Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2807-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2807-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An updated area-source seismogenic model (MA4) for seismic hazard of Italy
Francesco Visini
CORRESPONDING AUTHOR
Sezione di Pisa, Istituto Nazionale di Geofisica e Vulcanologia, Pisa,
Italy
Carlo Meletti
Sezione di Pisa, Istituto Nazionale di Geofisica e Vulcanologia, Pisa,
Italy
Andrea Rovida
Sezione di Milano, Istituto Nazionale di Geofisica e Vulcanologia,
Milan, Italy
Vera D'Amico
Sezione di Pisa, Istituto Nazionale di Geofisica e Vulcanologia, Pisa,
Italy
Bruno Pace
Dipartimento di Ingegneria e Geologia, Università degli Studi Gabriele d'Annunzio Chieti–Pescara, Chieti, Italy
Silvia Pondrelli
Sezione di Bologna, Istituto Nazionale di Geofisica e Vulcanologia,
Bologna, Italy
Related authors
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023, https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Short summary
Knowing the rate at which earthquakes happen along active faults is crucial to characterize the hazard that they pose. We present an approach (Paleoseismic EArthquake CHronologies, PEACH) to correlate and compute seismic histories using paleoseismic data, a type of data that characterizes past seismic activity from the geological record. Our approach reduces the uncertainties of the seismic histories and overall can improve the knowledge on fault rupture behavior for the seismic hazard.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Matteo Trolese, Alessandro Tadini, Laura Pieretti, Damiano Biagini, Spina Cianetti, Simone Colucci, Matteo Cerminara, Claudia D'Oriano, Chiara Montagna, Michele D'Ambrosio, Raffaello Pegna, Giuseppe Re, Francesco Sanseverino, Carlo Giunchi, Carlo Meletti, and Tomaso Esposti Ongaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-3026, https://doi.org/10.5194/egusphere-2025-3026, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
This study describes two hands-on outreach events: an interactive lesson for high-school students during European Researchers’ Night and a tsunami experiment at Lucca Comics & Games. Surveys showed both groups enjoyed the activities, boosted their grasp of geoscience ideas and grew more positive about science. The work emphasizes the effectiveness of quantitative experiment demonstrations and the need to adapt them to the audience, time available and clear educator coordination.
Andrea Rovida, Mario Locati, Andrea Antonucci, and Romano Camassi
Earth Syst. Sci. Data, 17, 3109–3124, https://doi.org/10.5194/essd-17-3109-2025, https://doi.org/10.5194/essd-17-3109-2025, 2025
Short summary
Short summary
ASMI, the Italian Archive of Historical Earthquake Data, is an online data collection that currently provides seismological data on earthquakes that occurred in and around Italy from from 461 BCE to 2025 CE. Based on more than 450 data sources, ASMI's web portal distributes earthquake parameters and macroseismic intensity data, along with the bibliographical reference of the data source and – if possible – the data source itself, through queries by both earthquake and data source.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Silvia Pondrelli, Simone Salimbeni, Judith M. Confal, Marco G. Malusà, Anne Paul, Stephane Guillot, Stefano Solarino, Elena Eva, Coralie Aubert, and Liang Zhao
Solid Earth, 15, 827–835, https://doi.org/10.5194/se-15-827-2024, https://doi.org/10.5194/se-15-827-2024, 2024
Short summary
Short summary
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western Alps and support a new hypothesis. Instead of a continuous mantle flow parallel to the belt, here we find a N–S mantle deformation pattern that merges first with a mantle deformed by slab steepening beneath the Central Alps and then merges with an asthenospheric flow sourced beneath the Massif Central. This new sketch supports the extinction of slab retreat beneath the Western Alps.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023, https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Short summary
Knowing the rate at which earthquakes happen along active faults is crucial to characterize the hazard that they pose. We present an approach (Paleoseismic EArthquake CHronologies, PEACH) to correlate and compute seismic histories using paleoseismic data, a type of data that characterizes past seismic activity from the geological record. Our approach reduces the uncertainties of the seismic histories and overall can improve the knowledge on fault rupture behavior for the seismic hazard.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 23, 1805–1816, https://doi.org/10.5194/nhess-23-1805-2023, https://doi.org/10.5194/nhess-23-1805-2023, 2023
Short summary
Short summary
The earthquake effects undocumented at 228 Italian localities were calculated through a probabilistic approach starting from the values obtained through the use of an intensity prediction equation, taking into account the intensity data documented at close localities for a given earthquake. The results showed some geographical dependencies and correlations with the intensity levels investigated.
