has been paid by local researchers in Pakistan.
The number of papers (co-)authored by Pakistani researchers
in 2021 (n= 15) is equal to the cumulative number of pa-
pers published by local researchers in the previous 4 years
(2017 to 2020). In contrast, the slightly increasing or stag-
nant involvement of local researchers in Central Asia (e.g.

Kyrgyzstan) corresponds to the overall increase in published
papers but suggests no trend or even a decrease in the share.

4 Trends, challenges, emerging directions and ways
forward: results from the 2021 GLOF conference
and workshop

During the GLOF conference and workshop held in July
2021, we identified and discussed trends and challenges and
proposed ways forward in four thematic areas of GLOF re-
search, which we designed based on the analysis of published
GLOF papers (see Sect. 3.2): (i) understanding GLOFs – tim-
ing and processes; (ii) modelling GLOFs and GLOF process
chains; (iii) GLOF risk management, prevention and warn-
ing; and (iv) human dimensions of GLOFs and GLOF attri-
bution to climate change. The key outcomes of these discus-
sions are summarized in Tables 2 to 5. Further, we elaborate
in detail on the main issues which resonated in our discus-
sions (Sects. 4.1 to 4.7). We admit that this list may be far
from exhaustive; instead, we rather interpret this section as
GLOF research community perspectives on the current state
of GLOF research.

4.1 Recent progress in lake and GLOF inventories

A pronounced trend in understanding the occurrence of
GLOFs from a large-scale perspective (mountain ranges,
large regions) is the building of updated GLOF inventories,
typically revealing the incompleteness of existing GLOF
records (Table 2). Recent examples are GLOF inventories
from Iceland and Greenland (Carrivick and Tweed, 2019),
the Tropical Andes (Emmer, 2017; Bat’ka et al., 2020; Em-
mer et al., 2022), Patagonia (e.g. Jacquet et al., 2017) and
High Mountain Asia (Nie et al., 2018; Veh et al., 2019; Zheng
et al., 2021a). This trend is associated with increasing avail-
ability and resolution of satellite images (Kirschbaum et al.,
2019; Taylor et al., 2021), allowing detailed analysis of per-
sistent geomorphic GLOF diagnostic features, both in a man-
ual and in a semi-automatic way (Veh et al., 2018). Geomor-
phic GLOF diagnostic features are frequently combined with
analysis of documentary data sources (Emmer, 2017; Nie et
al., 2018). More comprehensive GLOF inventories are es-
sential for better understanding frequency of GLOF occur-
rence in changing mountain environments (Veh et al., 2019;
Emmer et al., 2020) and for revealing frequency–magnitude
relationships (Hewitt, 1982; Haeberli, 1983), as well as for
GLOF attribution to anthropogenic climate change (Harrison
et al., 2018; see also Sect. 4.7).

On a global scale, Carrivick and Tweed (2016) observed
increased GLOF frequency until the 1990s, followed by a de-
crease in most mountain regions. The reasons for this trend,
however, remained unclear. Harrison et al. (2018) observed a
similar trend in outbursts from moraine-dammed lakes, pos-
sibly because of a lagged response of GLOF occurrence to
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Table 2. Summary of the key topics, observed trends, identified challenges and proposed ways forward in the thematic area understanding
GLOFs – timing and processes.

Observed trends and progress

– Building regional to global lake inventories, including identification of future lake (see Sect. 4.1) and GLOF (see Sects. 3.3
and 4.1) inventories
– Efforts towards better understanding of GLOF preconditions and triggers (see Sect. 4.2)

Identified challenges

– Understanding lagged response of glaciers and glacial lakes to climate change signal (Harrison et al., 2018); distinguishing
GLOFs associated with climate change (see also attribution part)
– Selecting and validating GLOF susceptibility indicators relevant for given geographical context (Kougkoulos et al., 2018b)

