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Abstract. Recurrent extreme landscape fire episodes associ-
ated with drought events in Indonesia pose severe environ-
mental, societal and economic threats. The ability to predict
severe fire episodes months in advance would enable rele-
vant agencies and communities to more effectively initiate
fire-preventative measures and mitigate fire impacts. While
dynamic seasonal climate predictions are increasingly skilful
at predicting fire-favourable conditions months in advance
in Indonesia, there is little evidence that such information is
widely used yet by decision makers.

In this study, we move beyond forecasting fire risk based
on drought predictions at seasonal timescales and (i) de-
velop a probabilistic early fire warning system for Indone-
sia (ProbFire) based on a multilayer perceptron model using
ECMWF SEAS5 (fifth-generation seasonal forecasting sys-
tem) dynamic climate forecasts together with forest cover,
peatland extent and active-fire datasets that can be operated
on a standard computer; (ii) benchmark the performance of
this new system for the 2002–2019 period; and (iii) evaluate
the potential economic benefit of such integrated forecasts
for Indonesia.

ProbFire’s event probability predictions outperformed
climatology-only based fire predictions at 2- to 4-month lead
times in south Kalimantan, south Sumatra and south Papua.
In central Sumatra, an improvement was observed only at
a 0-month lead time, while in west Kalimantan seasonal pre-
dictions did not offer any additional benefit over climatology-
only-based predictions. We (i) find that seasonal climate fore-
casts coupled with the fire probability prediction model con-
fer substantial benefits to a wide range of stakeholders in-
volved in fire management in Indonesia and (ii) provide a
blueprint for future operational fire warning systems that in-
tegrate climate predictions with non-climate features.

1 Introduction

Recurrent severe fires in Indonesia release globally signifi-
cant amounts of greenhouse gases and particulate matter into
the atmosphere. Emitted toxic haze can shroud the region for
several months (Marlier et al., 2013), with devastating im-
pacts on people’s health and livelihoods (Crippa et al., 2016;
H. H. Lee et al., 2017), whilst also damaging local ecosys-
tems and biodiversity (B. P. Lee et al., 2017). Every year,
during the dry season, fire is widely used for land clear-
ing and in agriculture across the archipelago. In some years,
however, anomalously severe droughts do develop, triggering
catastrophic uncontrolled burning events. Two of the biggest
such episodes, the 1997–1998 and 2015 events each released
0.81–2.57 (Page et al., 2002) and 0.21–0.53 Tg C (Huijnen
et al., 2016; Yin et al., 2016), equivalent to 12 %–40 % and
2 %–5 % of total global carbon emissions for the year, re-
spectively (Boden et al., 2017). Increasingly skilful seasonal
climate predictions by dynamic forecasting systems (Doblas-
Reyes et al., 2013; Johnson et al., 2019) can potentially be
utilized in early warning systems, helping to prepare for and
mitigate the worst of the damaging burning events. How-
ever, relevant non-climatic drivers of fire occurrence have to
date not been integrated with seasonal climate predictions,
leaving an untapped potential for improving early fire event
prediction systems. Furthermore, evaluation of the potential
value of such predictions for the decision makers in the re-
gion has not yet been carried out to date.

In recent decades, Indonesia’s fire problem has been ex-
acerbated by non-climatic drivers such as commodity-driven
loss and degradation of primary forests (Turubanova et al.,
2018), drainage of peatlands (Hooijer et al., 2012), and con-
version of land to industrial plantations and small-holder
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agriculture (Miettinen et al., 2012). Loss of fire-resilient
closed-canopy forests (Cochrane et al., 1999; Nikonovas et
al., 2020) has resulted in more severe local fire weather due
to increased surface heating and substantially warmer micro-
climates in the deforested landscapes (Sabajo et al., 2017).
In peatlands, fire presence was also increased by artificially
lowered water table depth due to extensive drainage, which,
in combination with increased surface heating, has exposed
more peat to desiccation (Jauhiainen et al., 2014) and the
establishment of fire-prone herbaceous vegetation in defor-
ested areas (Hoscilo et al., 2011). These factors, coupled with
widespread use of fire by humans for land clearing and crop
rotation (Cattau et al., 2016), have dramatically amplified
drought sensitivity of fire activity across the region.

The duration and severity of the dry season in different
parts of the Indonesian archipelago is modulated by interac-
tions between atmospheric processes associated with interan-
nual irregular oscillations in sea surface temperature anoma-
lies in the Pacific and Indian oceans. Drier-than-normal
conditions across Indonesia are generally associated with
cooler-than-normal sea surface temperatures (SSTs) which
occur during a strong positive El Niño–Southern Oscillation
(ENSO) event (El Niño) and/or positive phase of the Indian
Ocean Dipole (IOD) cycle. Reduced precipitation in south
Sumatra, south Kalimantan and south Papua are typically
linked to El Niño events, while dry conditions in northern
central Sumatra tend to coincide with a positive IOD phase
(Aldrian and Dwi Susanto, 2003; Field and Shen, 2008; Field
et al., 2016). While the most severe droughts and widespread
burning do occur when both El Niño and IOD are in positive
phases (Reid et al., 2012; Pan et al., 2018), short droughts and
associated burning events can also develop in neutral ENSO
and IOD years, triggered by events such as the dry phase of
the Madden–Julian Oscillation (Gaveau et al., 2014; Oozeer
et al., 2020).

The chaotic nature of atmospheric circulation (Lorenz,
1963) prevents reliable numerical weather prediction beyond
a couple of weeks (Bauer et al., 2015). Nonetheless, cur-
rent state-of-the-art dynamic seasonal forecasting systems
show skill in seasonal prediction of 2 m air temperature and
precipitation, especially in tropical regions (Doblas-Reyes
et al., 2013; Johnson et al., 2019). The predictability of
these chaotic weather parameters at monthly timescales is at-
tributable to an increasingly realistic representation of slowly
evolving SST anomalies associated with the ENSO and IOD
variability in seasonal climate forecasting systems (Stock-
dale et al., 1998; Johnson et al., 2019; Fan et al., 2020;
Lavaysse et al., 2020).

Global assessments of seasonal predictability of fire activ-
ity have shown that climate information from dynamic mod-
els (Turco et al., 2018) and observed sea surface temperature
anomalies (Chen et al., 2016, 2020) can be used to skilfully
predict fire occurrence across different regions, including In-
donesia. Other studies focused on Indonesia have demon-
strated that anomalous drought conditions can be predicted

up to a few months in advance (Spessa et al., 2015; Shawki
et al., 2017). However, these previous efforts did not integrate
non-climate information into fire activity prediction models
and had only aggregated regional resolution.

The climate–fire relationship in Indonesia is strongly reg-
ulated at finer spatial scales by human-driven rapid transfor-
mation of land cover in Indonesia, particularly in peatland
ecosystems (Miettinen et al., 2012; Turubanova et al., 2018;
Nikonovas et al., 2020). As such, land cover change and for-
est fragmentation are critical ingredients for predicting fire
activity in Indonesia. No studies have assessed how well the
skill of seasonal drought prediction at regional scales trans-
lates to fire activity forecasting at fine spatial scales, which
would add value to potential users of the forecasts such as
fire managers, forest conservationists and peatland protection
agencies. While the integration of non-climate information
datasets, development of high-spatial-resolution probabilis-
tic forecasting models and long-term performance validation
have been identified by the previous studies as key require-
ments for building future early warning systems and increas-
ing the usability of the seasonal climate information in fire
management (Spessa et al., 2015; Chen et al., 2016; Turco et
al., 2018), these challenges have not yet been addressed.

This study aims to (i) move beyond seasonal forecasting of
fire activity solely as a function of climate variables, (ii) pro-
vide a blueprint for future operational landscape-scale fire
forecasting systems and (iii) evaluate the system from a po-
tential user’s perspective in terms of skill and economic util-
ity. Specifically, we developed a probabilistic early fire warn-
ing system (ProbFire) for Indonesia that integrates informa-
tion from ECMWF SEAS5 (fifth-generation seasonal fore-
casting system) seasonal climate forecasts and non-climate
datasets and produces probabilistic fire event predictions at
0.25◦ spatial resolution with monthly time steps. ProbFire
performance was assessed using MODIS active-fire observa-
tions during the 2002–2019 period. To assess the added value
of SEAS5 seasonal forecasts, the ERA5 climatology-based
model was used as a benchmark. In addition to evaluating
model skill at predicting observed fire occurrences, we also
assessed the economic value and benefits of ProbFire predic-
tions for potential stakeholders in Indonesia and beyond.

2 Data

2.1 Fire activity data

As a proxy for fire activity across Indonesia this study used
the Collection 6.1 active-fire dataset MCD14ML (Giglio et
al., 2016) based on Moderate Resolution Imaging Spec-
troradiometer (MODIS) imagery at thermal wavelengths.
The product contains centre coordinates of MODIS pixels
(∼ 1 km2 at nadir,∼ 10 km2 at the extreme sensor view edge)
which were flagged as active fires by the thermal-anomalies
algorithm.
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Figure 1. Study region showing total MODIS active-fire counts for the 2002–2019 period at 0.25◦ resolution. Also shown are the bounding
boxes of the sub-regions used in the study.

