Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A morphotectonic approach to the study of earthquakes in Rome
Fabrizio Marra
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Alberto Frepoli
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Dario Gioia
Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio
Nazionale delle Ricerche, Tito Scalo, 85050 Potenza, Italy
Marcello Schiattarella
Dipartimento delle Culture Europee e del Mediterraneo (DiCEM),
Università degli Studi della Basilicata, 75100 Matera, Italy
Andrea Tertulliani
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Monica Bini
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Gaetano De Luca
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Marco Luppichini
Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy
Related authors
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
Andrea Tertulliani, Andrea Antonucci, Filippo Bernardini, Viviana Castelli, Emanuela Ercolani, Laura Graziani, Alessandra Maramai, Martina Orlando, Antonio Rossi, and Tiziana Tuvè
Earth Syst. Sci. Data, 17, 4063–4077, https://doi.org/10.5194/essd-17-4063-2025, https://doi.org/10.5194/essd-17-4063-2025, 2025
Short summary
Short summary
We present the results of a rapid and reliable study of 45 Italian earthquakes characterized by datasets with potential inconsistencies or inhomogeneities. The used methodology obviates the need for exhaustive earthquake re-evaluation, and it is particularly effective for the updating of medium and low events, with a large amount of low-intensity data. The result is a new dataset very useful in improving “seismic histories” and in contributing to the enhancement of the seismic hazard of an area.
Daniela Famiani, Fabrizio Cara, Giuseppe Di Giulio, Giovanna Cultrera, Francesca Pacor, Sara Lovati, Gaetano Riccio, Maurizio Vassallo, Giulio Brunelli, Antonio Costanzo, Antonella Bobbio, Marta Pischiutta, Rodolfo Puglia, Marco Massa, Rocco Cogliano, Salomon Hailemikael, Alessia Mercuri, Giuliano Milana, Luca Minarelli, Alessandro Di Filippo, Lucia Nardone, Simone Marzorati, Chiara Ladina, Debora Pantaleo, Carlo Calamita, Maria Grazia Ciaccio, Antonio Fodarella, Stefania Pucillo, Giuliana Mele, Carla Bottari, Gaetano De Luca, Luigi Falco, Antonino Memmolo, Giulia Sgattoni, and Gabriele Tarabusi
Earth Syst. Sci. Data, 17, 2087–2112, https://doi.org/10.5194/essd-17-2087-2025, https://doi.org/10.5194/essd-17-2087-2025, 2025
Short summary
Short summary
This paper describes data and preliminary analyses made by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) emergency task force EMERSITO, devoted to site effects and seismic microzonation studies, following the 9 November 2022 strong earthquake localized in the Adriatic Sea (Italy). Considering the affected area, EMERSITO deployed, from November 2022 to February 2023, a temporary seismic network of 11 stations (net code 6N) which sampled different geological units in the urban area of Ancona.
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
Cited articles
Acocella, V. and Funiciello, R.: Transverse systems along the
extensional Tyrrhenian margin of central Italy and their influence on
volcanism, Tectonics, 25, TC2003, https://doi.org/10.1029/2005tc001845, 2006.
Alfonsi, L., Funiciello, R., Mattei, M., Girotti, O., Maiorani, A., Preite
Martinez, M., Trudu, C., and Turi, B.: Structural and geochemical features of
the Sabina strike-slip fault (Central Apennines), B.
Soc. Geol. Ital., 110, 217–230, 1991.
Amato, A. and Chiarabba, C.: Earthquake occurrence and crustal structure,
in: The Volcano of the Alban Hills, edited by: Trigila, R., Univ. degli Studi
di Roma “La Sapienza”, Rome, La Sapienza University of Rome, Italy, 193–211, 1995.
Amato, A., Alessandrini, B., Cimini, G. B., Frepoli, A., and Selvaggi, G.: Active
and remnant subducted slabs beneath Italy: evidence from seismic tomography
and seismicity, Ann. Geofis., 36, 201–214, 1993.
Bahrami, S.: Analyzing the drainage system anomaly of zagros basins:
Implications for active tectonics, Tectonophysics, 608, 914–928, 2013.
