Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ProbFire: a probabilistic fire early warning system for Indonesia
Tadas Nikonovas
CORRESPONDING AUTHOR
Department of Geography, Swansea University, Swansea, SA2 8PP, UK
Allan Spessa
Department of Geography, Swansea University, Swansea, SA2 8PP, UK
Stefan H. Doerr
Department of Geography, Swansea University, Swansea, SA2 8PP, UK
Gareth D. Clay
Department of Geography, University of Manchester, Manchester, M13
9Pl, UK
Symon Mezbahuddin
Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
Related authors
No articles found.
Fred Worrall, Gareth Clay, Catherine Moody, and Catherine Hirst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1469, https://doi.org/10.5194/egusphere-2025-1469, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding global carbon budgets requires a knowledge of the balance between carbon dioxide and oxygen gas fluxes – oxidative ratio (OR). The OR has proved difficult to measure for terrestrial environments. We present a novel method for measuring OR using an ecosystem's carbon budget and organic matter elemental composition. We found an OR of 0.88, significantly lower than the IPCC's assumed 1.1. This lower OR value implies that terrestrial biosphere carbon budgets have been underestimated.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Julia Kelly, Stefan H. Doerr, Johan Ekroos, Theresa S. Ibáñez, Md. Rafikul Islam, Cristina Santín, Margarida Soares, and Natascha Kljun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2016, https://doi.org/10.5194/egusphere-2024-2016, 2024
Preprint archived
Short summary
Short summary
We measured soil carbon fluxes during the first four years after a wildfire in the Swedish boreal forest. Soil CO2 emissions decreased substantially only when trees were killed by fire or by post-fire logging, but not when trees survived the fire and were left standing. Soil methane flux was not affected by fire. Logging trees already killed by fire had no additional impact on soil carbon fluxes. Post-fire forest management strategy impacted vegetation regrowth and carbon dynamics.
Cited articles
Aldrian, E. and Dwi Susanto, R.: Identification of three dominant rainfall
regions within Indonesia and their relationship to sea surface temperature,
Int. J. Climatol., 23, 1435–1452, https://doi.org/10.1002/joc.950, 2003.
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus Form Approximation of
Saturation Vapor Pressure, J. Appl. Meteorol. Climatol.,
35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996.
Arino, O., Casadio, S., and Serpe, D.: Global night-time fire season timing
and fire count trends using the ATSR instrument series, Remote Sens.
Environ., 116, 226–238, https://doi.org/10.1016/j.rse.2011.05.025, 2012.
Barnston, A. G.: Linear Statistical Short-Term Climate Predictive Skill in
the Northern Hemisphere, J. Climate, 7, 1513–1564,
https://doi.org/10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2, 1994.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National
Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.,
USA, https://doi.org/10.3334/CDIAC/00001_V2017, 2017.
Carmenta, R., Zabala, A., Trihadmojo, B., Gaveau, D., Salim, M. A., and
Phelps, J.: Evaluating bundles of interventions to prevent peat-fires in
Indonesia, Global Environ. Change, 67, 102154,
https://doi.org/10.1016/j.gloenvcha.2020.102154, 2020.
Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uriarte, M., and
DeFries, R.: Sources of anthropogenic fire ignitions on the peat-swamp
landscape in Kalimantan, Indonesia, Global Environ. Change, 39, 205–219,
https://doi.org/10.1016/j.gloenvcha.2016.05.005, 2016.
Chen, Y., Morton, D. C., Andela, N., Giglio, L., and Randerson, J. T.: How much
global burned area can be forecast on seasonal time scales using sea surface
temperatures?, Environ. Res. Lett., 11, 045001,
https://doi.org/10.1088/1748-9326/11/4/045001, 2016.
Chen, Y., Randerson, J. T., Coffield, S. R., Foufoula-Georgiou, E., Smyth, P.,
Graff, C. A., Morton, D. C., Andela, N., van der Werf, G. R., Giglio, L., and Ott, L.
E.: Forecasting global fire emissions on subseasonal to seasonal (S2S) time
scales, J. Adv. Model. Earth. Syst., 12, e2019MS001955, https://doi.org/10.1029/2019MS001955, 2020.
Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M., Nepstad, D. C.,
Lefebvre, P., and Davidson, E. A.: Positive feedbacks in the fire dynamic of
closed canopy tropical forests, Science, 284, 1832–1835,
https://doi.org/10.1126/science.284.5421.1832, 1999.
Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G. B., Kuwata, M.,
Thota, A., Sumin, S., Butt, E., Wiedinmyer, C., and Spracklen, D. V.:
Population exposure to hazardous air quality due to the 2015 fires in
Equatorial Asia, Sci. Rep.-UK, 6, 37074, https://doi.org/10.1038/srep3707, 2016.