The MCD14ML product has been shown to perform well
in detecting large fire events and to have a low false-alarm
rate. Validation of the product for the equatorial Asia re-
gion indicated 8 % error of commission (Giglio et al., 2016).
Low levels of false detections were also confirmed during the
2013 burning episode in north Riau, where 96 % of MODIS
active-fire pixels were found to fall within the burned-area
extent estimated using higher-resolution imagery (Gaveau et
al., 2014). Omission errors for small fires of the MODIS
active-fire product are inevitably high due to the relatively
coarse spatial resolution of the sensor (pixel size of 500 m at
nadir). For fires over 0.125 km2 in size, the estimated omis-
sion error was 10 %, while for fires of 0.250 km2 or larger,
the omission error was below 5 % (Giglio et al., 2016). Al-
though low-temperature smouldering peatland fires are gen-
erally more difficult to detect using thermal-anomalies algo-
rithms (Giglio et al., 2016), such fires typically have long
residence times, and as a result detection probability in-
creases with each satellite overpass. In any case, omission
of small fires in the product is not critical for early warn-
ing systems aimed at alerting the risk of unusually high-fire-
activity events, rather than quantify fire effects such as fire-
affected area. A recent study comparing fire emission inven-
tories based on MODIS burned-area and active-fire datasets
for Indonesia showed that active-fire-based emission mod-
els reproduce regional aerosol optical thickness more accu-
rately when compared to burned-area methods, resulting in
a smaller underestimation of fire activity in extreme burning
years (Liu et al., 2020).

Fire occurrence patterns in Indonesia and prediction
objective

The MODIS active-fire detections were aggregated to a
0.25◦ spatial grid and monthly time step. Monthly active-fire
counts were used both as model training targets and for pre-
diction validation. Most of the grid cells (∼ 80 %) did not

have any active fires for the given month. Active-fire counts
for the grid cells with fire detections (∼ 20 % of the dataset)
were highly skewed, with the majority containing very few
detections, while the relatively low number of grid cells had
very high monthly fire counts (up to∼ 2500). Approximately
three-quarters of the grid cells with active-fire detections had
1–10 fire pixels, while the remaining upper quartile (5 % of
the total dataset) had > 10 active-fire detections per month.
Importantly, while the number of grid cells having a low
active-fire pixel count (1–10) show a clear pattern of Indone-
sia’s dominant dry season (Aldrian and Dwi Susanto, 2003),
there are only small differences when comparing the fire grid
cell counts for different years (Fig. 2a). In contrast, the num-
ber of the top quartile of all fire-containing grid cells varied
considerably more between years. Total active-fire counts de-
picted in Fig. 2b exhibit even greater interannual variability
indicating that most of the region’s fire impacts can be at-
tributed to the grid cells containing > 10 fire pixels.

The main objective of ProbFire is to predict the probability
that the monthly active-fire count will exceed a given thresh-
old. We present results of predicting both the monthly active-
fire count of > 0 cases (20 % of the dataset) and the monthly
active-fire count of > 10 cases (5 % of the dataset); our anal-
ysis focuses on the latter class. While prediction of increas-
ingly rare events is a more challenging problem, it is also a
more important one due to the greater impacts that such fire
events have.

2.2 Climate variables

This study used three climatic variables as inputs for pre-
diction of fire activity in Indonesia: total precipitation, air
temperature and relative humidity. These climate indicators
are strongly linked to fire occurrence and as a result are
widely used as key inputs for calculating various fire dan-
ger indices (van Wagner and Forest, 1987; Dowdy et al.,
2009). The variables were obtained from the European Cen-
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Figure 2. MODIS active-fire record for Indonesia during the 2002–2019 period. (a) Percentage of total land grid cells in the study region
(n= 2080) with active-fire detections. The two categories shown are for grid cells with relatively low fire counts (1–10 fire pixels per month)
and a higher degree of fire presence (> 10 fire pixels) in blue and red colours, respectively. (b) Total monthly MODIS active-fire counts
attributable to grid cells of the two categories.

tre for Medium-Range Weather Forecasts (ECMWF) grid-
ded reanalysis and long-range forecasts products distributed
via the Copernicus Climate Change Service. For model train-
ing, validation and computing climatological values we em-
ployed the ECMWF’s ERA5 reanalysis dataset, while for
predictions of fire occurrence probability at 0- to 5-month
lead times we have used ECMWF’s SEAS5 long-range fore-
casting model simulations.

ERA5 is the latest version of ECMWF reanalysis products.
It is based on the centre’s Integrated Forecast System’s cou-
pled atmosphere–ocean model simulations constrained with
many assimilated satellite-based and in situ observational
datasets (Hersbach et al., 2020). The ERA5 product used in
this study has a regular longitude–latitude grid with a 0.25◦

spatial resolution and 1-hourly time step. We have resampled
the ERA5 weather parameters to monthly values by comput-
ing the monthly mean 2 m temperature, mean monthly 2 m
relative humidity and total monthly precipitation.

SEAS5 is the fifth-generation ECMWF seasonal forecast-
ing system and has been operational since 2017 (Johnson
et al., 2019). The system consists of 51 ensemble members
which are initialized on the first day of every month and
simulate the state of the atmosphere for a 7-month period.
The individual ensemble members are initialized using per-
turbed initial conditions and atmospheric model parameters
to represent uncertainties associated with the initial state and
missing or misrepresented model processes. While the sys-
tem consists of 51 ensemble members when operated in fore-
casting mode (since 2017), for the years prior to 2017 the
SEAS5 system was initialized using only 25 members pro-
ducing climate hindcasts (alternatively termed reforecasts)
for the period covering 1981–2016. In this study, we used the
same subset of 25 SEAS5 members which were available for
the whole of the study period covering 2002 through 2019,

and we also used term forecasts in describing SEAS5 data
from both hindcast and forecast periods. The spatial resolu-
tion of the SEAS5 product was 1◦, while the temporal step
was 1 month.

While the mean 2 m temperature was readily available and
total monthly precipitation was simply calculated from pre-
cipitation rates given in the respective ERA5 and SEAS5
products, relative humidity was derived from the 2 m temper-
ature and 2 m dew point temperature using August–Roche–
Magnus approximation (Alduchov and Eskridge, 1996):

RH= 100
exp

(
17.625td

243.04+td

)
exp

(
17.625t

243.04+t

) , (1)

where RH is relative humidity, td is the 2 m dew point tem-
perature and t is the 2 m temperature. In total, we used eight
climate features as inputs into ProbFire: total monthly pre-
cipitation, total monthly precipitation for the 5 preceding
months (t−1 to t−5), mean monthly temperature and mean
monthly relative humidity. Precipitation for 5 months pre-
ceding the month of interest was included to characterize
long-term build-up of drought conditions, and the number of
months was determined empirically during the model opti-
mization stage.

SEAS5 bias and variance adjustment

Raw SEAS5 model ensemble forecasts, like any other long-
range climate modelling system outputs, are affected by sys-
tematic model biases and drift, and, as a result, forecast
climatology (for example long-term mean and variance) is
often significantly different from the observed climatology
(Doblas-Reyes et al., 2013; Johnson et al., 2019). Further-
more, publicly available SEAS5 forecasts have a spatial res-
olution of 1◦ and consequently cannot represent local con-
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ditions well, particularly in coastal and mountainous areas
(Fig. 3).

To address SEAS5 biases and to downscale SEAS5 hind-
casts to match the spatial resolution of the ERA5 reanaly-
sis (0.25◦), we performed a mean and variance adjustment
(MVA) of the raw SEAS5 outputs. The method has been
extensively applied in seasonal forecasting (Barnston, 1994;
Doblas-Reyes et al., 2005) and has been shown to have sim-
ilar performance when compared to more complex and com-
putationally intensive methods (Manzanas et al., 2019).

The MVA was applied in two steps. First, the raw SEAS5
forecast data at 1◦ resolution were re-gridded to match the
0.25◦ resolution of the ERA5 reanalysis data using nearest-
neighbour interpolation. Second, the mean and variance of
monthly hindcasts for each SEAS5 ensemble member were
transformed to match those ERA5 values of the 1993–2019
period for that grid cell following Eq. (2):

fcorm,t =
(

frawm,t − yt

) σo
σf
+ ot , (2)

where fcorm,t and frawm,t are the mean-and-variance-
adjusted and raw SEAS5 hindcast ensemble member m for
month t , y

t
is the SEAS5 ensemble mean of all times t ,

ot is the ERA5 mean for month t , σo denotes the ERA5
standard deviation, and σf is the SEAS5 ensemble stan-
dard deviation for the calibration period (Fig. 3). The cali-
bration period was 1993–2019, as determined by the avail-
ability of both the SEAS5 hindcasts and ERA5 reanalysis
on the Copernicus Climate Change Service system (https:
//cds.climate.copernicus.eu, last access: 31 January 2022).

2.3 Non-climate variables

In addition to the climate variables, we used environmental
features which are closely associated with fire occurrence in
the region. These datasets were per-grid-cell peatland extent,
past fire activity, primary-forest cover extent, primary-forest
loss in the previous year and secondary-forest loss in the pre-
vious year (described in detail in the following paragraphs).
In contrast to climate features which had a monthly time step,
all the environmental features had an annual time resolution
except for peatland extent, which was fixed for the whole
study period. While numerous other sources of potential fea-
ture data exist, they were not selected because they did not
cover the whole of Indonesia for the full study period and/or
did not have at least an annual time step. This last criterion
was particularly important for determining the selection of
datasets because the fire prediction model was built to form
the basis for an operational early fire warning system.

2.3.1 Past fire activity

In many parts of the region, in deforested and unmanaged
peatlands in particular, the fire return interval is short due
to frequent repeated anthropogenic burning (Cattau et al.,

2016). Frequent fires prevent forest regrowth, and the land-
scape becomes dominated by flammable grasses (Hoscilo et
al., 2011). The positive feedback between fire and vegetation
means that areas which did experience burning in the past
are more likely to burn again. To represent fire occurrence
in previous years as a model input, the maximum monthly
active-fire detection count for each 0.25◦ grid cell in the years
preceding the prediction year was used.

We used two different active-fire products to cover past fire
observations for all years in the study period (2002–2019).
The MODIS active-fire record was extended beyond 2002
with Along Track Scanning Radiometer (ATSR) World Fire
Atlas (WFA) nighttime fire monthly counts for the 1997–
2001 period. This was done to reduce the impact of the lack
of past fire observations for the first few years in the study
period on the model performance. The ATSR WFA night-
time fire product contains several times fewer active-fire de-
tections when compared to the MODIS product due to a
lack of daytime retrievals (Arino et al., 2012), and as a re-
sult, pre-2002 maximum monthly counts are underestimated
when compared to the MODIS estimates. However, this step
was important to identify areas affected by the 1997–1998 El
Niño event and the associated fire episode which was one of
most severe in Indonesia’s history (Page et al., 2002).