Proposed ways forward

– Linking glacier behaviour with GLOF occurrence in space and time (and trigger-oriented GLOF understanding and hazard
assessment in general)
– Revision and data-driven analysis of assumed GLOF susceptibility indicators – such as rapid lake growth (Fischer et al.,
2021) or earthquake GLOF triggering – building on recently enhanced GLOF inventories

climate forcing, glacier retreat and lake formation, a concept
further elaborated in the Peruvian Cordillera Blanca (Emmer
et al., 2020). However, the number of GLOFs recorded may
be underestimated in some regions because of low research
monitoring. For example, Veh et al. (2019) produced an up-
dated a GLOF inventory for the Himalaya where they ob-
served no change in GLOF frequency since the 1980s (con-
sidering moraine-dammed lakes only). Emmer et al. (2022)
prepared and updated GLOF inventory for the Tropical An-
des of Peru and Bolivia, where they observed an increas-
ing occurrence of low-magnitude GLOFs in recent decades.
This trend is lake-type-specific (dominance of GLOFs from
bedrock-dammed lakes, reflecting later stages of deglaciation
in the Tropical Andes) and may also be biased by the decreas-
ing number and availability of remotely sensed and docu-
mentary data and by vanishing geomorphological GLOF im-
prints of events further back in time (Emmer et al., 2022).
Most recently, Veh et al. (2022) compiled an open-access
global inventory of >2800 GLOFs (http://glofs.geoecology.
uni-potsdam.de/, last access: 1 July 2020) and observed a
flatter trend in GLOF occurrence since the 1970s.

An emerging trend in GLOF research is tied with the iden-
tification of locations suitable for future lake formation. Con-
sidering sustained glacier retreat under different representa-
tive concentration pathways or complete deglaciation, sev-
eral recent studies have attempted to locate potential future
lakes and quantify their volumes, for instance in the Swiss
Alps (Gharehchahi et al., 2020), in the Austrian Alps (Otto et
al., 2021), in High Mountain Asia (Furian et al., 2021; Zheng
et al., 2021c) and on the global scale (Frey et al., 2021). Re-
cent progress also highlights the need to consider the impacts
of increasing sedimentation on future glacial lakes under a
changing climate (Li et al., 2021; Steffen et al., 2022).

4.2 GLOF triggers and GLOF susceptibility indicators

A remaining issue is the appropriate selection of GLOF
susceptibility indicators in regional GLOF susceptibility
and hazard assessment studies (Table 2). Kougkoulos et
al. (2018b) identified 79 different GLOF indicators in previ-
ous studies. The selection of GLOF susceptibility indicators
frequently relies on an expert-based analytical hierarchy pro-
cess (AHP) with subjectively defined or adopted thresholds
(e.g. Aggarwal et al., 2017; Muneeb et al., 2021; Rinzin et
al., 2021), while statistic-based studies building on rigorous
analysis of previous GLOFs are rare (McKillop and Clague,
2007a, b; Fischer et al., 2021). For a given lake, character-
izing the current conditions and those prior to outburst re-
mains challenging, highlighting the need for comprehensive
regional lake inventories and lake evolution studies (Petrov
et al., 2017; Buckel et al., 2018; Wilson et al., 2018; Zhang
et al., 2019; How et al., 2021; Lindgren et al., 2021; Mölg
et al., 2021; Wood et al., 2021; Andreassen et al., 2022),
global lake inventories (Shugar et al., 2020), regional GLOF
inventories (e.g. Bat’ka et al., 2020; Emmer et al., 2022)
and global GLOF inventories (Veh et al., 2022). Recent re-
search efforts revealed that some of the broadly accepted in-
dicators of GLOF susceptibility assessments may have am-
biguous roles. An example is the control of earthquakes in
triggering GLOFs. While numerous GLOF susceptibility as-
sessment studies consider earthquakes possible triggers of
GLOFs, recent studies showed that very few GLOFs have
actually been triggered by earthquakes globally (Kargel et
al., 2016). Another example is rapid lake growth, which is
also frequently used as a GLOF susceptibility indicator (see
the overview of Kougkoulos et al., 2018b); however, Fischer
et al. (2021) showed that this characteristic may not be an
indicator of GLOF occurrence in the Himalaya.
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On a local scale, a recent trend goes towards better under-
standing of controls, preconditions and triggers of individ-
ual GLOFs and interactions during them (Carrivick et al.,
2017; Blauvelt et al., 2020; Vilca et al., 2021), also con-
sidering the role of climate and climate change (Zheng et
al., 2021b). Numerous studies not only describe, analyse and
model the hydrodynamics and geomorphological imprints of
GLOFs (e.g. Clague and Evans, 2000; Emmer, 2017; Jacquet
et al., 2017) but also assess pre-GLOF conditions and hazard
drivers (climatological, glaciological, geological) and eluci-
date plausible GLOF scenarios (e.g. Carrivick et al., 2017;
Haeberli et al., 2017; Mergili et al., 2020; Klimeš et al., 2021;
Zheng et al., 2021b; Emmer et al., 2020, 2022).