Barberi, F., Buonasorte, G., Cioni, R., Fiordelisi, A., Foresi, L.,
Iaccarino, S., Laurenzi, M. A., Sbrana, A., Vernia, L., and Villa, I. M.:
Plio-Pleistocene geological evolution of the geothermal area of Tuscany and
Latium, Mem. Descr. Carta Geol. Ital., 49, 77–134, 1994.
Basili, A., Cantore, L., Cocco, M., Frepoli, A., Margheriti, L., Nostro, C.,
and Selvaggi, G.: The June 12, 1995 microearthquake sequence in the city of
Rome, Ann. Geofis., 39, 1167–1175, 1996.
Boulton, S. J., Stokes, M., and Mather, A. E.: Transient fluvial incision as an
indicator of active faulting and Plio-Quaternary uplift of the Moroccan High
Atlas, Tectonophysics, 633, 16–33, https://doi.org/10.1016/j.tecto.2014.06.032, 2014.
Calzolari, G., Della Seta, M., Rossetti, F., Nozaem, R., Vignaroli, G.,
Cosentino, D., and Faccenna, F.: Geomorphic signal of active faulting at the
northern edge of Lut Block: Insights on the kinematic scenario of Central
Iran, Tectonics, 35, 76–102, https://doi.org/10.1002/2015TC003869, 2016.
Caputo, C., Ciccacci, S., De Rita, D., Fredi, P., Lupia Palmieri, E., and
Salvini, F.: Drainage pattern and tectonics in some volcanic areas of Latium
(Italy), Geologica Romana, 29, 1–13, 1993.
Chatelain, J. L.: Etude fine de la sismicité en zone de collision
continentale à l'aide d'un réseau de stations portables: la region
Hindu-Kush-Pamir, Thèse de 3 éme cycle, Univ. Paul Sabatier,
Toulouse, 1978.
Ciccacci, S., Fredi, P., Lupia Palmieri, E., and Salvini, F.: An approach to the
quantitative analysis of the relations between drainage pattern and fracture
trend, in: International Geomorphology 1986, edited by: Gardiner, V.,
Proceedings of the First International Conference on Geomorphology, Part II,
John Wiley and Sons Ltd, Chichester, 49–68, 1987.
Del Monte, M., D'Orefice, M., Luberti, G. M., Marini, R., Pica, A., and Vergari,
F.: Geomorphological classification of urban landscapes: the case study of
Rome (Italy), J. Maps, 12, 178–189,
https://doi.org/10.1080/17445647.2016.1187977, 2016.
De Luca, G., Cattaneo, M., Monachesi, G., and Amato, A.: Seismicity in central
and northern Apennines integrating the Italian national and regional
networks, Tectonophysics, 476, 121–135, https://doi.org/10.1016/j.tecto.2008.11.032,
2009.
Faccenna, C., Funiciello, R., and Mattei, M.: Late Pleistocene N–S shear zones
along the Latium Tyrrhenian margin: structural characters and volcanological
implications, Bollettino di Geofisica Teorica Applicata, 36, 507–522, 1994a.
Faccenna, C., Funiciello, R., Montone, P., Parotto, M., and Voltaggio, M.: An
example of late Pleistocene strike-slip tectonics: the Acque Albule basin
(Tivoli, Latium), Mem. Descr. d. Carta Geol. d'It., 49, 37–50, 1994b.
Faccenna, C., Davy, P., Brun, J. P., Funiciello, R., Giardini, D., Mattei,
M., and Nalpas, T.: The dynamics of back-arc extension: an experimental approach
to the opening ofthe Tyrrhenian Sea, Geophys. J. Int., 126,
781–795, 1996.
Faccenna, C., Soligo, M., Billi, A., De Filippis, L., Funiciello, R.,
Rossetti, C., and Tucciemei, P.: Late Pleistocene depositional cycles of the
Lapis Tiburtinus travertine (Tivoli, Central Italy): Possible influence of
climate and fault activity, Global Planet. Change, 63, 299–308,
https://doi.org/10.1016/j.gloplacha.2008.06.006, 2008.