2.3.2 Forest cover features

Loss and degradation of primary-forest cover in recent
decades has been closely associated with an increase in fire
occurrence in the region (Langner and Siegert, 2009; Field et
al., 2016). Undisturbed humid primary forests in Indonesia
are extremely fire-resilient (Cochrane et al., 1999; Nikono-
vas et al., 2020) and can resist ignition even during pro-
longed droughts. By contrast, industrial plantations and agri-
cultural land, which are replacing primary forests, have sub-
stantially higher fire activity rates (Nikonovas et al., 2020).
We used two high-resolution Landsat data-based tree cover
datasets used to represent changes in forest cover during the
study period at 0.25◦ spatial resolution and at an annual time
step. A co-located analysis of primary-forest cover extent
in the year 2000 (Margono et al., 2014) and version 1.6 of
the dataset of global annual forest cover loss (Hansen et al.,
2013), which covers 2001 to 2018, was performed to de-
termine annual primary-forest cover fraction, primary-forest
loss and secondary-forest loss. Pixels classed as primary for-
est in the year 2000 were matched with the pixels for an-
nual forest loss for the years 2001–2018. Firstly, we deter-
mined if the estimated forest loss had occurred in primary- or
secondary-forest areas. Secondly, primary-forest cover loss
for each year was derived by subtracting cumulative primary-
forest loss from the year 2000 primary-forest extent estimate.
Following these two steps, the annual primary-forest cover,
primary-forest loss and secondary-forest cover loss estimates
at the Landsat pixel level were aggregated to the study’s
0.25◦ resolution.
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Figure 3. Illustration of mean and variance adjustment applied to raw SEAS5 ensemble member forecasts. (a) Raw SEAS5 member of 1 for
temperature at 2 m (t2m) for October 2015 with a lead time of 2 months. (b) October 2015 mean-and-variance-adjusted 2 m temperature of
the same SEAS5 member based on calibration against overlapping 1993–2019 series between the ERA5 reanalysis and SEAS5 forecasts.
(c) SEAS5 ensemble member raw and bias-adjusted and ERA5 2 m temperature at the 115◦ E, 2◦ S location for the 1993–2019 period (bias-
corrected SEAS5 is only shown for the study period 2002–2019). (d) Mean SEAS5 member 2 m temperature for all October months in the
record for different lead times, showing ensemble mean drift (warming in this case) and increasing spread.

Definitions of forest cover and primary forests in this study
follow the definitions given in the global forest cover loss
and primary-forest extent of the year 2000 products. Both
datasets considered all Landsat pixels with a tree height of
> 5 m and canopy cover of > 30 % as forest cover. Primary
forest was defined as a contiguous block of > 5 ha of nat-
ural forest which has not been cleared in recent decades.
Note that the definition of primary forest includes both
intact and degraded primary-forest types (Margono et al.,
2014). Forest cover loss in the dataset of annual forest cover
loss was defined as a stand replacement disturbance. Both
Landsat-based forest cover datasets were found to agree well
with alternative estimates. The primary-forest extent of the
year 2000 dataset showed approximately 90 % agreement
when compared to the primary-forest map of the year 2000
issued by the Ministry of Forestry of Indonesia (Margono
et al., 2014), while validation of tree cover loss suggested
that forest loss was correctly flagged in more than 80 % of
the cases (producer’s accuracy of 83.1 %) in tropical regions
(Hansen et al., 2013).

2.3.3 Peatland fraction

Deforestation and drainage of the region’s carbon-rich peat-
lands in recent decades has rendered large amounts of near-
surface peat vulnerable to frequent repeated burning (Hoscilo
et al., 2011). Intentional fires in peatlands that are ignited to
clear land and prevent vegetation regrowth often develop into
uncontrolled sub-surface peat combustion events which may
last weeks or even months (Widyastuti et al., 2020). As a re-

sult, the region’s peatlands experience fire occurrence rates
up to several times higher when compared to non-peatlands
(Vetrita and Cochrane, 2020; Nikonovas et al., 2020). To rep-
resent elevated fire activity in peatland areas we estimated
the peatland fraction in the 0.25◦ grid cells using the high-
resolution vector maps of peatland distribution and carbon
content by Haryono et al. (2011). The vector maps were ras-
terized to a 0.01◦ grid. Any cells whose centroid was in-
side the peatlands polygons were considered peat areas. Fol-
lowing the rasterization step, the peatland’s fraction at 0.25◦

resolution was determined from the number of 0.01◦ cells
classed as peatlands falling within the lower-resolution cells.

2.3.4 Sub-region identifier features

Drivers of fire activity varying across different parts of
the archipelago have different fire activity rates even when
experiencing comparable drought conditions (Aldrian and
Dwi Susanto, 2003; Field and Shen, 2008; Field et al., 2016).
To enable the model to represent regional differences in
drought sensitivity across Indonesia, we used five additional
features representing binary identifiers for each of five sub-
regions within Indonesia (Fig. 1).

3 Model description and experimental setup

3.1 The model

To predict fire occurrence probability we used a multilayer
perceptron (MLP) classifier (i.e. a shallow artificial neural
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network) (Hastie et al., 2009). The main reason for choos-
ing an MLP model was the fact that MLPs do produce well-
calibrated probabilities, while at the same time they are able
to approximate more complex non-linear relationships when
compared to simpler probabilistic prediction models such as
logistic regression (Niculescu-Mizil and Caruana, 2005; Guo
et al., 2017).

The model consisted of three fully connected layers: a
layer with 18 inputs (see Fig. S3), one hidden layer with
15 nodes and an output layer with 2 nodes. For the hid-
den layer, rectified linear unit (ReLU) activations were used,
while sigmoid activation was applied to the output layer
nodes to obtain class (active-fire counts below or above
the threshold) probabilities. The model weights were opti-
mized by employing an LBFSG (limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm) solver with a learn-
ing rate value of 0.001 and cross-entropy loss function us-
ing L2 regularization with an alpha parameter value of 1.
The input features (climate parameters and land cover infor-
mation) were scaled to a zero mean and unit variance. The
model architecture and optimal parameter setup were deter-
mined by performing grid search cross-validation and evalu-
ating the model’s performance on validation data. The model
(http://github.com/ToFEWSI/ProbFire, last access: 31 Jan-
uary 2022) was implemented in the Python 3 programming
language using the scikit-learn machine learning library (Pe-
dregosa et al., 2011).

3.2 Model validation design

To evaluate ProbFire performance, we employed a leave-1-
year-out training and testing dataset splitting strategy. This
approach provides a more realistic representation of the
potential of the model to forecast fire occurrence proba-
bilities for future fire seasons. The whole 17-year record
was used (2002–2019), and the MLP model was iteratively
trained using 16 years’ worth of ERA5 reanalysis climate
and land cover data and predicting fire probabilities for
the left-out year. For example, fire occurrence probabili-
ties for year x were predicted and evaluated using data
from all years except year x for model training. This re-
sulted in 17 different realizations of the model (one for each
year in the record) all having different weights and biases,
due to different subsets of the dataset being used for train-
ing. Pretrained models with weights and biases are avail-
able at https://doi.org/10.5281/zenodo.5206278 (Nikonovas,
2021a).

3.3 ERA5-based predictions

The first set of model predictions was made using ERA5 re-
analysis monthly climate values employing the leave-1-year-
out strategy. This set of predictions represents the base model
and the best-case scenario of this study’s fire activity predic-
tion results.

3.4 SEAS5-based predictions

ProbFire prediction of fire probability at lead times of 0–5
months was based on SEAS5 climate forecasts for the cor-
responding lead times. Total precipitation for the previous
months (t−1 through t−5) was also based on SEAS5 values
for the months within the lead time window, while ERA5 pre-
cipitation for the previous months was used if those months
were outside the lead time period. For example, prediction
for October 2015 at a 2-month lead time was based on the
SEAS5 hindcast issued in August 2015. Precipitation for the
preceding months, t − 1 and t − 2, was also based on the
SEAS5 hindcasts issued in August; meanwhile total precip-
itation for the months t − 3 through t − 5 was derived from
ERA5 precipitation rates for July–May 2015. This approach
enabled us to utilize all the observational information avail-
able at the time when forecasts were issued.

3.5 Climatology model

The potential skill and value of long-range fire predictions
based on SEAS5 seasonal climate forecasts was bench-
marked against climatology-based model predictions. The
climatology model had the same input features, except that
SEAS5 forecasts were substituted with ERA5 mean values
for the 1993–2019 period for a given month. Like the fore-
casting feature setup, climatological values of total precip-
itation for the preceding months were used for the months
within the forecasting time window; otherwise ERA5 total
precipitation was used. For example, climatology-based pre-
diction for October 2015 at a lead time of 2 months was con-
structed using mean climate values for October 1993–2019
and climatological values of total precipitation for Septem-
ber and August (t−1 and t−2), but ERA5-based values were
used for total precipitation at months t − 3 to t − 5.

3.6 Model performance evaluation

3.6.1 Skill scores

To assess model performance, we used reliability diagrams
(Murphy and Winkler, 1992), the probability of detection
and false-alarm rate analysis (receiver operating character-
istic) (Mason, 1982), and the Brier score (Murphy, 1973).
Reliability diagrams inform how well predicted-event occur-
rence probabilities correspond to the actual observed-event
frequency. For example, we would have a reliable forecast
if taking all cases when 70 % event probability was issued;
the event would have occurred in close to 70 % of those
cases. The reliability diagrams were calculated by splitting
predicted probabilities into 10 equally spaced bins in a range
of [0, 1] with a step of 0.1 and determining fire event occur-
rence frequency for each of the bins. To complement the reli-
ability diagrams, we also constructed prediction histograms,
which indicate forecast sharpness. Sharpness is a measure of
the ability of a forecast to issue a range of probabilities. It is a
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desirable property of a forecasting system because forecasts
that issue low or high event probabilities are potentially more
useful. In contrast, while a forecast that often gives probabil-
ities close to event climatological frequency may be reliable,
it lacks sharpness and hence is of little use for decision mak-
ers.