Andrea Rovida, Andrea Antonucci, and Mario Locati
Earth Syst. Sci. Data, 14, 5213–5231, https://doi.org/10.5194/essd-14-5213-2022, https://doi.org/10.5194/essd-14-5213-2022, 2022
Short summary
Short summary
EPICA is the 1000–1899 catalogue compiled for the European Seismic Hazard Model 2020 and contains 5703 earthquakes with Mw ≥ 4.0. It relies on the data of the European Archive of Historical Earthquake Data (AHEAD), both macroseismic intensities from historical seismological studies and parameters from regional catalogues. For each earthquake, the most representative datasets were selected and processed in order to derive harmonised parameters, both from intensity data and parametric catalogues.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 21, 2299–2311, https://doi.org/10.5194/nhess-21-2299-2021, https://doi.org/10.5194/nhess-21-2299-2021, 2021
Short summary
Short summary
We present a probabilistic approach for integrating incomplete intensity distributions by means of the Bayesian combination of estimates provided by intensity prediction equations (IPEs) and data documented at nearby localities, accounting for the relevant uncertainties. The performance of the proposed methodology is tested at 28 Italian localities with long and rich seismic histories and for the strong 1980 and 2009 earthquakes in Italy. An application of this approach is also illustrated.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Cited articles
Albarello, D., Camassi, R., and Rebez, A.: Detection of space and time
heterogeneity in the completeness of a seismic catalogue by a statistical
approach: an application to the Italian area,
B. Seismol. Soc. Am., 91, 1694–1703, https://doi.org/10.1785/0120000058,
2001.
Akkar, S., Sandıkkaya, M. A., and Bommer, J. J.: Empirical ground-motion
models for point- and extended-source crustal earthquake scenarios in Europe
and the Middle East, B. Earthq. Eng., 12, 359–387, https://doi.org/10.1007/s10518-013-9461-4, 2014.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano,
S., and Tiberti M. M.: The Database of Individual Seismogenic Sources (DISS),
version 3: summarizing 20 years of research on Italy's earthquake geology,
Tectonophysics, 453, 20–43, https://doi.org/10.1016/j.tecto.2007.04.014, 2008.
Bernardi, F., Braunmiller, J., Kradolfer, U., and Giardini, D.: Automatic
regional moment tensor inversion in the European-Mediterranean region,
Geophys. J. Int., 157, 703–716, 2004.
Billi, A., Presti D., Orecchio, B., Faccenna, C., and Neri, G.: Incipient
extension along the active convergent margin of Nubia in Sicily, Italy: the
Cefalu-Etna seismic zone, Tectonics, 29, TC4026, https://doi.org/10.1029/2009TC002559,
2010.
Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., and
Paolucci, R.: Ground motion prediction equa-tions derived from the Italian
strong motion database, Bull. Earthq. Eng., 9, 1899–1920, 2011.
Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., and
Augliera, P.: Pan-European ground-motion prediction equations for the
average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral
periods up to 3.0 s using the RESORCE dataset, Bull. Earthq. Eng., 12,
391–430, 2014.
Boncio, P., Lavecchia, G., and Pace, B.: Defining a model of 3D seismogenic
sources for seismic hazard assessment applications: The case of central
Apennines (Italy), J. Seismol., 8, 407–425, 2004.
Boncio, P., Tinari, D. P., Lavecchia, G., Visini, F., and Milana, G.: The
instrumental seismicity of the Abruzzo Region in Central Italy (1981–2003):
seismotectonic implications, Ital. J. Geosci., 128,
367–380, 2009.
Catalano, S., Romagnoli, G., and Tortorici, G.: Kinematics and dynamics of
the Late Quaternary rift-flank deformation in the Hyblean Plateau (SE
Sicily), Tectonophysics, 486, 1–14, https://doi.org/10.1016/j.tecto.2010.01.013, 2010.