Importantly, proper terminology should be maintained
among researchers and also among disaster risk reduction
practitioners and authorities in order to avoid misinterpre-
tation of individual events. Many mass flow events are of-
ten immediately termed GLOFs because GLOFs have re-
ceived major attention recently. An example is an early in-
terpretation of the 2021 Chamoli disaster, which was de-
scribed as a GLOF by some shortly after it happened
(e.g. https://indianexpress.com/article/explained/). However,
detailed analysis revealed that it originated as a rock and
ice avalanche and no lake was involved in the process chain
propagation (Shugar et al., 2021).

4.3 Two decades of GLOF modelling

Simulations of GLOF process chains have been performed
since the early 2000s, and at least three stages of research
evolution can be distinguished:

1. relatively simple empirical mass point models such as
MSF (Huggel et al., 2003, 2004), mainly suited for
regional-scale applications and still applied more re-
cently at such scales (r.randomwalk and its predeces-
sors – Gruber and Mergili, 2013; Mergili et al., 2015);

2. more advanced model chains, applying tailored physi-
cally based simulation tools for each component of the
process chain and coupling them at the process bound-
aries (Schneider et al., 2014; Worni et al., 2014; Schaub
et al., 2016);

3. the emergence of two-phase (Pudasaini, 2012) and later
three-phase (Pudasaini and Mergili, 2019) mass flow
models and related simulation tools (Mergili et al.,
2017; Mergili and Pudasaini, 2021) and the trend mov-
ing towards integrated simulations, considering the en-
tire GLOF process chain in one single simulation step.

We now mainly focus on the latest stage, the integrated mod-
elling of GLOF process chains, and identify three main lines
of challenge: (i) defining GLOF scenarios, (ii) exploring the
field of tension between the physical details and practical ap-
plicability of the available simulation tools, and (iii) moving

from successful back-calculations to reliable future predic-
tions. With regard to GLOF scenarios, it is often the worst-
case scenarios that are most relevant for informing risk man-
agement. However, the decision on what are realistic worst-
case scenarios for specified time horizons and what are unre-
alistically apocalyptic assumptions is sometimes disputed.

With regard to modelling the dynamics of GLOFs, we note
recent progress in the underlying physical processes during
lake outbursts, such as multi-phase flows, landslide–lake in-
teractions, entrainment and deposition of sediments, or phase
separation in debris flows (Pudasaini, 2020; Pudasaini and
Fischer, 2020a, b; Pudasaini and Krautblatter, 2021). Also,
the prevailing depth-averaged models are challenged by ma-
chine learning techniques and full 3D models, which are able
to reproduce the studied phenomena in a highly realistic way
(Gaume et al., 2018) but are still computationally too de-
manding for operational application to complex, long-runout
process chains – a situation which might improve in the com-
ing years and decades (Table 3).

4.4 Required but hard-to-obtain modelling parameters

A particular challenge is the dependence of advanced phys-
ically based models on unknown parameters required for
modelling erosion and deposition (Pudasaini and Fischer,
2020a; Pudasaini and Krautblatter, 2021; Table 3). In the
physically based models, it is mainly the difference between
the mechanical properties of the flow and those of the basal
surface which determines whether erosion or deposition of
solid material occurs, resulting in an extremely high sensitiv-
ity of the model results to barely known material properties.
Even though such models have been implemented at least
in semi-operational software tools such as r.avaflow (Mergili
and Pudasaini, 2021), practitioners still prefer models which
are more straightforward to parameterize and where guiding
parameter values for different processes and process magni-
tudes are available.