The probability of detection expresses the fraction of all
events that were correctly classified, while the false-alarm
rate indicates the fraction of predicted events which did not
occur:

pod=
TP

(TP+FN)
, (3)

far=
FP

(TP+FP)
, (4)

where “pod” refers to the probability of detection; “far”
refers to the false-alarm rate; TP refers to a true positive,
which equals the number of events that have been correctly
classified as events; FN refers to a false negative, which is
the number of events that were not predicted; and FP refers
to false positives, which indicates the number of predicted
events that did not occur. The probability of detection is sen-
sitive to true positives but ignores false positives, while the
false-detection rate is sensitive to false alarms but ignores
false negatives. Both scores may be artificially inflated, by
increasing and reducing the number of event forecasts in the
case of the probability of detection and false-alarm rate, re-
spectively. While both scores can indicate if the forecasts are
potentially useful, they are calculated at a particular proba-
bility threshold. In reality, different users might benefit from
choosing different probability thresholds at which they de-
cide to act. The receiver operating characteristic (ROC) curve
addresses this by showing both the probability of detec-
tion and false-alarm rate at a range of increasing probability
thresholds. The metric indicates the ability of the forecasting
system to discriminate between events and non-events. The
area under the receiver characteristic curve is a single num-
ber summary score which is used in this study to compare
receiver characteristic curves obtained by different models.

The Brier score is a metric that is widely used to eval-
uate probabilistic predictions (Murphy, 1973; Gneiting and
Raftery, 2004). Conceptually it is similar to mean squared
error but rather than measuring the difference between ob-
served and predicted real values, the Brier score evaluates
the difference between predicted probability in the range [0,
1] and event occurrence:

Brier score=
1
n

∑n

t=1
(ft − ot )

2, (5)

where ft is the probability of the t th forecast and ot is 0 if
the event did not occur and 1 if it did. The score takes values
between 0 and 1, with smaller values indicating better skill.

The Brier score is sensitive both to discrimination and cali-
bration (reliability), and it is strictly a “proper” score. The lat-
ter property forces forecasters to issue a probability which is
equal to their true expectation (Gneiting and Raftery, 2004).
In contrast to proper scores, “improper” scores can be im-
proved by “hedging”, i.e. issuing probabilities which are dif-
ferent from the true expected probability. The Brier score is
sensitive to class prevalence and suffers from becoming van-
ishingly small for extremely rare events. As a result, it only
makes sense to compare the scores of different forecasts for
the same sample.

3.6.2 Relative value of the forecasts

The scores discussed above are useful in assessing forecast
skill and for comparing the performance of different mod-
els; however, they do not explicitly reveal if the decision
makers would benefit from using the proposed forecasting
system. Indeed, it is possible for forecasts to be simulta-
neously skilful but not useful. The cost–loss ratio analy-
sis (Murphy, 1985; Richardson, 2000) addresses the useful-
ness question directly by providing an assessment of the po-
tential economic value of the forecasts. This model, while
simplistic and of limited applicability when accounting for
non-economic impacts, nonetheless allows us to quantify the
value of forecasts for a range of users with a range of specific
cost–loss ratios.

For example, if the event is a “peatland fire”, and the ac-
tion is “fire-preventative measures”, then loss would equal
the total economic loss caused by the fire event, and the
cost would be the total economic cost of the preventative
measures. Each time a decision maker takes no action and
a fire event occurs, it results in a loss. Alternatively, every
time the decision maker acts it incurs a specific cost. Ev-
ery time action is taken, and the predicted fire event occurs,
the difference between the reduced loss and invested costs
constitutes the total amount saved. In Indonesia, a range of
different fire-preventative actions could be utilized depend-
ing on the lead time of forecasts. Early warning (lead times
of several months) would allow forecasters and relevant au-
thorities to inform the communities in fire-prone areas, leg-
islate to prevent agricultural fire use for the season, and in-
crease preparedness and train fire service personal. Forecasts
issued at less than 1-month lead times could be utilized to
implement local bans of specific fire uses (e.g. agricultural
waste burning) and to deploy monitoring and fire-fighting re-
sources to the high-risk areas. A reliable forecasting system,
therefore, can inform the decision maker when (and where)
to act to minimize the total expenditure. As a result, such a
forecasting system has a potential economic benefit, and the
cost–loss analysis indicates this potential economic gain, or
in other words, the relative value of the forecasts.

This relative value is expressed as a fraction of value of a
perfect (theoretical) forecast and indicates improvement over
a scenario when the only information available to the user is
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the climatological-event occurrence frequency. The relative
value of a forecast depends on the user-specific cost and loss
and is positive over a limited range of cost–loss ratios. If the
cost is larger than the loss, not acting is always better and
vice versa; if the cost is very low in relation to the potential
loss, always acting is the best option. Both these scenarios
negate the need for a forecasting system. The potential value
of the forecasts is highest at the cost–loss ratio value which is
equal to the event climatological frequency. Benefits vary for
different users with different cost–loss ratios, and, assuming
reliable probabilistic forecasts, an optimum probability de-
cision threshold is equal to the user cost–loss ratio (Richard-
son, 2000). As a result, users with high cost–loss ratios would
benefit most from choosing to act at higher event probability
thresholds and vice versa. In this study, relative value was
calculated for a range of cost–loss ratios [0.001, 1] following
Eqs. (7) and (8).

relative value=
c
l
(TP+FP− 1)+FN

c
l
(Pclim− 1)

if
c

l
< Pclim, (6)

relative value=
c
l
(TP+FP)+FN−Pclim

c
l
(Pclim− 1)

if
c

l
≥ Pclim, (7)

where c
l

is the cost–loss ratio and Pclim is the climatolog-
ical probability of occurrence of the fire event (i.e. active-
fire count of > 10 cases) for the sub-region of interest. Note
that the relative value (same as the probability of detection
and false-alarm rate) is calculated at a particular probability
threshold, in effect transforming the continuous probabilistic
forecasts to binary predictions of fire event vs. no fire event
to derive true positives, false positives and false negatives.
As a result, relative values are derived for a range of prob-
ability thresholds indicating potential benefits for users with
different cost–loss ratios.

3.6.3 Mean SEAS5 ensemble probability

In contrast to the traditional ensemble evaluation methods
that derive probabilistic forecasts from the distribution of de-
terministic predictions of the individual ensemble members,
the modelling method employed by this study predicts prob-
abilities of fire counts exceeding a given threshold for all
25 members of the SEAS5 ensemble. For deriving ensemble
mean skill scores we combined the estimates based in indi-
vidual members into a single probability estimate by com-
puting a simple equally weighted average probability.

4 Results and discussion

4.1 Reliability of probability prediction

ProbFire forecasts of active-fire counts of > 0 cases in any
given grid cell in any particular month generally exhibited
a good degree of reliability (Fig. 4). Reliability diagrams of
ERA5-based prediction for the study years indicate, with a
few exceptions, that for most years reliability curves were
close to the perfect diagonal line (Fig. 4a). For low-fire-
activity years, the predictions were generally overconfident
(i.e. probabilities higher than the observed fire event fre-
quency). Predictions were less reliable only for two of the
relatively high-fire-activity years, 2002 and 2019. Predictions
for 2002 were underconfident, meaning that the model gener-
ally underestimated fire event occurrence frequency for that
year. Active fires were more frequently detected in grid cells
for which the model issued low probabilities. This underesti-
mation may be because 2002 was the first year in the record
which had no prior MODIS active-fire observations and also
only a limited primary-forest loss record. Although we tried
to extend back the MODIS observations beyond 2002 with
the ATSR WFA nighttime active-fire dataset, the later prod-
uct has much lower fire counts and could not provide a suffi-
cient record of fire activity prior to 2002.

By contrast, predictions issued for the year 2019 were too
high across the whole range of probabilities. This overes-
timation could be due to several factors. Firstly, the 2019
drought was driven by a positive IOD, while ENSO was neu-
tral. Secondly, since the 2015 burning episode, the Indone-
sian government has implemented further policies aimed at
reducing deforestation and fire occurrence (Hergoualc’h et
al., 2018; Carmenta et al., 2020), which may have contributed
to lower-than-expected fire detections in 2019.

ERA5- and SEAS5-based prediction probabilities for an
active-fire count of > 0 cases pooled for all years but split
into different sub-regions generally indicate good reliabil-
ity (Fig. 1b–f). However, there are some notable differences
when comparing the spatial domains. Notably, all predic-
tions for south Kalimantan and south Papua indicate over-
confidence, while forecast (SEAS5-based) probabilities for
west Kalimantan were underconfident. SEAS5-based predic-
tions performed generally well for all regions and all lead
times, exhibiting only a gradual degradation in the relia-
bility of high-probability predictions with increasing lead
times. There were noteworthy differences when comparing
the ERA5-based probability histograms for different sub-
regions. Predictions for central Sumatra and west Kaliman-
tan lack sharpness, a property which is manifested by a rela-
tively low number of very high probabilities issued for those
regions. In contrast, the model was able to discriminate be-
tween no fire and an active-fire count of > 0 cases more
easily in south Sumatra, south Kalimantan and south Papua.
This difference coincides with the fact that drought severity
in the latter group of sub-regions is influenced by El Niño,
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Figure 4. Reliability diagrams of occurrence probability predictions of active-fire counts of > 0 cases. Inset axes show ERA5-based prob-
ability prediction frequency histograms. (a) ERA5-based prediction reliability curves for all of Indonesia for each year in the record. The
colour of the lines corresponds to an active-fire count of > 0 cases for the year. (b–f) Mean reliability curves for the sub-regions (Fig. 1),
showing ERA5- (red) and SEAS5-based ensemble mean prediction reliability curves at different lead times (shades of grey, bottom legend).
Dotted lines indicate perfect reliability (1 : 1 fit).

while in central Sumatra and west Kalimantan, a positive
IOD is the most important driver of droughts (Field et al.,
2016; Pan et al., 2018).