Cauzzi, C., Faccioli, E., Vanini, M., and Bianchini, A.: Updated predictive
equations for broadband (0.01–10 s) horizontal response spectra and peak
ground motions, based on a global dataset of digital acceleration records,
Bull. Earthq. Eng., 13, 1587–1612, https://doi.org/10.1007/s10518-014-9685-y, 2015.
CNR, P. F. GEODINAMICA: Structural Model of Italy 1:500 000 and Gravity Map,
Quad. Ric. Sci., 3, S.EL.CA., Firenze, https://www.socgeol.it/438/structural-model-of-italy-scale-1-500-000.html (last access: 25 August 2022), 1990.
Collettini, C. and Barchi, M. R.: A Low Angle Normal Fault in the Umbria
Region (Central Italy): A Mechanical Model for the Related Microseismicity,
Tectonophysics, 359, 97–115, https://doi.org/10.1016/S0040-1951(02)00441-9, 2002.
Coppersmith, K. J. and Youngs, R. R.: Capturing uncertainty in
probabilistic seismic hazard assessments within intraplate tectonic
environments, in: Proceedings of the Third U.S. National Conference on
Earthquake Engineering, Charleston, South Carolina, 1, 301–312, 1986.
Danciu, L., Sesetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., Yalc ̧ H., Utkucu, M., Khan, M. A., Sayab, M., Hessami, K., Rovida, A. N., Stucchi, M., Burg, J. P., Karakhanian, A., Babayan, H., Avanesyan, M., Mammadli, T., Al-Qaryouti, M., Kalafat, D., Varazanashvili, O., Erdik, M., and Giardini, D: The 2014
Earthquake Model of the Middle East: seismogenic sources, Bull. Earthquake
Eng., 16, 3465–3496, https://doi.org/10.1007/s10518-017-0096-8, 2018.
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C.,
Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S.,
and Giardini, D.: The 2020 update of the European Seismic Hazard Model:
Model Overview, EFEHR Technical Report 001, v1.0.0, 1–121, https://doi.org/10.12686/a15, 2021.
Delacou, B., Sue, C., Champagnac, J. D., and Burkhard, M.: Present-day
geodynamics in the bend of the Western and Central Alps as constrained by
earthquake analysis, Geophys. J. Int., 158, 753–774, 2004.
Della Vedova, B., Bellani, S., Pellis, G., and Squarci, P.: Deep
temperatures and surfaceheat flow density distribution, in: Anatomy of an Orogen: The Apennines and Adjacent
Mediterranean Basins, edited by: Vai, G. B. and Martini, P., Kluwer Academic Publishers, Dordrecht, Netherlands, 65–76, 2001.
De Novellis, V., Carlino, S., Castaldo, R., Tramelli, A., De Luca, C., Pino, N. A., Pepe, S., Convertito, V., Zinno, I., De Martino, P., Bonano, M., Giudicepietro, F., Casu, F., Macedonio, G., Manunta, M., Cardaci, C., Manzo, M., Di Bucci, D., Solaro, G., Zeni, G., Lanari, R., Bianco, F., and Tizzani P.: The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements, Geophys. Res. Lett., 45, 2193–2202, 2018.
Devoti, R., D'Agostino, N., Serpelloni, E., Pietrantonio, G., Riguzzi, F., Avallone, A., Cavaliere, A., Cheloni, D., Cecere, G., D’Ambrosio, C., Franco, L., Selvaggi, G., Metois, M., Esposito, A., Sepe, V., Galvani, A., and Anzidei, M.: A Combined Velocity Field of the Mediterranean Region, Ann. Geophys., 60, S0215, https://doi.org/10.4401/ag-7059, 2017.
Di Stefano, R., Bianchi, I., Ciaccio, M. G., Carrara, G., and Kissling, E.:
Three-dimensional Moho topography in Italy: new constraints from receiver
functions and controlled source seismology, Geochem. Geophy. Geosy., 12, Q09006, https://doi.org/10.1029/2011GC003649, 2011.