Forte, A. M. and Whipple, K. X.: Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox, Earth Surf. Dynam., 7, 87–95, https://doi.org/10.5194/esurf-7-87-2019, 2019.
Frepoli, A. and Amato, A.: Contemporaneous extension and compression in the
northern Apennines from earthquake fault-plane solutions, Geophys. J. Int.,
129, 368–388, 1997.
Frepoli, A., Marra, F., Maggi, C., Marchetti, A., Nardi, A., Pagliuca, N. M., and Pirro, M.:
Seismicity, seismogenic structures and crustal stress field in the greater
area of Rome (Central Italy), J. Geophys. Res., 115, B12303,
https://doi.org/10.1029/2009JB006322, 2010.
Frepoli, A., Cimini, G.B., De Gori, P., De Luca, G., Marchetti, A., Monna,
S., Montuori, C., Pagliuca, N.: Seismic sequences and swarms in the
Latium-Abruzzo-Molise Apennines (central Italy): new observations and
analysis from a dense monitoring of the recent activity, Tectonophysics,
712–713, 312–329, https://doi.org/10.1016/j.tecto.2017.05.026, 2017.
Galli, P. A. C. and Molin, D.: Beyond the damage threshold: the historic
earthquakes of Rome, B. Earthquake Eng., 12, 1277–1306,
https://doi.org/10.1007/s10518-012-9409-0, 2014.
Gaeta, M., Freda, C., Marra, F., Arienzo, I., Gozzi, F., Jicha, B., Di
and Rocco, T.: Paleozoic metasomatism at the origin of Mediterranean
ultrapotassic magmas: constraints from time-dependent geochemistry of Colli
Albani volcanic products (Central Italy), Lithos, 244, 151–164, 2016.
Gioia, D., Schiattarella, M., and Giano, S.: Right-Angle Pattern of Minor
Fluvial Networks from the Ionian Terraced Belt, Southern Italy: Passive
Structural Control or Foreland Bending?, Geosciences, 8, 331, https://doi.org/10.3390/geosciences8090331, 2018.
Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G.,
Sgattoni, G., and Valensise, G.: CFTI5Med, Catalogo dei Forti Terremoti in
Italia (461 a.C.–1997) e nell'area Mediterranea (760 a.C.–1500), Istituto
Nazionale di Geofisica e Vulcanologia (INGV),
http://storing.ingv.it/cfti/cfti5 (last access: 23 July 2022), 2018.
Holland, J. H.: Adaptation in Natural and artificial systems, University of
Michigan Press, Ann Arbor, 1975.
Horvath, F. and Berckhemer, H.: Mediterranean back arc basins, in: Alpine
Mediterranean Geodynamics, 145–175, edited by: Berckhemer, H. and Hsu, K. J.,
Geodyn. Ser., 7, American Geophys. Un., Whashington, D.C., ISBN 978-1-118-67024-8, 1982.
Jones, R. R. and Tanner, P. W. G.: Strain partitioning in transpression zones,
J. Struct. Geol., 17, 793–802, 1995.
Kent, E., Boulton, S. J., Whittaker, A. C., Stewart, I. S., Cihat
and Alçiçek, M.: Normal fault growth and linkage in the Gediz
(Alaşehir) Graben, Western Turkey, revealed by transient river
long-profiles and slope-break knickpoints, Earth Surf. Proc.
Land., 42, 836–352, https://doi.org/10.1002/esp.4049, 2017.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75,
https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Lahr, J. C.: HYPOELLIPSE/Version 2.0: a computer program for determining
local earthquake hypocentral parameters, magnitude and first-motion pattern,
U.S. Geol. Surv. Open-file Report, 95, 89–116, https://doi.org/10.3133/ofr89116, 1989.
Locardi, E., Lombardi, G., Funiciello, R., Parotto, M.: The Main volcanic
groups of Latium (Italy): relations between structural evolution and
petrogenesis, Geologica Romana, 15, 279–300, 1977.