ProbFire prediction of an active-fire count of > 10 cases
class occurrence probability was generally less reliable and
substantially less confident (Fig. 5) when contrasted with the
model reliability performance for an active-fire count of > 0
cases seen in Fig. 4. Reliability of ERA5-based predictions
for different years (Fig. 5a) exhibited much more variabil-
ity. The large spread is partially attributable to the fact that
low-fire-activity years did not have enough grid cells of an
active-fire count of > 10 cases needed to determine the re-
liability of probability prediction. The reliability of ERA5-
based predictions for different sub-regions (Fig. 5b–f) was
also slightly worse when compared to the prediction dia-
grams of an active-fire count of > 0 cases, in particular for
central Sumatra and west Kalimantan (Fig. 5e and f). The
biggest difference in reliability of predictions between the

two fire occurrence classes was observed for SEAS5-based
issued probabilities. The reliability of high-probability pre-
dictions of occurrences of an active-fire count of > 10 cases
deteriorated rapidly with lead time. Notably, low numbers of
high-confidence predictions limited the reliability estimation
for the central Sumatra and west Kalimantan sub-regions,
which had very small numbers of high-confidence predic-
tions (low sharpness). This highlights that a reliable and con-
fident prediction of an active-fire count of> 10 cases is more
difficult compared to predicting an active-fire count of > 0
cases. Low prediction confidence could be in part attributable
to dataset imbalance as grid cells of an active-fire count
of > 10 cases comprise only ∼ 5 % of the training dataset.
However, the most important factor here is perhaps an intrin-
sic difficulty of the discrimination between grid cells which
do contain a few active fires (0> active fires< 11) and those
in which the count exceeded 10 active fires. Fire occurrence
and severity in Indonesia, besides the climatic drivers, is in-
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Figure 5. Same as Fig. 4 but for prediction of probability for an active-fire count of > 10 cases.

fluenced by the interplay of many location-specific factors
including land management practices, policy decisions and
fire suppression efforts (Page and Hooijer, 2016; Tacconi,
2016), none of which could be realistically represented in a
region-wide fire prediction model. Despite this difficulty, our
results indicated that prediction of the category of an active-
fire count of > 10 cases (Fig. 6) was potentially more useful
for decision makers.

4.2 Prediction skill scores

The model prediction metrics for an active-fire count of> 10
cases (Fig. 7) exhibited patterns which generally followed
those of the reliability diagrams. All of the scores were better
for the El Niño-dominated sub-regions (i.e. south Kaliman-
tan, south Sumatra and south Papua). By contrast, west Kali-
mantan and in particular central Sumatra had a lower AUC
(area under the curve), higher Brier score and substantially
lower probability of detection. Importantly, not only were
the climatology- and SEAS5-based forecast scores worse,
but also the ERA5-based predictions yielded lower validation
values. This result indicates that the model was not able to

optimize the classification problem as well for the latter sub-
regions given the predictors used in this study. Consequently,
even in the case of perfect seasonal forecasts, fire activity
prediction performance would be worse in central Suma-
tra and west Kalimantan when compared to the other sub-
regions. Lower model skill is likely to be attributable to dif-
ferent dry-season patterns coupled with a stronger influence
of human drivers. West Kalimantan and central Sumatra in
particular do experience early-season drought (in February–
March) as well as the main dry season (July–September)
which is common across all sub-regions. In contrast to El
Niño-dominated regions, high-fire-activity episodes in cen-
tral Sumatra and west Kalimantan are typically shorter and
do occur outside the times of the two dry seasons (Gaveau
et al., 2014) (Fig. 8). As a result, the monthly time step used
by the modelling system of this study may be insufficient for
resolving this rapid climatic variability.

SEAS5-based prediction skill scores gradually degraded
with increasing lead time in all sub-regions. The performance
of seasonal forecasts was substantially better in the El Niño-
dominated sub-regions. Notably, in south Papua SEA5 en-
semble predictions had both AUC and Brier scores better
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Figure 6. Model prediction of probability of an active-fire count of > 10 cases and observed active-fire counts. Shown are SEAS5-based
(left column) and climatology-based (right column) probability predictions at lead time of 2 months and observed monthly active-fire counts
(middle row) for October in 6 example years (rows). Please note that the date format used in this figure is year month.

when compared to climatology predictions at lead times up
to 4 months. Skill scores of SEAS5 ensemble predictions
in south Kalimantan and south Sumatra indicated potential
gains when compared to climatology-based model predic-
tions at lead times of up to 2 months. By contrast, AUC and
Brier scores of SEAS5-based predictions in central Sumatra
outperformed climatology-based model predictions only at
a 0-month lead. In west Kalimantan there was no benefit of
using SEAS5 ensemble forecasts at any lead times.

These results demonstrate that ProbFire driven by SEAS5
ensemble forecasts has a relatively high potential value for
the development of early warning systems in south Kaliman-
tan, south Sumatra and south Papua. Skilful and reliable pre-
diction of elevated fire activity 2 to 4 months in advance al-
lows for ample time to act on the predictions. This result may
be attributable to the increasingly realistic representation of
ENSO-driven SST variability in seasonal forecasting models
(Johnson et al., 2019). The skill of SEAS5-based fire occur-
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Figure 7. Skill scores for prediction of an active-fire count of > 10 cases. Shown are mean values of the area under the receiver operating
characteristic curve (AUC), Brier score, probability of detection and false-alarm rate (figure rows) for the different sub-regions (figure
columns). ROC curves are shown in Fig. S2 in the Supplement. The values for ERA5-based model predictions are shown as red bars, and
climatology-based predictions are depicted as blue bars, while boxplots indicate SEAS5 ensemble member prediction values at different lead
times. For boxplots, shown are the median value (grey bar), interquartile range (boxplot body) and the full range (boxplot whiskers) of the
SEAS5 ensemble member predictions at a given lead time.

rence forecasts at a 0-month lead in central Sumatra indicated
some potential value; however, utilization of such forecasts
in the early warning systems is challenging because warn-
ings could be issued at most a few weeks before the onset of
a potentially elevated fire activity phase.

ProbFire predictions of events of a monthly active-fire
count of > 10 cases derived using seasonal forecasts had
a substantially higher probability of detection (Fig. 7)
when compared to climatology-based predictions in all sub-
regions. This was true for all lead times, although there was
a consistent decrease in the probability of detection with an
increasing lead time. At the same time, SEAS5-based predic-
tions had slightly higher false-alarm rates which were also
increasing with lead time. Such a pattern was an expected re-
sult and is a manifestation of differences in forecasted proba-

bility sharpness. Climatology-based prediction lacked sharp-
ness and therefore had a low probability of detection and low
false-alarm rate. Meanwhile, SEAS5 forecasts enabled the
model to issue more confident probabilities (Fig. S1) which
consequently had not only a higher probability of detection
but also somewhat higher false-alarm rates.

4.3 Relative value of the forecasts

The cost–loss analysis of ProbFire fire activity forecasts
demonstrated the potential economic benefit of the sys-
tem’s fire occurrence predictions when compared to forecasts
based only on the fire event climatological occurrence fre-
quency (Figs. 8 and 9). While at least some forecasts users
in all study sub-regions would have benefited to some de-
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Figure 8. Difference in mean monthly Brier scores between climatology-based and SEAS5-based model predictions of occurrence predic-
tions at lead times of 0–5 months of an active-fire count of > 10 cases and a mean monthly active-fire count for the study’s sub-regions.
Positive Brier score difference values (red shades) indicate smaller Brier values for SEAS5-based predictions (better), while negative Brier
difference values (blue shades) indicate that climatology-based predictions performed better for that month and lead time. Note different
colour scales for different sub-regions.
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gree, the potential maximum value and range of user cost–
loss ratios that would have gained from using the system
varied considerably across Indonesia. This analysis also re-
vealed that there was a greater benefit from using forecasted
probabilities of relatively rare, elevated fire activity grid cells
(monthly active-fire count of > 10 cases) rather than all fire-
containing grid cells (active-fire count of > 0 cases) (Fig. S1
vs. 9).

The relative value of SEAS5-based forecasts was substan-
tially higher than ERA5 climatology forecasts but only for
predictions of an active-fire count of > 10 cases (Fig. 9). By
contrast, climatology-based predictions were very close to or
equal in their potential economic benefits at all lead times
when compared to those derived from SEAS5-based predic-
tions for an active-fire count of> 0 cases (Fig. S1). This was
an expected result given that the number of low-fire-activity
grid cells did not exhibit the same level of interannual vari-
ability as numbers of high-fire-activity grid cells did during
the study period (Fig. 2). This result indicates that skilful
prediction of widespread annually occurring burning can be
achieved by a model based on ERA5 climatology and non-
climate information. However, ProbFire predictions based on
seasonal hindcasts had higher potential economic benefits
when predicting a highly variable occurrence of elevated fire
activity (grid cells with a monthly active-fire count of > 10
cases).