DISS Working Group: Database of Individual Seismogenic Sources (DISS),
Version 3.2.1: A compilation of potential sources for earthquakes larger
than M 5.5 in Italy and surrounding areas, Istituto Nazionale di Geofisica e
Vulcanologia, https://doi.org/10.6092/INGV.IT-DISS3.2.1, 2018.
Ekström, G., Nettles, M., and Dziewonski, A. M.: The global CMT project
2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth
Planet. Inter., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Faure Walker, J. P., Roberts, G., Sammonds, P., and Cowie, P.: Comparison of
earthquake strains over 100 and 10,000 year timescales: insights into
variability in the seismic cycle in the central Apennines, Italy. J.
Geophys. Res., 115, B10418, https://doi.org/10.1029/2009JB006462, 2010.
Faure Walker, J. P., Roberts, G. P., Cowie, P. A., Papanikolaou, I., Michetti, A. M., Sammonds, P., Wilkinson, M., McCaffrey, K. J. W., and Phillips, R. J.: Relationship between topography, rates of
extension and mantle dynamics in the actively-extending Italian Apennines,
Earth Planet. Sc. Lett., 325–326, 76–84, 2012.
Gardner, J. K. and Knopoff, L.: Is the sequence of earthquakes in Southern
California, with aftershocks removed, Poissonian?, B. Seismol. Soc. Am., 64, 1363–1367, 1974.
Gasperini, P., Bernardini, F., Valensise, G., and Boschi, E.: Defining
seismogenic sources from historical earthquake felt reports, B. Seismol. Soc. Am., 89, 94–110, 1999.
Gasperini, P., Vannucci, G., Tripone, D., and Boschi, E.: The location and
sizing of historical earthquakes using the attenuation of macroseismic
intensity with distance, B. Seismol. Soc. Am.,
100, 2035–2066, 2010.
Gasperini, P., Lolli, B., Vannucci, G., and Boschi, E.: A comparison of
moment magnitude estimates for the European – Mediterranean and Italian
region, Geophys. J. Int., 190, 1733–1745, 2012.
Gasperini, P., Lolli, B., and Vannucci, G.: Empirical calibration of local
magnitude data sets versus moment magnitude in Italy, B. Seismol. Soc. Am., 103, 2227–2246, 2013.
Gasperini, P., Lolli, B., and Vannucci, G.: Catalogue of Mw magnitudes for the Italian area, 1981–2015, MPS16 Project Internal report, 2016.
Giardini, D.: The Global Seismic Hazard Assessment Program (GSHAP) –
1992/1999, Ann. Geofis., 42, https://doi.org/10.4401/ag-3780, 1999.
Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., and Valensise, G.: CFTI4Med, Catalogue of Strong Earthquakes in Italy from 461 BC. to 2000 and in the Mediterranean area, from 760 BC. to 1500, An Advanced Laboratory of Historical Seismology, http://storing.ingv.it/cfti4med/ (last access: 25 August 2022), 2007.
Guidoboni, E., Ferrari, G., Tarabusi, G., Sgattoni, G., Comastri, A., Mariotti, D., Ciuccarelli, C., Bianchi, M. G., and Valensise, G.: CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area, Sci. Data, 6, 80, https://doi.org/10.1038/s41597-019-0091-9, 2019.
Kulkarni, R. B., Youngs, R. R., and Coppersmith, K. J.: Assessment of
confidence intervals for results of seismic hazard analysis, in: Proceedings
of the Eighth World Conference on Earthquake Engineering, San Francisco, CA, 21–28 July, 1, 263–270, 1984.
Lanzano, G. and Luzi, L.: A ground motion model for volcanic areas in
Italy, Bull. Earthq. Eng., 18, 57–76, https://doi.org/10.1007/s10518-019-00735-9, 2020.
Lanzano, G., Luzi, L., D'Amico, V., Pacor, F., Meletti, C., Marzocchi, W.,
Rotondi, R., and Varini, E.: Ground Motion Models for the new seismic hazard
model of Italy (MPS19): selection for active shallow crustal regions and
subduction zones, Bull. Earthq. Eng., 18, 3487–3516,
https://doi.org/10.1007/s10518-020-00850-y, 2020.
Lavecchia, G., De Nardis, R., Visini, F., Ferrarini, F., and Barbano, M. S.:
Seismogenic evidence of ongoing compression in eastern-central Italy and
mainland Sicily: a comparison, Ital. J. Geosci., 126, 209–222, 2007a.