Doblas-Reyes, F. J., Hagedorn, R., and Palmer, T. N.: The rationale behind the
success of multi-model ensembles in seasonal forecasting – II. Calibration
and combination, Tellus A, 57,
234–252, https://doi.org/10.3402/tellusa.v57i3.14658, 2005.
Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., and
Rodrigues, L. R. L.: Seasonal climate predictability and forecasting: status
and prospects, WIREs Clim. Change, 4, 245–268, https://doi.org/10.1002/wcc.217, 2013.
Dowdy, A. J., Mills, G. A., Finkele, K., and de Groot, W.: Australian fire
weather as represented by the McArthur forest fire danger index and the
Canadian forest fire weather index, Centre for Australian Weather and
Climate Research Tech. Rep, 10, 91, 2009.
Fan, H., Wang, L., Zhang, Y., Tang, Y., Duan, W., and Wang, L.: Predictable
Patterns of Wintertime Surface Air Temperature in Northern Hemisphere and
Their Predictability Sources in the SEAS5, J. Climate, 33,
10743–10754, https://doi.org/10.1175/JCLI-D-20-0542.1, 2020.
Field, R. D. and Shen, S. S. P.: Predictability of carbon emissions from
biomass burning in Indonesia from 1997 to 2006, J. Geophys. Res., 113,
G04024, https://doi.org/10.1029/2008JG000694, 2008.
Field, R. D., Van Der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R.,
Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., and Worden, H. M.:
Indonesian fire activity and smoke pollution in 2015 show persistent
nonlinear sensitivity to El Niño-induced drought, P.
Natl. Acad. Sci., 113, 9204–9209,
https://doi.org/10.1073/pnas.1524888113, 2016.
Gaveau, D. L., Salim, M. A., Hergoualc'h, K., Locatelli, B., Sloan, S.,
Wooster, M., Marlier, M. E., Molidena, E., Yaen, H., DeFries, R., and Verchot,
L.: Major atmospheric emissions from peat fires in Southeast Asia during
non-drought years: evidence from the 2013 Sumatran fires, Sci. Rep.-UK, 4, 6112,
https://doi.org/10.1038/srep06112, 2014.
Giglio, L., Schroeder, W., and Justice, C. O.: The collection 6 MODIS active
fire detection algorithm and fire products, Remote Sens. Environ.,
178, 31–41, https://doi.org/10.1016/j.rse.2016.02.054, 2016.
Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules, Prediction, and
Estimation, J. Am. Stat. Assoc., 102, 359–378,
https://doi.org/10.1198/016214506000001437, 2004.
Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.: On calibration of modern neural networks, Proc. Mach. Learn. Res., 70, 1321–1330, 2017.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., and Kommareddy, A.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Haryono, S. M., Ritung, S., Wahyunto, N. K., Sukarman, H., and Supardo, T. C.: Peatland Map of Indonesia. Center for Research and Development of Agricultural Land Resources, Agricultural Research and Development Agency, Indonesia Ministry of Agriculture [data set], Bogor, Indonesia, https://data.globalforestwatch.org/datasets/indonesia-peat-lands (last access 1 February 2022), 2011.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, Springer, New York, NY, https://doi.org/10.1007/978-0-387-84858-7, 2009.
Hergoualc'h, K., Carmenta, R., Atmadja, S., Martius, C., Murdiyarso, D., and Purnomo, H.: Managing peatlands in Indonesia: challenges and opportunities for local and global communities, CIFOR Infobrief 205, Center for International Forestry Research (CIFOR), Bogor, Indonesia, https://doi.org/10.17528/cifor/006449, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., and Anshari, G.: Subsidence and carbon loss in drained tropical peatlands, Biogeosciences, 9, 1053–1071, https://doi.org/10.5194/bg-9-1053-2012, 2012.
Hoscilo, A., Page, S. E., Tansey, K. J., and Rieley, J. O.: Effect of repeated
fires on land-cover change on peatland in southern Central Kalimantan,
Indonesia, from 1973 to 2005, Int. J. Wildland Fire, 20,
578–588, https://doi.org/10.1071/WF10029, 2011.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L., Flemming, J.,
Parrington, M., Inness, A., Murdiyarso, D., Main, B., and Van Weele, M.: Fire
carbon emissions over maritime southeast Asia in 2015 largest since 1997,
Sci. Rep.-UK, 6, 26886, https://doi.org/10.1038/srep26886, 2016.
Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S., and Vasander, H.:
Heterotrophic respiration in drained tropical peat is greatly affected by
temperature – a passive ecosystem cooling experiment, Environ. Res. Lett.,
9, 105013, https://doi.org/10.1088/1748-9326/9/10/105013, 2014.