Such guiding parameter values would be extremely valu-
able for predictive simulations of future GLOF scenarios, but
in contrast to “ordinary” debris flows or snow avalanches,
which occur at much higher frequency, they are not yet avail-
able for GLOF process chains. While several such cascades
have been successfully back-calculated in the last few years
(Mergili et al., 2018a, 2020; Vilca et al., 2021; Zheng et al.,
2021b), predicting future GLOF process chains remains a
major challenge – not only in terms of defining scenarios of
lake growth or volumes of possibly impacting landslides but
also in defining appropriate sets of model parameters.

With the growing need for hazard assessments in ar-
eas with limited access, where potential GLOF exposure in
the downstream regions is high (Allen et al., 2016, 2019;
Schwanghart et al., 2016), predictive GLOF modelling serves
a purpose (e.g. Sattar et al., 2019a, b, 2021). However, such
modelling demands prior evaluation of the breach param-
eters such as breach depth, breach width and the breach
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Table 3. Summary of the key topics, observed trends, identified challenges and proposed ways forward in the thematic area modelling GLOFs
and GLOF process chains.

Observed trends and progress

– Substantial progress in understanding the physics of the underlying processes of GLOF initiation and propagation (see Sect. 4.3) such
as multi-phase flows, landslide–lake interactions, entrainment and deposition, or phase separation in debris flows (Pudasaini, 2012,
2020; Pudasaini and Fischer, 2020a, b; Pudasaini and Krautblatter, 2021)
– The inclination towards integrated GLOF process chain simulations (Mergili et al., 2017; Mergili and Pudasaini, 2021) and an
advancement of full 3D models capable of reproducing the relevant phenomena in a realistic way (Gaume et al., 2018; Cicoira et al.,
2021)

Identified challenges

– Obtaining (in situ) parameters required by the model (e.g. breach parameters, lake bathymetry) and addressing their uncertainties
(e.g. Schaub et al., 2016; Mergili et al., 2018b, 2020; Sattar et al., 2020; see Sect. 4.4)
– Defining realistic GLOF scenarios in predictive GLOF modelling, also accounting for future environmental conditions (e.g. Worni et
al., 2013, 2014; GAPHAZ, 2017; Sattar et al., 2021; Zheng et al., 2021c)

Proposed ways forward

– Extending a set of detail-modelled events in order to obtain a plausible range of parameters for predictive modelling (e.g. Mergili et
al., 2018a, b, 2020)
– Improving availability of high-performance computers to facilitate the operational use of full 3D models (Gaume et al., 2018; Cicoira
et al., 2021), which are currently limited by computational demands

formation time. These parameters are difficult to estimate
and depend on multiple factors such as the nature of the
damming material, the trigger event (e.g. avalanche, land-
slide, internal moraine failures), the nature of the impact
wave, freeboard of the lake and lake bathymetry. There-
fore, one must rely on empirical methods or scenario defi-
nition as alternatives to determine these parameters exactly.
Although numerous empirical approaches have been devel-
oped to calculate the breaching parameters (MacDonald and
Langridge-Monopolis, 1984; Costa, 1985; Bureau of Recla-
mation, 1982; Von Thun and Gillette, 1990; Froehlich, 1995),
a consensus on their suitability for glacial lakes has not yet
been established. With the advancement of numerical mod-
elling approaches where GLOF process chains can be ef-
ficiently modelled (e.g. r.avaflow), these parametric uncer-
tainties in moraine breaches can be minimized as breaching
would depend on the kinetic energy over the entrainable ma-
terial (moraine in this case) of the modelled GLOF process
chain.