Lavecchia, G., Ferrarini, F., de Nardis, R., Visini, F., and Barbano, M.S.:
Active thrusting as a possible seismogenic source in Sicily (southern
Italy): Some insights from integrated structural-kinematic and seismological
data, Tectonophysics, 445, 145–167, https://doi.org/10.1016/j.tecto.2007.07.007,
2007b.
Locati, M., Camassi, R., Rovida, A., Ercolani, E., Bernardini, F., Castelli, V., Caracciolo, C.H., Tertulliani, A., Rossi, A., Azzaro, R., D’Amico, S., Conte, S., and Rocchetti, E.: Database Macrosismico Italiano (DBMI15), Istituto Nazionale di Geofisica e Vulcanologia (INGV), https://doi.org/10.6092/INGV.IT-DBMI15, 2016.
Lolli, B., Gasperini, P., and Vannucci, G.: Empirical conversion between
teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the global,
Euro-Mediterranean and Italian scale, Geophys. J. Int., 199, 805–828, https://doi.org/10.1093/gji/ggu264, 2014.
Lolli, B., Gasperini, P., and Vannucci, G.: Erratum: Empirical conversion
between teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the
global, Euro-Mediterranean and Italian scale, Geophys. J. Int., 200, 199, https://doi.org/10.1093/gji/ggu385, 2015.
Lolli, B., Gasperini, P., and Rebez, A.: Homogenization of magnitude
estimates in terms of Mw of Italian earthquakes occurred before 1981,
Geophys. J. Int., 108, 481–49, https://doi.org/10.1785/0120170114,
2018.
Lolli, B., Randazzo, D., Vannucci, G., and Gasperini, P.: The Homogenized
Instrumental Seismic Catalogue (HORUS) of Italy from 1960 to Present,
Seismol. Res. Lett., 91, 3208–3222, https://doi.org/10.1785/0220200148, 2020.
Mariucci, M. T. and Montone, P.: Database of Italian present-day stress
indicators, IPSI 1.4, Sci. Data, 7, 1–11,
https://doi.org/10.1038/s41597-020-00640-w, 2020.
Marzocchi, W., Spassiani, I., Stallone, A., and Taroni, M.: How to be fooled
searching for significant variations of the b-value, Geophys. J. Int., 220, 1845–1856, 2020.
Mastrolembo, B., Serpelloni, E., Argnani, A., Bonforte, A., Burgmann, R.,
Anzidei, M., Baldi, P., and Puglisi, G.: Fast geodetic strain-rates in
eastern Sicily (southern Italy): New insights into block tectonics and
seismic potential in the area of the great 1693 earthquake, Earth Planet. Sc. Lett., 404, 77–88, https://doi.org/10.1016/j.epsl.2014.07.025, 2014.
Meghraoui, M., Maouche, S., Chemaa, B., Cakir, Z., Aoudia, A., Harbi, A., Alasset, P.J., Ajadi, A., Bouhadad Y., and Benhamouda, F.: Coastal uplift and thrust faulting associated with the Mw=6.8 Zemmouri (Algeria) earthquake of 21 May, 2003, Geophys. Res. Lett., 31, L19605, https://doi.org/10.1029/2004GL020466, 20034.
Meletti, C., Patacca, E., and Scandone, P.: Construction of a seismo-
tectonic model: The case of Italy, Pure Appl. Geophys. 157, 11–35, 2000.
Meletti, C., Galadini, F., Valensise, G., Stucchi, M., Basili, R., Barba,
S., Vannucci, G., and Boschi, E.: A seismic source model for the seismic
hazard assessment of the Italian territory, Tectonophysics, 450, 85–108,
https://doi.org/10.1016/j.tecto.2008.01.003, 2008.
Meletti, C., Marzocchi, W., D'Amico, V., Lanzano, G., Luzi, L., Martinelli,
F., Pace, B., Rovida, A., Taroni, M., Visini, F., and the MPS19 Working
Group: The new Italian Seismic Hazard Model (MPS19), Ann. Geophys.,
64, SE112, https://doi.org/10.4401/ag-8579, 2021.