Overall, the forecasts had the highest potential economic
value for the widest range of cost–loss ratios in south
Kalimantan, south Papua and south Sumatra. In these sub-
regions, where the dry-season severity is primarily influ-
enced by El Niño, predictions of probabilities of an active-
fire count of > 10 cases indicate a potential gain of over
60 % of the benefit from a perfect forecasting system at cost–
loss ratios close to the fire event occurrence frequency ratios
(Fig. 9). SAES5-based predictions had relative values higher
when compared to the climatology model at all lead times
(0–56 months) and all probability thresholds. The potential
economic gain over the climatology model predictions was
increasingly higher for larger cost–loss ratios. This indicates
that users with larger cost–loss ratios would have benefited
the most from the SEAS5-based forecasts using high proba-
bility thresholds for decision making. This was particularly
true for south Kalimantan, where forecasts of probabilities
of an active-fire count of > 10 cases also indicated the high-
est sharpness (Fig. 4). At the same time, for cost–loss ratios
over 0.5, climatology-based predictions offered little in terms
of potential economic benefit.

By contrast, ProbFire forecasts for central Sumatra and
west Kalimantan a indicated potential benefit for a narrower
range of cost–loss ratios and lower total relative values of
less than 60 % of perfect forecast performance (Fig. 9).
While SEAS5-based predictions had a modestly higher rel-
ative value when compared to the climatology model, this
was true only at a lead time of 0 months. In addition, the po-
tential economic benefit at a 0-month lead was present for

lower cost–loss ratios. This result is a manifestation of low
sharpness and reliability of SEAS5-based forecasts in these
regions (Fig. 4), at longer lead times.

5 Conclusions

Predicting highly variable landscape fire activity is an inher-
ently difficult problem due to the complexity of factors in-
fluencing fire dynamics at different scales of time and space
and the large uncertainties associated with datasets used to
characterize these fire drivers. Previous studies have shown
that climate information from current state-of-the-art sea-
sonal forecasting systems can be utilized for seasonal fire
prediction in parts of the globe (Turco et al., 2018), includ-
ing Indonesia (Spessa et al., 2015; Shawki et al., 2017).
While climate is clearly an important driver of fire activity,
these climate–fire relationships are modified by human ac-
tivity across a range of spatial scales, especially in regions
undergoing rapid land cover changes such as Indonesia. To
reflect this additional source of variability, early fire warning
systems in the region need to utilize non-climate information
for fire prediction.

In this study we have developed and tested ProbFire, a
new probabilistic early fire warning modelling system for
Indonesia which provides a blueprint for future operational
warning systems in the region and beyond. Compared with
previous regression-based fire forecasting studies focused on
climate–fire relationships (Spessa et al., 2015; Chen et al.,
2016; Turco et al., 2018; Chen et al., 2020), ProbFire inte-
grates ECMWF ERA5 reanalysis and SEAS5 seasonal cli-
mate predictions with non-climate features and employs a
multilayer perceptron classification model for probabilistic
fire event prediction at 0.25◦ spatial resolution. The proba-
bilistic approach adopted by this study is better suited for
predicting rare and/or newly occurring fire events and allows
for the forecasts to be evaluated from a user perspective using
the cost–loss model.

Validation of ProbFire performance for the 2002–2019 pe-
riod showed that SEAS5-based fire event probabilities were
generally well calibrated, although as expected, the reliabil-
ity of high-confidence predictions gradually decreased with
increasing lead times. SEAS5-based fire predictions outper-
formed the climatology-based model at lead times of 2 to
4 months in south Kalimantan, south Sumatra and south
Papua, where drought severity is strongly influenced by El
Niño. By contrast, SEAS5-based forecasts for central Suma-
tra had higher skill scores only at 0-month lead times, while
in west Kalimantan they showed no improvement at all when
compared to climatology-based predictions. Analysis of po-
tential economic benefits of the forecasts indicated that fore-
cast users with a wide range of cost–loss ratios would have
benefited from using the SEAS5-based predictions in deci-
sion making in the El Niño-dominated regions of Indonesia.
This demonstrates that early fire warning systems based on
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Figure 9. Relative value of prediction of an active-fire count of> 10 cases for users with different cost–loss ratios. Shown are relative values
of ERA5-based predictions and SEAS5-based (solid lines) and climatology-based (dashed lines) predictions at different lead times (columns)
for different sub-regions (rows). Line shading (legend) indicates different fire prediction probability thresholds (P thr.) at which the relative
value curves are calculated.

Nat. Hazards Earth Syst. Sci., 22, 303–322, 2022 https://doi.org/10.5194/nhess-22-303-2022



T. Nikonovas et al.: ProbFire: a probabilistic fire early warning system for Indonesia 319

ECMWF SEAS5 seasonal climate forecasts and non-climate
information can support the work of various stakeholders in-
volved in fire prevention and management including Indone-
sian government agencies, local communities and commer-
cial entities.

ProbFire has limitations, and further research is needed to
improve the skill of the predictions, especially in parts of In-
donesia that lie outside the El Niño zone of influence. The
lack of predictability in central Sumatra and west Kaliman-
tan at lead times beyond the current month indicates the gen-
erally low skill of SEAS5 climate predictions in these IOD-
dominated parts of Indonesia and could potentially be im-
proved by the integration of seasonal forecasts from different
modelling centres.

However, even the ERA5-based model had lower pre-
dictability in those areas, which indicates that different input
data may be needed. In addition, in central Sumatra severe
burning episodes can be triggered by short-term droughts
(Gaveau et al., 2014) which cannot be represented at the
monthly temporal resolution of this system. Furthermore, the
non-climate datasets used in this study cannot represent the
full range of environmental and anthropogenic factors which
modulate fire occurrence across Indonesia. Consequently, the
system uses primitive identifier features for the five sub-
regions, as none of the used datasets could reflect the full
range of differences in fire climate sensitivity between the
sub-regions. In addition, past and future changes in national
and local policies and fire suppression efforts are currently
not included in ProbFire. These changes could affect the fu-
ture performance of the system if they reduce the region’s fire
sensitivity to the climatic and biogeographic features used to
drive ProbFire. To address these issues, the development of
long-term, consistent and regularly updated datasets on veg-
etation, land management status and socio-economic drivers
of fire activity is needed.
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https://doi.org/10.5281/zenodo.5939892 (Nikonovas, 2021b).

Data availability. ProbFire input datasets aggregated to 0.25◦ res-
olution can be accessed at https://doi.org/10.5281/zenodo.5206278
(Nikonovas, 2021a).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-303-2022-supplement.

Author contributions. TN and AS designed the study. TN imple-
mented the analyses and wrote the manuscript. AS, SHD, GDC and
SM contributed to interpreting the findings and writing the final pa-
per.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This study forms part of the Towards a Fire
Early Warning System for Indonesia (ToFEWSI) project, which is
funded through the UK’s National Environment Research Council
– Newton Fund on behalf of UK Research & Innovation as well
as through the Indonesia Endowment Fund for Education and the
Indonesian Science Fund.

Financial support. This research has been supported by the UK’s
National Environment Research Council – Newton Fund on behalf
of UK Research & Innovation (grant no. NE/P014801/1).

Review statement. This paper was edited by Margreth Keiler and
reviewed by two anonymous referees.

References

Aldrian, E. and Dwi Susanto, R.: Identification of three dom-
inant rainfall regions within Indonesia and their relationship
to sea surface temperature, Int. J. Climatol., 23, 1435–1452,
https://doi.org/10.1002/joc.950, 2003.

Alduchov, O. A. and Eskridge, R. E.: Improved Magnus Form
Approximation of Saturation Vapor Pressure, J. Appl. Me-
teorol. Climatol., 35, 601–609, https://doi.org/10.1175/1520-
0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996.

Arino, O., Casadio, S., and Serpe, D.: Global night-time
fire season timing and fire count trends using the ATSR
instrument series, Remote Sens. Environ., 116, 226–238,
https://doi.org/10.1016/j.rse.2011.05.025, 2012.

Barnston, A. G.: Linear Statistical Short-Term Climate
Predictive Skill in the Northern Hemisphere, J. Cli-
mate, 7, 1513–1564, https://doi.org/10.1175/1520-
0442(1994)007<1513:LSSTCP>2.0.CO;2, 1994.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Boden, T. A., Marland, G., and Andres, R. J.: Global, Re-
gional, and National Fossil-Fuel CO2 Emissions, Carbon Diox-
ide Information Analysis Center, Oak Ridge National Labo-
ratory, U.S. Department of Energy, Oak Ridge, Tenn., USA,
https://doi.org/10.3334/CDIAC/00001_V2017, 2017.

Carmenta, R., Zabala, A., Trihadmojo, B., Gaveau, D., Salim, M.
A., and Phelps, J.: Evaluating bundles of interventions to prevent
peat-fires in Indonesia, Global Environ. Change, 67, 102154,
https://doi.org/10.1016/j.gloenvcha.2020.102154, 2020.

Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uri-
arte, M., and DeFries, R.: Sources of anthropogenic

https://doi.org/10.5194/nhess-22-303-2022 Nat. Hazards Earth Syst. Sci., 22, 303–322, 2022

https://doi.org/10.5281/zenodo.5939892
https://doi.org/10.5281/zenodo.5206278
https://doi.org/10.5194/nhess-22-303-2022-supplement
https://doi.org/10.1002/joc.950
https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
https://doi.org/10.1016/j.rse.2011.05.025
https://doi.org/10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2
https://doi.org/10.1038/nature14956
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.1016/j.gloenvcha.2020.102154


320 T. Nikonovas et al.: ProbFire: a probabilistic fire early warning system for Indonesia

fire ignitions on the peat-swamp landscape in Kaliman-
tan, Indonesia, Global Environ. Change, 39, 205–219,
https://doi.org/10.1016/j.gloenvcha.2016.05.005, 2016.

Chen, Y., Morton, D. C., Andela, N., Giglio, L., and Ran-
derson, J. T.: How much global burned area can be fore-
cast on seasonal time scales using sea surface temperatures?,
Environ. Res. Lett., 11, 045001, https://doi.org/10.1088/1748-
9326/11/4/045001, 2016.