Lucente, F. P. and Speranza, F.: Belt bending driven by lateral bending of
subducting lithospheric slab: geophysical evidences from the northern
Apennines (Italy), Tectonophysics, 337, 53–64, 2001.
Macka, Z.: Structural control on drainage network orientation an example from
the Loucka drainage basin, SE margin of the Bohemian Massif (S Moravia,
Czech Rep.), Landform Analysis, 4, 109–117, 2003.
Malinverno, A. and Ryan, W. B. F.: Extension in the Tyrrhenian sea and
shortening in the Apennines as results of arc migration driven by sinking of
the lithosphere, Tectonics, 5, 227–245, 1986.
Mariucci, M. T., Amato, A., and Montone, P.: Recent tectonic evolution and
present stress in the Northern Apennines (Italy), Tectonics, 18, 108–118,
1999.
Marra, F.: Low-magnitude earthquakes in Rome: structural interpretation and
implications for local stress-field, Geophys. J. Int., 138,
231–243, 1999.
Marra, F.: Strike-slip faulting and block rotation: A possible triggering
mechanism for lava flows in the Alban Hills?, J. Struct. Geol., 23,
129–141, 2001.
Marra, F., Taddeucci, J., Freda, C., Marzocchi, W., and Scarlato, P.: Recurrence
of volcanic activity along the Roman Comagmatic Province (Tyrrhenian margin
of Italy) and its tectonic significance, Tectonics, 23, TC4013,
https://doi.org/10.1029/2003TC001600, 2004a.
Marra, F., Montone, P., Pirro, M., and Boschi, E.: Evidence of Active Tectonics
on a Roman Aqueduct System (II–III Century A.D.) near Rome, Italy, J.
Struct. Geol., 26, 679–690, 2004b.
Marra F., Karner, D. B., Freda, C., Gaeta, M., and Renne, P. R.: Large mafic
eruptions at the Alban Hills Volcanic District (Central Italy):
chronostratigraphy, petrography and eruptive behavior, J. Volcanol. Geoth. Res., 179, 217–232,
https://doi.org/10.1016/j.jvolgeores.2008.11.009, 2009.
Marra, F., Sottili, G., Gaeta, M., Giaccio, B., Jicha, B., Masotta M.,
and Palladino, D.: Major explosive activity in the Sabatini Volcanic District
(central Italy) over the 800–390 ka interval: geochronological – geochemical
overview and tephrostratigraphic implications, Quaternary Sci. Rev.,
94, 74–101, https://doi.org/10.1016/j.quascirev.2014.04.010, 2014.
Marra, F., Florindo, F., Anzidei, M., and Sepe, V.: Paleo-surfaces of
glacio-eustatically forced aggradational successions in the coastal area of
Rome: assessing interplay between tectonics and sea-level during the last
ten interglacials, Quaternary Sci. Rev., 148, 85–100,
https://doi.org/10.1016/j.quascirev.2016.07.003, 2016.
Molin, D. and Rossi, A.: Effetti prodotti in Roma dai terremoti del 1703, in: Settecento abruzzese. Eventi sismici, mutamenti economico-sociali e ricerca storiografica, edited by: Colapietra, R., Marinangeli, G., and Muzzi, P., 69–106, ISBN 8888676414, 2004.
Montone, P. and Mariucci, M. T.: The new release of the Italian contemporary
stress map, Geophys. J. Int., 205, 1525–1531,
https://doi.org/10.1093/gji/ggw100, 2016.
Montone, P., Amato, A., Chiarabba, C., Buonasorte, G., and Fiordelisi, A.: Evidence of
active extension in Quaternary volcanoes of Central Italy from breakout
analysis and seismicity, Geophys. Res. Lett., 22, 1909–1912, 1995.
Patacca, E. and Scandone, P.: Post-Tortonian mountain building in the
Apennines. The role of the passive sinking of a relic lithospheric slab, in:
The Lithosphere in Italy, edited by: Boriani, A., Bonafede, M., Piccardo, G. B., and Vai, G. B., Advances in Earth Science Research, It. Nat. Comm. Int. Lith. Progr., Mid-term Conf., Rome, 5–6 May 1987, Atti Conv. Lincei, 80, 157–176, 1989.