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019.
Langner, A. and Siegert, F.: Spatiotemporal fire occurrence in Borneo over a
period of 10 years, Global Change Biol., 15, 48–62,
https://doi.org/10.1111/j.1365-2486.2008.01828.x, 2009.
Lavaysse, C., Stockdale, T., McCormick, N., and Vogt, J.: Evaluation of a New
Precipitation-Based Index for Global Seasonal Forecasting of Unusually Wet
and Dry Periods, Weather Forecast., 35, 1189–1202,
https://doi.org/10.1175/WAF-D-19-0196.1, 2020.
Lee, B. P., Davies, Z., and Struebig, M.: Smoke pollution disrupted
biodiversity during the 2015 El Niño fires in Southeast Asia,
Environ. Res. Lett., 12, 9, https://doi.org/10.1088/1748-9326/aa87ed,
2017.
Lee, H.-H., Bar-Or, R. Z., and Wang, C.: Biomass burning aerosols and the low-visibility events in Southeast Asia, Atmos. Chem. Phys., 17, 965–980, https://doi.org/10.5194/acp-17-965-2017, 2017.
Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M. F., Latif,
M. T., and Karambelas, A.: Diagnosing spatial biases and uncertainties in
global fire emissions inventories: Indonesia as regional case study, Remote
Sens. Environ., 237, 111557, https://doi.org/10.1016/j.rse.2019.111557,
2020.
Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos.
Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, 1963.
Manzanas, R., Gutiérrez, J. M., Bhend, J., Hemri, S., Doblas-Reyes, F. J., Torralba, V., Penabad, E., and Brookshaw, A.: Bias adjustment and
ensemble recalibration methods for seasonal forecasting: a comprehensive
intercomparison using the C3S dataset, Clim. Dynam., 53, 1287–1305,
https://doi.org/10.1007/s00382-019-04640-4, 2019.
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., and Hansen, M. C.:
Primary forest cover loss in Indonesia over 2000–2012, Nat. Clim.
Change, 4, 730, https://doi.org/10.1038/nclimate2277, 2014.
Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson,
J. T., Shindell, D. T., Chen, Y., and Faluvegi, G.: El Niño and health
risks from landscape fire emissions in southeast Asia, Nat. Clim.
Change, 3, 131–136, https://doi.org/10.1038/nclimate1658, 2013.
Mason, I.: A model for assessment of weather forecasts, Aust. Met. Mag., 30,
291–303, 1982.
Miettinen, J., Hooijer, A., Wang, J., Shi, C., and Liew, S. C.: Peatland
degradation and conversion sequences and interrelations in Sumatra, Reg.
Environ. Change, 12, 729–737, https://doi.org/10.1007/s10113-012-0290-9, 2012.
Murphy, A. H.: A new vector partition of the probability score, J. Appl.
Meteorol., 12, 595–600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2, 1973.
Murphy, A. H.: Decision making and the value of forecasts in a generalized
model of the cost-loss ratio situation, Mon. Weather Rev., 113,
362–369, https://doi.org/10.1175/1520-0493(1985)113<0362:DMATVO>2.0.CO;2, 1985.
Murphy, A. H. and Winkler, R. L.: Diagnostic verification of probability
forecasts, Int. J. Forecast., 7, 435–455,
https://doi.org/10.1016/0169-2070(92)90028-8, 1992.
Niculescu-Mizil, A. and Caruana, R.: Predicting good probabilities with supervised learning, in: Proceedings of the 22nd international conference on Machine learning (ICML '05), Association for Computing Machinery, New York, NY, USA, 625–632, https://doi.org/10.1145/1102351.1102430, 2005.
Nikonovas, T.: ProbFire: a probabilistic fire early warning system for Indonesia (0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.5206278, 2021a.
Nikonovas, T.: ProbFire, Zenodo [code], https://doi.org/10.5281/zenodo.5939892, 2021b.
Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D., and Mezbahuddin, S.:
Near-complete loss of fire-resistant primary tropical forest cover in
Sumatra and Kalimantan, Commun. Earth Environ., 1, 65,
https://doi.org/10.1038/s43247-020-00069-4, 2020.
Oozeer, Y., Chan, A., Wang, J., Reid, J. S., Salinas, S. V., Ooi, M. C., and
Morris, K. I.: The Uncharacteristic Occurrence of the June 2013
Biomass-Burning Haze Event in Southeast Asia: Effects of the Madden-Julian
Oscillation and Tropical Cyclone Activity, Atmosphere, 11, 55,
https://doi.org/10.3390/atmos11010055, 2020.
Page, S. E. and Hooijer, A.: In the line of fire: the peatlands of Southeast
Asia, Philos. T. Roy. Soc. B,
371, 20150176, https://doi.org/10.1098/rstb.2015.0176, 2016.