4.5 GLOFs and human dimension contexts

Given the community diversity and range of disciplines
among GLOF researchers as well as the broad range of local
and indigenous knowledge, there are a wide variety of meth-
ods, questions, motivations, objectives and framings around
the GLOF problem itself. Indigenous communities may have
their own knowledge about glacial lakes and put their knowl-
edge into larger histories of colonialism, dispossession and
racism, not to mention into larger reciprocal interactions be-
tween a fluid human and non-human world. Natural scientists
work to understand physical drivers of GLOFs and predict

their impacts. Social scientists often hope their research can
contribute to local empowerment, community sovereignty,
self-determination and environmental justice, which signif-
icantly transcend analyses of the water flowing downstream
from, for example, an overtopped moraine dam. It is impor-
tant to recognize and discuss these different underlying goals
that influence not just research questions but also method-
ological approaches to the research and larger politics of
knowledge systems. GLOF research now increasingly recog-
nizes the need to work with communities, co-produce knowl-
edge and co-manage landscapes. At the same time, there is
perhaps not enough attention given to the ways in which dif-
ferent researchers and stakeholders fundamentally define the
GLOF problem differently from the outset.

Given the existing research gaps around the human dimen-
sions of GLOFs and the pressing need for future studies to
address attribution of GLOFs (Table 4), there are three key
emerging trends in GLOF research that could be productively
engaged and expanded: (i) GLOF contexts, particularly for
people living near glaciers; (ii) GLOF governance and the
broadening of stakeholders involved in GLOF prevention,
risk reduction and management; and (iii) better understand-
ings of GLOF attribution to pinpoint whether anthropogenic
climate change affects GLOF risk and to explore how differ-
ent social groups understand cause–effect related to GLOFs.

First, local communities living near ice face multiple
risks including, but also beyond, GLOFs, which implies that
GLOF risk needs to be seen in a more comprehensive social–
environmental context. Long-standing research has shown
that communities exposed to GLOFs are diverse with re-
spect to ethnicity, class, gender, age, religion, education, lan-
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Table 4. Summary of the key topics, observed trends, identified challenges and proposed ways forward in the thematic area human dimensions
of GLOFs and attribution to anthropogenic climate change.

Observed trends and progress

– Human dimensions are generally underrepresented in GLOF papers covered by WOS and Scopus databases, partially reflecting the
publishing paradigm of individual disciplines (for instance, a tendency towards publishing books in the social science domain)
– Recently increased focus on GLOF attribution to (anthropogenic) climate change (see Sect. 4.7), with natural scientists generally
driving this research and only at times involving social science or humanities researchers (Harrison et al., 2018; Huggel et al., 2020a;
Stuart-Smith et al., 2021)

Identified challenges

– Better consideration and appreciation of cultural and spiritual values of glacier lakes and high-mountain environments and local
and indigenous knowledge in GLOF research (Lambert and Scott, 2019; Abdel-Fattah et al., 2021; Matti and Ögmundardóttir, 2021;
Haeberli and Drenkhan, 2022)
– More sustained, detailed work needed to understand diverse and intersecting drivers of risk and vulnerabilities in communities (Matti
et al., 2022b; see Sect. 4.6) to reveal how societal variables making diverse populations vulnerable overall intertwine with GLOF risks
(Carey et al., 2020)
– The politics and cultures of GLOF risk management and responses are only partially understood and analysed (Moulton et al., 2021)
– Linking GLOF occurrence patterns with anthropogenic climate change signal (Roe et al., 2021; see Sect. 4.7)

Proposed ways forward

– Recognition and empowerment of (often powerful) local communities and indigenous knowledge (Mercer et al., 2010; Kelman et al.,
2012; Carey et al., 2021; see Sect. 4.6); avoid research colonialism (come, do research and leave) and involve local researchers
– Employment of integrated, holistic, interdisciplinary approaches (Carey et al., 2012; Gall et al., 2015) and consideration of overlooked
dimensions and aspects (e.g. spiritual and cultural), knowledge co-production and exchange
– Development of robust methods (statistical methods and process-based models) for attributing GLOF occurrence and impacts to
anthropogenic climate change (Stuart-Smith et al., 2021)

guage, geographical location, and other socioeconomic vari-
ables specific to places and historical contexts (Gagné, 2019;
Sherry et al., 2018; Haverkamp, 2021; Carey, 2010). Moun-
tain communities are often distant from cities and centres of
power, making them marginalized politically and neglected
when it comes to infrastructure, hazard mitigation, govern-
ment assistance, health care, education and economic invest-
ments. These factors increase the vulnerabilities of mountain
communities to GLOFs.