Parotto, M. and Praturlon, A.: Geological summary of the Central Appenines,
in: Structural Model of Italy, edited by: Ogniben, L., Parotto, M., and Praturlon,
A., Quad. Ric. Scient., 90, 257–311, 1975.
Pavano, F., Pazzaglia, F. J., and Catalano, S.: Knickpoints as geomorphic markers
of active tectonics: A case study from northeastern Sicily (southern Italy),
Lithosphere, 8, 633–648, https://doi.org/10.1130/L577.1, 2016.
Peccerillo, A.: Cenozoic Volcanism in the Tyrrhenian Sea Region, S. IAVCEI,
Barcelona, Springer, ISBN 978-3-319-42491-0, 2017.
Reasenberg, P. and Oppenheimer, D.: FPFIT, FPPLOT and FPPAGE: FORTRAN
computer programs for calculating and displaying earthquake fault plane
solutions, USGS Open-file Report, 85–739, https://doi.org/10.3133/ofr85739 1985.
Reutter, K. J., Giese, P., and Closs, H.: Lithospheric split in the descending
plate: observation from the Northern apennines, Tectonophysics, 64, T1–T9,
1980.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The Italian
earthquake catalogue CPTI15, B. Earthqu. Eng., 18,
2953–2984, https://doi.org/10.1007/s10518-020-00818-y,
2020.
Sambridge, M. and Gallagher, K.: Earthquake hypocenter location using genetic
algorithms, B. Seismol. Soc. Am., 83, 1467–1491, 1993.
Selvaggi, G., and Amato, A.: Subcrustal earthquakes in the Northern Apennines
(Italy): evidence for a still active subduction?, Geophys. Res. Lett., 19,
2127–2130, 1992.
Serri, G.: Neogene-Quaternary magmatic activity and its geodynamic
implications in the Central Mediterranean region, Ann. Geofis., 3,
681–703, 1997.
Serri, G., Innocenti, F., and Manetti, P.: Geochemical and Petrological
evidence of the subduction of delaminated Adriatic continental lithosphere
in the genesis of the Neogene-Quaternary magmatism of Central Italy,
Tectonophysics, 223, 117–147, 1993.
Sylvester, A. G.: Strike-slip faults, GSA Bulletin, 100, 1666–1703,
https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2, 1988.
Tapponnier, P.: Evolution tectonique du systeme alpin en Mediterranee; poinconnement et ecrasement rigide-plastique, B. Soc. Géol. Fr., 3, 437–460, https://doi.org/10.2113/gssgfbull.S7-XIX.3.437, 1977.
Tertulliani, A. and Riguzzi, F.: Earthquakes in Rome during the past one
hundred years, Ann. Geofis., 38, 591–606, 1995.
Tertulliani, A., Graziani, L., and Esposito, A.: How historical seismology can benefit
from bureaucracy: the case of the “Lettere Patenti” of the city of Rome in
1703, Seismol. Res. Lett., 91, 2511–2519,
https://doi.org/10.1785/0220200046, 2020.
Trasatti, E., Marra, F., Polcari, M., Etiope, G., Ciotoli, G., Darrah, T.,
Tedesco, D., Florindo, F., and Ventura, G.: Coeval uplift and subsidence reveal
magma recharging near Rome, Geochem. Geophy. Geosy., 19 1484–1498,
https://doi.org/10.1029/2017GC007303, 2018.
Tveite, H.: The QGIS Line Direction Histogram Plugin,
http://plugins.qgis.org/plugins/LineDirectionHistogram/ (last access: 23 July 2022), 2015.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Sol.
Ea., 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise,
and pitfalls, Special Paper of the Geological Society of America, 55–74, https://doi.org/10.1130/2006.2398(04),
2006.
Short summary
Through the analysis of the morphostructural setting in which the seismicity of Rome is framed, we explain why the city should not expect to suffer damage from a big earthquake.
Through the analysis of the morphostructural setting in which the seismicity of Rome is framed,...
Altmetrics
Final-revised paper
Preprint