Chen, Y., Randerson, J. T., Coffield, S. R., Foufoula-Georgiou,
E., Smyth, P., Graff, C. A., Morton, D. C., Andela, N.,
van der Werf, G. R., Giglio, L., and Ott, L. E.: Forecast-
ing global fire emissions on subseasonal to seasonal (S2S)
time scales, J. Adv. Model. Earth. Syst., 12, e2019MS001955,
https://doi.org/10.1029/2019MS001955, 2020.

Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M., Nep-
stad, D. C., Lefebvre, P., and Davidson, E. A.: Positive feedbacks
in the fire dynamic of closed canopy tropical forests, Science,
284, 1832–1835, https://doi.org/10.1126/science.284.5421.1832,
1999.

Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G. B.,
Kuwata, M., Thota, A., Sumin, S., Butt, E., Wiedinmyer, C., and
Spracklen, D. V.: Population exposure to hazardous air quality
due to the 2015 fires in Equatorial Asia, Sci. Rep.-UK, 6, 37074,
https://doi.org/10.1038/srep3707, 2016.

Doblas-Reyes, F. J., Hagedorn, R., and Palmer, T. N.: The rationale
behind the success of multi-model ensembles in seasonal fore-
casting – II. Calibration and combination, Tellus A, 57, 234–252,
https://doi.org/10.3402/tellusa.v57i3.14658, 2005.

Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P.,
and Rodrigues, L. R. L.: Seasonal climate predictability and fore-
casting: status and prospects, WIREs Clim. Change, 4, 245–268,
https://doi.org/10.1002/wcc.217, 2013.

Dowdy, A. J., Mills, G. A., Finkele, K., and de Groot, W.: Aus-
tralian fire weather as represented by the McArthur forest fire
danger index and the Canadian forest fire weather index, Centre
for Australian Weather and Climate Research Tech. Rep, 10, 91,
2009.

Fan, H., Wang, L., Zhang, Y., Tang, Y., Duan, W., and
Wang, L.: Predictable Patterns of Wintertime Surface Air
Temperature in Northern Hemisphere and Their Predictabil-
ity Sources in the SEAS5, J. Climate, 33, 10743–10754,
https://doi.org/10.1175/JCLI-D-20-0542.1, 2020.

Field, R. D. and Shen, S. S. P.: Predictability of car-
bon emissions from biomass burning in Indonesia
from 1997 to 2006, J. Geophys. Res., 113, G04024,
https://doi.org/10.1029/2008JG000694, 2008.

Field, R. D., Van Der Werf, G. R., Fanin, T., Fetzer, E. J.,
Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Tor-
res, O., and Worden, H. M.: Indonesian fire activity and smoke
pollution in 2015 show persistent nonlinear sensitivity to El
Niño-induced drought, P. Natl. Acad. Sci., 113, 9204–9209,
https://doi.org/10.1073/pnas.1524888113, 2016.

Gaveau, D. L., Salim, M. A., Hergoualc’h, K., Locatelli, B., Sloan,
S., Wooster, M., Marlier, M. E., Molidena, E., Yaen, H., De-
Fries, R., and Verchot, L.: Major atmospheric emissions from
peat fires in Southeast Asia during non-drought years: evi-
dence from the 2013 Sumatran fires, Sci. Rep.-UK, 4, 6112,
https://doi.org/10.1038/srep06112, 2014.

Giglio, L., Schroeder, W., and Justice, C. O.: The col-
lection 6 MODIS active fire detection algorithm and
fire products, Remote Sens. Environ., 178, 31–41,
https://doi.org/10.1016/j.rse.2016.02.054, 2016.

Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules,
Prediction, and Estimation, J. Am. Stat. Assoc., 102, 359–378,
https://doi.org/10.1198/016214506000001437, 2004.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.: On calibration
of modern neural networks, Proc. Mach. Learn. Res., 70, 1321–
1330, 2017.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova,
S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J.,
Loveland, T. R., and Kommareddy, A.: High-resolution global
maps of 21st-century forest cover change, Science, 342, 850–
853, https://doi.org/10.1126/science.1244693, 2013.

Haryono, S. M., Ritung, S., Wahyunto, N. K., Sukarman, H., and
Supardo, T. C.: Peatland Map of Indonesia. Center for Re-
search and Development of Agricultural Land Resources, Agri-
cultural Research and Development Agency, Indonesia Min-
istry of Agriculture [data set], Bogor, Indonesia, https://data.
globalforestwatch.org/datasets/indonesia-peat-lands (last access
1 February 2022), 2011.

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements
of Statistical Learning: Data Mining, Inference, and Predic-
tion, Springer Series in Statistics, Springer, New York, NY,
https://doi.org/10.1007/978-0-387-84858-7, 2009.

Hergoualc’h, K., Carmenta, R., Atmadja, S., Martius, C.,
Murdiyarso, D., and Purnomo, H.: Managing peatlands
in Indonesia: challenges and opportunities for local and
global communities, CIFOR Infobrief 205, Center for In-
ternational Forestry Research (CIFOR), Bogor, Indonesia,
https://doi.org/10.17528/cifor/006449, 2018.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X.
X., Idris, A., and Anshari, G.: Subsidence and carbon loss
in drained tropical peatlands, Biogeosciences, 9, 1053–1071,
https://doi.org/10.5194/bg-9-1053-2012, 2012.

Hoscilo, A., Page, S. E., Tansey, K. J., and Rieley, J. O.: Effect of
repeated fires on land-cover change on peatland in southern Cen-
tral Kalimantan, Indonesia, from 1973 to 2005, Int. J. Wildland
Fire, 20, 578–588, https://doi.org/10.1071/WF10029, 2011.

Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L., Flem-
ming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B.,
and Van Weele, M.: Fire carbon emissions over maritime south-
east Asia in 2015 largest since 1997, Sci. Rep.-UK, 6, 26886,
https://doi.org/10.1038/srep26886, 2016.

Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S., and
Vasander, H.: Heterotrophic respiration in drained tropical
peat is greatly affected by temperature – a passive ecosys-

Nat. Hazards Earth Syst. Sci., 22, 303–322, 2022 https://doi.org/10.5194/nhess-22-303-2022

https://doi.org/10.1016/j.gloenvcha.2016.05.005
https://doi.org/10.1088/1748-9326/11/4/045001
https://doi.org/10.1088/1748-9326/11/4/045001
https://doi.org/10.1029/2019MS001955
https://doi.org/10.1126/science.284.5421.1832
https://doi.org/10.1038/srep3707
https://doi.org/10.3402/tellusa.v57i3.14658
https://doi.org/10.1002/wcc.217
https://doi.org/10.1175/JCLI-D-20-0542.1
https://doi.org/10.1029/2008JG000694
https://doi.org/10.1073/pnas.1524888113
https://doi.org/10.1038/srep06112
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1126/science.1244693
https://data.globalforestwatch.org/datasets/indonesia-peat-lands
https://data.globalforestwatch.org/datasets/indonesia-peat-lands
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.17528/cifor/006449
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/bg-9-1053-2012
https://doi.org/10.1071/WF10029
https://doi.org/10.1038/srep26886


T. Nikonovas et al.: ProbFire: a probabilistic fire early warning system for Indonesia 321

tem cooling experiment, Environ. Res. Lett., 9, 105013,
https://doi.org/10.1088/1748-9326/9/10/105013, 2014.

Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M.
A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D.,
Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K.,
Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF
seasonal forecast system, Geosci. Model Dev., 12, 1087–1117,
https://doi.org/10.5194/gmd-12-1087-2019, 2019.

Langner, A. and Siegert, F.: Spatiotemporal fire occurrence in Bor-
neo over a period of 10 years, Global Change Biol., 15, 48–62,
https://doi.org/10.1111/j.1365-2486.2008.01828.x, 2009.

Lavaysse, C., Stockdale, T., McCormick, N., and Vogt, J.: Eval-
uation of a New Precipitation-Based Index for Global Sea-
sonal Forecasting of Unusually Wet and Dry Periods, Weather
Forecast., 35, 1189–1202, https://doi.org/10.1175/WAF-D-19-
0196.1, 2020.

Lee, B. P., Davies, Z., and Struebig, M.: Smoke pollution dis-
rupted biodiversity during the 2015 El Niño fires in Southeast
Asia, Environ. Res. Lett., 12, 9, https://doi.org/10.1088/1748-
9326/aa87ed, 2017.

Lee, H.-H., Bar-Or, R. Z., and Wang, C.: Biomass burning aerosols
and the low-visibility events in Southeast Asia, Atmos. Chem.
Phys., 17, 965–980, https://doi.org/10.5194/acp-17-965-2017,
2017.

Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M.
F., Latif, M. T., and Karambelas, A.: Diagnosing spatial biases
and uncertainties in global fire emissions inventories: Indone-
sia as regional case study, Remote Sens. Environ., 237, 111557,
https://doi.org/10.1016/j.rse.2019.111557, 2020.

Lorenz, E. N.: Deterministic nonperiodic flow, J. At-
mos. Sci., 20, 130–141, https://doi.org/10.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2, 1963.

Manzanas, R., Gutiérrez, J. M., Bhend, J., Hemri, S., Doblas-Reyes,
F. J., Torralba, V., Penabad, E., and Brookshaw, A.: Bias ad-
justment and ensemble recalibration methods for seasonal fore-
casting: a comprehensive intercomparison using the C3S dataset,
Clim. Dynam., 53, 1287–1305, https://doi.org/10.1007/s00382-
019-04640-4, 2019.

Margono, B. A., Potapov, P. V., Turubanova, S., Stolle,
F., and Hansen, M. C.: Primary forest cover loss in
Indonesia over 2000–2012, Nat. Clim. Change, 4, 730,
https://doi.org/10.1038/nclimate2277, 2014.

Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P.
L., Randerson, J. T., Shindell, D. T., Chen, Y., and Falu-
vegi, G.: El Niño and health risks from landscape fire emis-
sions in southeast Asia, Nat. Clim. Change, 3, 131–136,
https://doi.org/10.1038/nclimate1658, 2013.

Mason, I.: A model for assessment of weather forecasts, Aust. Met.
Mag., 30, 291–303, 1982.