In many cases, mountain people have been subjected his-
torically to intrusions by outsiders, from missionaries and
mining companies to tourists and national park administra-
tors who can restrict local access to high-mountain spaces
and resources. Research thus shows that risk is distributed
unequally across populations and that GLOFs are far from
the only hazard communities face (Matti and Ögmundardót-
tir, 2021; Matti et al., 2022b). GLOF studies focusing on the
human dimensions must therefore recognize these other risks
beyond the glaciers, from other geohazards such as earth-
quakes, floods and landslides through to food insecurity and
misogyny to land loss, droughts, cold waves and water con-
tamination.

Yet it is also important to recognize that local communities
downstream from glacial lakes are not simply victims; they
do more than just struggle against perpetual and widespread
risks. Many have chosen historically to live outside hazard
zones, such as Peru’s indigenous communities around the

Cordillera Blanca (Figueiredo et al., 2019). Others either
have migrated away from regions exposed to GLOFs in re-
sponse to disasters in the Andes (Wrathall et al., 2014) or in-
terpret risk through community-specific conceptualizations
and culture, as Sherry et al. (2018) examine below Nepal’s
glacial lake Tsho Rolpa. Others understand that glacial lakes
can generate floods, but they also deem lakes important for
water storage, hydropower and tourism (Moulton et al., 2021;
Matti et al., 2022b). Still others maintain cultural and spiri-
tual relations with glaciers, though these have sometimes had
to transform due to ice loss (Allison, 2015; Gagné, 2019).
What is more, cosmology and religion are important to un-
derstand with GLOFs because religious leaders are commu-
nity leaders and because state authority and politics flow into
communities through spiritual organizations and structures
(Hovden and Havnevik, 2021). Given the diversity of com-
munities and experiences, it is crucial for GLOF researchers
to analyse local populations in ways that acknowledge this
diversity without simply lumping all community members
together, by recognizing the various contexts and forces that
influence people near glacial lakes.

4.6 Participation, management and governance of
GLOFs

Researchers increasingly recognize that local communities
should be involved in GLOF studies, climate adaptation, and
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Table 5. Summary of the key topics, observed trends, identified challenges and proposed ways forward in the thematic area GLOF risk
management, prevention and warning.

Observed trends and progress

– Unbalanced research focus on individual GLOF risk components (research on GLOF hazard still outweighs research on
GLOF vulnerabilities and exposure, at least among the papers covered by the WOS and Scopus databases – Emmer, 2018 –
with relatively few integrated or holistic GLOF studies; Carey et al., 2012; Drenkhan et al., 2019; Motschmann et al., 2020b)
– Increased exposure to GLOFs across some regions in past decades due to tourism (e.g. Iceland and Peru; Matti et al., 2022a)
as well as rapid and often unregulated development in GLOF-prone areas (e.g. in India, Nepal and Peru; Schwanghart et al.,
2016; Huggel et al., 2020a; Carey et al., 2021; Li et al., 2022)

Identified challenges

– Identification of overlooked or underestimated GLOF risk drivers and their consideration in GLOF risk management
– Research often does not lead to tangible actions, partly because research projects often bypass decision-making stakeholders;
scientific studies are often not well-connected to the applied works of practitioners
– Ever-growing number of lake hazard/risk assessment schemes, with different scopes (susceptibility, hazard, risk assessment)
and approaches; for decision-makers, differing results and contradicting information on “potentially dangerous lakes” are diffi-
cult to interpret
– Design and implementation of GLOF risk reduction measures and their acceptance by hazard exposed communities (see also
Sect. 4.5)