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., and Limin,
S.: The amount of carbon released from peat and forest fires in Indonesia
during 1997, Nature, 420, 61–65, https://doi.org/10.1038/nature01131, 2002.
Pan, X., Chin, M., Ichoku, C. M., and Field, R. D.: Connecting Indonesian
fires and drought with the type of El Niño and phase of the Indian Ocean
dipole during 1979–2016, J. Geophys. Res.-Atmos., 123,
7974–7988, https://doi.org/10.1029/2018JD028402, 2018.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., and Vanderplas,
J.: Scikit-learn: Machine learning in Python, J. Mach.
Learn. Res., 12, 2825–2830, 2011.
Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Sampson, C. R., Zhang, C., Fukada, E. M., and Maloney, E. D.: Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent, Atmos. Chem. Phys., 12, 2117–2147, https://doi.org/10.5194/acp-12-2117-2012, 2012.
Richardson, D. S.: Skill and relative economic value of the ECMWF ensemble
prediction system, Q. J. Roy. Meteor. Soc., 126, 649–667,
https://doi.org/10.1002/qj.49712656313, 2000.
Sabajo, C. R., le Maire, G., June, T., Meijide, A., Roupsard, O., and Knohl, A.: Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia, Biogeosciences, 14, 4619–4635, https://doi.org/10.5194/bg-14-4619-2017, 2017.
Shawki, D., Field, R. D., Tippett, M. K., Saharjo, B. H., Albar, I., Atmoko,
D., and Voulgarakis, A.: Long-lead prediction of the 2015 fire and haze
episode in Indonesia, Geophys. Res. Lett., 44, 9996–10005,
https://doi.org/10.1002/2017GL073660, 2017.
Spessa, A. C., Field, R. D., Pappenberger, F., Langner, A., Englhart, S., Weber, U., Stockdale, T., Siegert, F., Kaiser, J. W., and Moore, J.: Seasonal forecasting of fire over Kalimantan, Indonesia, Nat. Hazards Earth Syst. Sci., 15, 429–442, https://doi.org/10.5194/nhess-15-429-2015, 2015.
Stockdale, T., Anderson, D. L. T., Alves, J. O. S., and Balmaseda, M. A.:
Global seasonal rainfall forecasts using a coupled ocean-atmosphere model,
Nature, 392, 370–373, https://doi.org/10.1038/32861, 1998.
Tacconi, L.: Preventing fires and haze in Southeast Asia, Nat. Clim.
Change, 6, 640, https://doi.org/10.1038/nclimate3008, 2016.
Turco, M., Jerez, S., Doblas-Reyes, F.J., AghaKouchak, A., Llasat, M. C., and
Provenzale, A.: Skilful forecasting of global fire activity using seasonal
climate predictions, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-05250-0, 2018.
Turubanova, S., Potapov, P. V., Tyukavina, A., and Hansen, M. C.: Ongoing
primary forest loss in Brazil, Democratic Republic of the Congo, and
Indonesia, Environ. Res. Lett., 13, 074028,
https://doi.org/10.1088/1748-9326/aacd1c, 2018.
Van Wagner, C. E. and Forest, P.: Development and structure of the Canadian forest fire weather index system, vol. 35, Canadian Forestry Service, Headquarters, Ottawa, 1987.
Vetrita, Y. and Cochrane, M. A.: Fire Frequency and Related Land-Use and
Land-Cover Changes in Indonesia's Peatlands, Remote Sens., 12, 5,
https://doi.org/10.3390/rs12010005, 2020.
Widyastuti, K., Imron, M.A., Pradopo, S.T., Suryatmojo, H., Sopha, B.M.,
Spessa, A., and Berger, U.: PeatFire: an agent-based model to simulate fire
ignition and spreading in a tropical peatland ecosystem, Int.
J. Wildland Fire, 30, 71–89, https://doi.org/10.1071/WF19213, 2020.
Yin, Y., Ciais, P., Chevallier, F., Van der Werf, G.R., Fanin, T., Broquet,
G., Boesch, H., Cozic, A., Hauglustaine, D., Szopa, S., and Wang, Y.:
Variability of fire carbon emissions in equatorial Asia and its nonlinear
sensitivity to El Niño, Geophys. Res. Lett., 43, 10–472,
https://doi.org/10.1002/2016GL070971, 2016.
Short summary
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative effects on human health in the region. In this study we show that such burning events can be predicted several months in advance in large parts of Indonesia using existing seasonal climate forecasts and forest cover change datasets. A reliable early fire warning system would enable local agencies to prepare and mitigate the worst of the effects.
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative...
Altmetrics
Final-revised paper
Preprint