National Research Council: Probabilistic Seismic Hazard Analysis, Washington, DC: The National Academies Press, https://doi.org/10.17226/19108, 1988.
NTC: Norme Tecniche per le Costruzioni NTC18, Ministerial Decree 17 January 2018,
Italian Official Gazette, N. 42, 20 February 2018, https://www.gazzettaufficiale.it/eli/id/2018/2/20/18A00716/sg (last access: 25 August 2022), 2018.
Ordaz, M.: Some Integrals Useful in Probabilistic Seismic Hazard Analysis,
B. Seismol. Soc. Am., 94, 1510–1516, 2004.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crow- ley, H., Silva,
V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and
Vigano, D.: OpenQuake engine: An open hazard (and risk) software for the
global earthquake model, Seismol. Res. Lett. 85, 692–702,
https://doi.org/10.1785/0220130087, 2014.
Papanikolaou, I. D. and Roberts, G. P.: Geometry, Kinematics and deformation
rates along the active normal fault system in the southern Apennines:
implications for fault growth, J. Struct. Geol., 29, 166–188, 2007.
Pondrelli, S. and Salimbeni, S.: Regional Moment Tensor Review: An Example
from the European–Mediterranean Region, in: Encyclopedia of Earthquake
Engineering, 1–15 pp., Springer Berlin Heidelberg,
https://doi.org/10.1007/978-3-642-36197-5_301-1, 2015.
Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P.,
and Vannucci G.: The Italian CMT dataset from 1977 to the present, Phys.
Earth Planet. Int., 159, 286–303,
https://doi.org/10.1016/j.pepi.2006.07.008, 2006.
Pondrelli, S., Visini, F., Rovida, A., D'Amico, V., Pace, B., and Meletti, C.: Style of faulting of expected earthquakes in Italy as an input for seismic hazard modeling, Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, 2020.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: CPTI15,
the 2015 version of the Parametric Catalogue of Italian Earthquakes,
Istituto Nazionale di Geofisica e Vulcanologia, https://doi.org/10.6092/INGV.IT-CPTI15, 2016.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The
Italian earthquake catalogue CPTI15, B. Earthq. Eng., 18,
2953–2984, https://doi.org/10.1007/s10518-020-00818-y, 2020.
Saul, J., Becker, J., and Hanka, W.: Global moment tensor computation at GFZ
Potsdam, AGU 2011 Fall Meeting, San Francisco, USA, abstract ID. S51A-2202, https://ui.adsabs.harvard.edu/abs/2011AGUFM.S51A2202S (last access: 25 August 2022), 2011.
Slejko, D., Peruzza, L., and Rebez, A.: The seismic hazard maps of Italy, Ann.
Geophys., 41, 183–214, 1998.
Solarino, S. and Cassinis, R.: Seismicity of the upper lithosphere and its
relationships with the crust in the Italian region,
B. Geofis. Teor. Appl., 48, 99–115, 2007.
SSHAC (Senior Seismic Hazard Analysis Committee): Recommendations for
probabilistic seismic hazard analysis: guidance on uncertainties and use of
experts, Report NUREG- CR- 6372, U.S. Nuclear Regulatory Commission,
Washington D.C., https://www.nrc.gov/docs/ML0800/ML080090003.pdf (last access: 25 August 2022), 1997.
Stucchi, M., Albini, P., Mirto, C., and Rebez, A.: Assessing the
completeness of Italian historical earthquake data, Ann. Geophys., 47,
659–674, 2004.
Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G. M., and
Boschi, E.: Seismic hazard assessment (2003–2009) for the Italian building
code, B. Seismol. Soc. Am., 101, 1885–1911,
2011.
Sue, C., Delacou, B., Champagnac, J. D., Allanic, C., Tricart, P., and Burkhard, M.: Extensional neotectonics
around the bend of the Western/Central Alps: an overview, Int. J. Earth Sci., 96, 1101–1129, https://doi.org/10.1007/s00531-007-0181-3,
2007.