Proposed ways forward

– Interdisciplinary cooperation in GLOF research, consideration of diverse dimensions and drivers of GLOF risk beyond tradi-
tional GLOF hazard studies (see Sect. 4.5), connecting natural and social science communities (see Huggel et al., 2020; Carey
et al., 2021; Drenkhan et al., 2019; Motschmann et al., 2020b)
– Combine disaster risk and water management under a framework of prospective lake water management with adaptive dis-
aster risk planning considering synergies and conflicts of GLOF risk reduction measures with human water use (Haeberli and
Drenkhan, 2022; Motschmann et al., 2020b)
– Work with local communities, decision-makers and stakeholders and their involvement in the GLOF risk analysis process from
the beginning (knowledge co-production, experience exchange, bottom-up and community-centred approaches; see Thompson
et al., 2020; Matti and Ögmundardóttir, 2021; Haeberli and Drenkhan, 2022; and Sect. 4.6)
– Use a consensus-based approach to identify high-priority lakes for risk management, drawing upon the full range of published
GLOF hazard and risk studies in any given region (e.g. Mal et al., 2021)

disaster risk reduction policies and initiatives that could af-
fect them and their region (Table 5). Examples show that
even when communities have been involved in, and support-
ive of, projects, conflicts can still emerge around GLOF pre-
vention or other glacier research. In Peru, for example, lo-
cal residents have resisted hazard-zoning policies to prevent
construction inside potential outburst flood paths. In another
case, some local residents destroyed a GLOF early warning
system at Laguna 513 (Huggel et al., 2020b), while others
fought against glacier ice core research on Mount Huascarán,
both sites located in the Cordillera Blanca, Peru. In the Ever-
est region, there was a disconnect between the local commu-
nities and the outside agencies regarding their priorities on
cryospheric hazards and risks (Sherpa et al., 2019; Thomp-
son et al., 2020). These examples highlight the importance of
building relationships with local communities and engaging
them with research and adaptation planning from an early
stage.

Building trust with communities is key and implies a
number of responsibilities, also for GLOF researchers, such
as following community-driven processes and working to-

wards co-production of knowledge and co-management of
the projects. As Carey et al. (2020) note in their con-
cept of “glacier justice”, research should be driven by
communities, include multiple forms of knowledge includ-
ing local and indigenous knowledge, and recognize diverse
aspects of vulnerabilities for communities near glaciers.
Haverkamp (2021) has examined glacier-related research
and adaptation work in the Peruvian Andes to show that
top-down, techno-scientific and developmentalist approaches
tend to drive outsiders’ projects, thereby perpetuating a form
of colonialism, intervention or extraction. She thus calls for
“adaptation otherwise” as an approach that works with and
in support of highland communities so that glacier studies
do not further marginalize and disempower them. The prepa-
ration of ethical guidelines for GLOF researchers working in
places with communities might help to promote these efforts.
Further insights are also available from other fields and en-
vironments; for instance, Holm et al. (2011) offer guidance
for ethical research practices in Greenland and explain that
research should follow established institutional guidelines in
the research country and the researcher’s home country. It
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also includes partnerships with residents of the country and
community, the sharing of results in the country and commu-
nities of research, and the need to help build scientific literacy
and research expertise within the country and communities of
research. Furthermore, Whyte (2020) calls for research that
is guided fundamentally by consent, trust, accountability and
reciprocity with local communities, particularly indigenous
people.

4.7 Attribution of GLOF events to anthropogenic
climate change

A direction of interdisciplinary research that has gained
considerable traction in recent years examines the multi-
ple drivers of risks related to GLOF events. A particularly
debated question is whether anthropogenic climate change
causes GLOF hazards and, if so, to what extent (Table 4). Re-
cent research has established clear causality from greenhouse
gas emissions to glacier shrinkage, lake growth and forma-
tion and, possibly, to GLOF hazard (Harrison et al., 2018;
Huggel et al., 2020a; Stuart-Smith et al., 2021). This research
is now starting to inform climate litigation. The most promi-
nent case internationally is currently being debated at a Ger-
man court and is based on a claim of a citizen of Huaraz,
Peru, who understands that the emissions of the German en-
ergy company RWE have contributed to placing his home
at risk of flooding from the glacier lake Palcacocha. The case
has not yet been decided, but a court has admitted such a case
to the evidentiary stage, implying that the defendant (RWE)
will be held liable for the damage or risks at a place thou-
sands of kilometres away if causality between their emissions
and the (potential) damage can be established.