Miettinen, J., Hooijer, A., Wang, J., Shi, C., and Liew, S.
C.: Peatland degradation and conversion sequences and in-
terrelations in Sumatra, Reg. Environ. Change, 12, 729–737,
https://doi.org/10.1007/s10113-012-0290-9, 2012.

Murphy, A. H.: A new vector partition of the probability score,
J. Appl. Meteorol., 12, 595–600, https://doi.org/10.1175/1520-
0450(1973)012<0595:ANVPOT>2.0.CO;2, 1973.

Murphy, A. H.: Decision making and the value of fore-
casts in a generalized model of the cost-loss ratio situation,

Mon. Weather Rev., 113, 362–369, https://doi.org/10.1175/1520-
0493(1985)113<0362:DMATVO>2.0.CO;2, 1985.

Murphy, A. H. and Winkler, R. L.: Diagnostic verifica-
tion of probability forecasts, Int. J. Forecast., 7, 435–455,
https://doi.org/10.1016/0169-2070(92)90028-8, 1992.

Niculescu-Mizil, A. and Caruana, R.: Predicting good probabili-
ties with supervised learning, in: Proceedings of the 22nd inter-
national conference on Machine learning (ICML ’05), Associa-
tion for Computing Machinery, New York, NY, USA, 625–632,
https://doi.org/10.1145/1102351.1102430, 2005.

Nikonovas, T.: ProbFire: a probabilistic fire early warn-
ing system for Indonesia (0.1), Zenodo [data set],
https://doi.org/10.5281/zenodo.5206278, 2021a.

Nikonovas, T.: ProbFire, Zenodo [code],
https://doi.org/10.5281/zenodo.5939892, 2021b.

Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D., and Mezbahud-
din, S.: Near-complete loss of fire-resistant primary tropical for-
est cover in Sumatra and Kalimantan, Commun. Earth Environ.,
1, 65, https://doi.org/10.1038/s43247-020-00069-4, 2020.

Oozeer, Y., Chan, A., Wang, J., Reid, J. S., Salinas, S. V., Ooi, M. C.,
and Morris, K. I.: The Uncharacteristic Occurrence of the June
2013 Biomass-Burning Haze Event in Southeast Asia: Effects
of the Madden-Julian Oscillation and Tropical Cyclone Activ-
ity, Atmosphere, 11, 55, https://doi.org/10.3390/atmos11010055,
2020.

Page, S. E. and Hooijer, A.: In the line of fire: the peatlands
of Southeast Asia, Philos. T. Roy. Soc. B, 371, 20150176,
https://doi.org/10.1098/rstb.2015.0176, 2016.

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya,
A., and Limin, S.: The amount of carbon released from peat
and forest fires in Indonesia during 1997, Nature, 420, 61–65,
https://doi.org/10.1038/nature01131, 2002.

Pan, X., Chin, M., Ichoku, C. M., and Field, R. D.: Con-
necting Indonesian fires and drought with the type of
El Niño and phase of the Indian Ocean dipole dur-
ing 1979–2016, J. Geophys. Res.-Atmos., 123, 7974–7988,
https://doi.org/10.1029/2018JD028402, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
and Vanderplas, J.: Scikit-learn: Machine learning in Python, J.
Mach. Learn. Res., 12, 2825–2830, 2011.

Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M.,
Turk, F. J., Sampson, C. R., Zhang, C., Fukada, E. M., and Mal-
oney, E. D.: Multi-scale meteorological conceptual analysis of
observed active fire hotspot activity and smoke optical depth in
the Maritime Continent, Atmos. Chem. Phys., 12, 2117–2147,
https://doi.org/10.5194/acp-12-2117-2012, 2012.

Richardson, D. S.: Skill and relative economic value of the ECMWF
ensemble prediction system, Q. J. Roy. Meteor. Soc., 126, 649–
667, https://doi.org/10.1002/qj.49712656313, 2000.

Sabajo, C. R., le Maire, G., June, T., Meijide, A., Roupsard,
O., and Knohl, A.: Expansion of oil palm and other cash
crops causes an increase of the land surface temperature in the
Jambi province in Indonesia, Biogeosciences, 14, 4619–4635,
https://doi.org/10.5194/bg-14-4619-2017, 2017.

Shawki, D., Field, R. D., Tippett, M. K., Saharjo, B. H., Albar, I.,
Atmoko, D., and Voulgarakis, A.: Long-lead prediction of the
2015 fire and haze episode in Indonesia, Geophys. Res. Lett., 44,
9996–10005, https://doi.org/10.1002/2017GL073660, 2017.

https://doi.org/10.5194/nhess-22-303-2022 Nat. Hazards Earth Syst. Sci., 22, 303–322, 2022

https://doi.org/10.1088/1748-9326/9/10/105013
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.1111/j.1365-2486.2008.01828.x
https://doi.org/10.1175/WAF-D-19-0196.1
https://doi.org/10.1175/WAF-D-19-0196.1
https://doi.org/10.1088/1748-9326/aa87ed
https://doi.org/10.1088/1748-9326/aa87ed
https://doi.org/10.5194/acp-17-965-2017
https://doi.org/10.1016/j.rse.2019.111557
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1007/s00382-019-04640-4
https://doi.org/10.1007/s00382-019-04640-4
https://doi.org/10.1038/nclimate2277
https://doi.org/10.1038/nclimate1658
https://doi.org/10.1007/s10113-012-0290-9
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1985)113<0362:DMATVO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1985)113<0362:DMATVO>2.0.CO;2
https://doi.org/10.1016/0169-2070(92)90028-8
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.5281/zenodo.5206278
https://doi.org/10.5281/zenodo.5939892
https://doi.org/10.1038/s43247-020-00069-4
https://doi.org/10.3390/atmos11010055
https://doi.org/10.1098/rstb.2015.0176
https://doi.org/10.1038/nature01131
https://doi.org/10.1029/2018JD028402
https://doi.org/10.5194/acp-12-2117-2012
https://doi.org/10.1002/qj.49712656313
https://doi.org/10.5194/bg-14-4619-2017
https://doi.org/10.1002/2017GL073660


322 T. Nikonovas et al.: ProbFire: a probabilistic fire early warning system for Indonesia

Spessa, A. C., Field, R. D., Pappenberger, F., Langner, A., En-
glhart, S., Weber, U., Stockdale, T., Siegert, F., Kaiser, J.
W., and Moore, J.: Seasonal forecasting of fire over Kaliman-
tan, Indonesia, Nat. Hazards Earth Syst. Sci., 15, 429–442,
https://doi.org/10.5194/nhess-15-429-2015, 2015.

Stockdale, T., Anderson, D. L. T., Alves, J. O. S., and Bal-
maseda, M. A.: Global seasonal rainfall forecasts using
a coupled ocean-atmosphere model, Nature, 392, 370–373,
https://doi.org/10.1038/32861, 1998.

Tacconi, L.: Preventing fires and haze in Southeast Asia, Nat. Clim.
Change, 6, 640, https://doi.org/10.1038/nclimate3008, 2016.

Turco, M., Jerez, S., Doblas-Reyes, F.J., AghaKouchak, A., Llasat,
M. C., and Provenzale, A.: Skilful forecasting of global fire ac-
tivity using seasonal climate predictions, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-05250-0, 2018.

Turubanova, S., Potapov, P. V., Tyukavina, A., and Hansen, M.
C.: Ongoing primary forest loss in Brazil, Democratic Repub-
lic of the Congo, and Indonesia, Environ. Res. Lett., 13, 074028,
https://doi.org/10.1088/1748-9326/aacd1c, 2018.

Van Wagner, C. E. and Forest, P.: Development and structure of
the Canadian forest fire weather index system, vol. 35, Canadian
Forestry Service, Headquarters, Ottawa, 1987.

Vetrita, Y. and Cochrane, M. A.: Fire Frequency and Related Land-
Use and Land-Cover Changes in Indonesia’s Peatlands, Remote
Sens., 12, 5, https://doi.org/10.3390/rs12010005, 2020.

Widyastuti, K., Imron, M.A., Pradopo, S.T., Suryatmojo, H.,
Sopha, B.M., Spessa, A., and Berger, U.: PeatFire: an agent-
based model to simulate fire ignition and spreading in a trop-
ical peatland ecosystem, Int. J. Wildland Fire, 30, 71–89,
https://doi.org/10.1071/WF19213, 2020.

Yin, Y., Ciais, P., Chevallier, F., Van der Werf, G.R., Fanin, T., Bro-
quet, G., Boesch, H., Cozic, A., Hauglustaine, D., Szopa, S., and
Wang, Y.: Variability of fire carbon emissions in equatorial Asia
and its nonlinear sensitivity to El Niño, Geophys. Res. Lett., 43,
10–472, https://doi.org/10.1002/2016GL070971, 2016.

Nat. Hazards Earth Syst. Sci., 22, 303–322, 2022 https://doi.org/10.5194/nhess-22-303-2022

https://doi.org/10.5194/nhess-15-429-2015
https://doi.org/10.1038/32861
https://doi.org/10.1038/nclimate3008
https://doi.org/10.1038/s41467-018-05250-0
https://doi.org/10.1088/1748-9326/aacd1c
https://doi.org/10.3390/rs12010005
https://doi.org/10.1071/WF19213
https://doi.org/10.1002/2016GL070971

	Abstract
	Introduction
	Data
	Fire activity data
	Climate variables
	Non-climate variables
	Past fire activity
	Forest cover features
	Peatland fraction
	Sub-region identifier features


	Model description and experimental setup
	The model
	Model validation design
	ERA5-based predictions
	SEAS5-based predictions
	Climatology model
	Model performance evaluation
	Skill scores
	Relative value of the forecasts
	Mean SEAS5 ensemble probability


	Results and discussion
	Reliability of probability prediction
	Prediction skill scores
	Relative value of the forecasts

	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