Tesson, J., Pace, B., Benedetti, L., Visini, F., Delli Rocioli, M., Arnold,
M., Aumaître, G., Bourlès, D. L., and Keddadouche, K.: Seismic slip
history of the Pizzalto fault (central Apennines, Italy) using in
situ-produced 36Cl cosmic ray exposure dating and rare earth element
concentrations, J. Geoph. Res.-Sol. Ea., 121, 1983–2003,
https://doi.org/10.1002/2015jb012565, 2016.
Valentini, A., Visini, F., and Pace, B.: Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy, Nat. Hazards Earth Syst. Sci., 17, 2017–2039, https://doi.org/10.5194/nhess-17-2017-2017, 2017.
Vannucci, G. and Gasperini, P.: The new release of the database of
Earthquake Mechanisms of the Mediterranean Area (EMMA Version 2), Ann.
Geophys., 47, 307–334, 2004.
Vilanova, S. P., Nemser, E. S., Besana-Ostman, G. M., Bezzeghoud, M.,
Borges, J. F., Brum da Silveira, A., Cabral, J., Carvalho, J., Cunha, P. P.,
Dias, R. P., Madeira, J., Lopes, F. C., and Oliveira, C.: Incorporating
Descriptive Metadata into Seismic Source Zone Models for Seismic-Hazard
Assessment: A Case Study of the Azores-West Iberian Region, B. Seismol. Soc. Am., 104, 1212–1229, https://doi.org/10.1785/0120130210, 2014.
Visini, F.: Seismic crustal deformation in Southern Apennines of Italy,
Ital. J. Geosci., 131, 187–204, https://doi.org/10.3301/IJG.2011.31,
2012.
Visini, F., De Nardis, R., and Lavecchia, G.: Rates of active compressional
deformation in central Italy and Sicily: evaluation of the seismic budget,
Int. J. Earth Sci., 99, 243–264, https://doi.org/10.1007/s00531-009-0473-x, 2010.
Visini, F., Pace, B., Meletti, C., Marzocchi, W., Akinci, A., Azzaro, R., Barani, S., Barberi, G., Barreca, G., Basili, R., Bird, P., Bonini, M., Burrato, P., Busetti, M., Carafa, M. M. C., Cocina, O., Console, R., Corti, G., D’Agostino, N., D’Amico, S., D’Amico, V., Dal Cin M., Falcone, G., Fracassi, U., Gee, R., Kastelic, V., Lai, C. G., Langer, H., Maesano, F. E., Marchesini, A., Martelli, L., Monaco, C., Murru, M., Peruzza, L., Poli, M. E., Pondrelli, S., Rebez, A., Rotondi, R., Rovida, A., Sani, F., Santulin, M., Scafidi, D., Selva, J., Slejko, D., Spallarossa, D., Tamaro, A., Tarabusi, G., Taroni, M., Tiberti, M. M., Tusa, G., Tuvè, T., Valensise, G., Vannoli, P., Varini, E., Zanferrari, A., and Zuccolo, E.: Earthquake Rupture
Forecasts for the MPS19 Seismic Hazard Model of Italy, Ann.
Geophys., 64, SE220, https://doi.org/10.4401/ag-8608, 2021.
Weichert, D. H.: Estimation of the earthquake recurrence parameters for
unequal observation periods for different magnitudes, B. Seismol. Soc. Am., 70, 1337–1346, 1980.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface
displacement, B. Seismol. Soc. Am., 84,
974–1002, 1994.
Wheeler, R. L.: Methods of Mmax Estimation East of the Rocky Mountains, U.S.
Geological Survey, Open-File Report 2009–1018, 44 pp., https://doi.org/10.3133/ofr20091018, 2009.
Wiemer, S., García-Fernández, M., and Burg, J. P.: Development of a
seismic source model for probabilistic seismic hazard assessment of nuclear
power plant sites in Switzerland: The view from PEGASOS Expert Group 4
(EG1d), Swiss J. Geosci., 102, 189–209, https://doi.org/10.1007/s00015-009-1311-7,
2009.
Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., and the SHARE Consortium: The
2013 European Seismic Hazard Model – Key Components and Results, B. Earthq. Eng., 13, 3553–3596, https://doi.org/10.1007/s10518-015-9795-1, 2015.
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
As new data are collected, seismic hazard models can be updated and improved. In the framework...
Altmetrics
Final-revised paper
Preprint