The fact that research can inform such climate litigation
cases should not prevent putting the issue at stake into a
broader and more comprehensive perspective of responsibil-
ities and justice. For the case of the lake Palcacocha, Huggel
et al. (2020a) have analysed both climatic and non-climatic
drivers of risk, including governance, social and economic
conditions and development, or cultural traits that all strongly
influence how people and values are exposed and vulnerable
to GLOF hazards and what types of local, national and global
responsibilities are implied as a consequence.

5 Concluding remarks and recommendations

Our analysis of 594 GLOF papers published in 2017–2021
revealed that (i) the number of published GLOF papers ex-
perienced a sharp rise (+110 % more papers in 5 years) and
the majority of these papers were published in journals in-
dexed primarily under geoscientific categories; (ii) a rela-
tively small group of researchers produced a substantially
large number of influential GLOF papers (3 % of the most
productive researchers contributed to 40 % of GLOF papers)
– a similarly unbalanced pattern is observed among coun-

tries and institutes involved in GLOF research; (iii) the aver-
age number of co-authors of a GLOF paper has gradually
increased, possibly indicating more interdisciplinarity and
complexity in GLOF research; (iv) detailed insights from
High Mountain Asia reveal a gradually increasing share of
publications written by local researchers in some of the coun-
tries (e.g. India, Pakistan), suggesting improved chances for
the acceptance of research result and the implementation of
appropriate disaster risk reduction measures; (v) a prominent
hotspot of GLOF research is the Himalaya region, while the
majority of recent GLOFs are documented from repeated
outbursts of ice-dammed lakes in Alaska, the Karakoram,
Iceland and Scandinavia, revealing a geographical discrep-
ancy and potential societal impacts as drivers of GLOF re-
search; and (vi) a word cloud analysis tracked a trend to-
wards linking GLOFs to changing climate and an upswing
in modelling approaches and also confirmed a lack of studies
addressing vulnerabilities and exposure to GLOFs.

Discussions and insights from the first global GLOF con-
ference and workshop, with attendance of GLOF research
community members from all over the world and from var-
ious scientific backgrounds and career stages, allowed us
to identify challenges and outline general recommendations
for ways forward in GLOF research (see Tables 2 to 5).
To navigate future GLOF research towards addressing iden-
tified challenges, we especially recommend the following:
(i) promoting GLOF trigger-focused analysis and hazard as-
sessments and data-driven re-analysis of GLOF susceptibil-
ity indicators; (ii) back-calculating relevant events in order
to refine model parameters and define plausible sets of pa-
rameters for predictive modelling of potential future events;
(iii) fostering interdisciplinary cooperation and the employ-
ment of integrated holistic approaches in GLOF research en-
abling the identification and consideration of diverse drivers,
aspects and components of complex GLOF risk; and (iv) sup-
porting the involvement of local researchers, communities,
decision-makers, authorities and other stakeholders promot-
ing diverse knowledge co-production including local and in-
digenous knowledge and experience exchange that are fun-
damental for the consideration, acceptance and utilization of
GLOF research outcomes and improved future GLOF risk
management.

Code and data availability. The literature search for the scop-
ing review was done using the Scopus database (https://
www.scopus.com/home.uri, Scopus, 2022) and Web of Sci-
ence (WOS, 2022) database (https://www.webofscience.com/wos/
woscc/basic-search). Data about recent GLOFs (Fig. 3) are avail-
able from glofs.geoecology.uni-potsdam.de/ (Veh et al., 2022). All
other data generated or analysed during this study are included in
this article or available from the corresponding author on request
(adam.emmer@uni-graz.at).
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