Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A morphotectonic approach to the study of earthquakes in Rome
Fabrizio Marra
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Alberto Frepoli
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Dario Gioia
Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio
Nazionale delle Ricerche, Tito Scalo, 85050 Potenza, Italy
Marcello Schiattarella
Dipartimento delle Culture Europee e del Mediterraneo (DiCEM),
Università degli Studi della Basilicata, 75100 Matera, Italy
Andrea Tertulliani
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Monica Bini
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Gaetano De Luca
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata
605, 00143 Rome, Italy
Marco Luppichini
Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy
Related authors
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
F. Marra
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-5553-2013, https://doi.org/10.5194/cpd-9-5553-2013, 2013
Preprint withdrawn
Daniela Famiani, Fabrizio Cara, Giuseppe Di Giulio, Giovanna Cultrera, Francesca Pacor, Sara Lovati, Gaetano Riccio, Maurizio Vassallo, Giulio Brunelli, Antonio Costanzo, Antonella Bobbio, Marta Pischiutta, Rodolfo Puglia, Marco Massa, Rocco Cogliano, Salomon Hailemikael, Alessia Mercuri, Giuliano Milana, Luca Minarelli, Alessandro Di Filippo, Lucia Nardone, Simone Marzorati, Chiara Ladina, Debora Pantaleo, Carlo Calamita, Maria Grazia Ciaccio, Antonio Fodarella, Stefania Pucillo, Giuliana Mele, Carla Bottari, Gaetano De Luca, Luigi Falco, Antonino Memmolo, Giulia Sgattoni, and Gabriele Tarabusi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-162, https://doi.org/10.5194/essd-2024-162, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper describes data and preliminary analyses made by the INGV emergency task force EMERSITO, devoted to site effects and seismic microzonation studies, following the November 9th, 2022, MW 5.5 earthquake (Adriatic sea, Italy). Considering the earthquake affected area, EMERSITO deployed a temporary seismic network of 11 stations (net code 6N) sampling different geological units in the urban area of Ancona, the regional capital of Marche, and operated from November 2022 to February 2023.
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
F. Marra
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-5553-2013, https://doi.org/10.5194/cpd-9-5553-2013, 2013
Preprint withdrawn
F. Masci and G. De Luca
Nat. Hazards Earth Syst. Sci., 13, 1313–1319, https://doi.org/10.5194/nhess-13-1313-2013, https://doi.org/10.5194/nhess-13-1313-2013, 2013
Related subject area
Earthquake Hazards
Testing the 2020 European Seismic Hazard Model (ESHM20) against observations from Romania
Sedimentary record of historical seismicity in a small, southern Oregon lake
A 2700-year record of Cascadia megathrust and crustal/slab earthquakes from Acorn Woman Lakes, Oregon
Probabilistic seismic hazard assessment of Sweden
Correlation between seismic activity and acoustic emission on the basis of in situ monitoring
The European Fault-Source Model 2020 (EFSM20): geologic input data for the European Seismic Hazard Model 2020
2021 Alaska earthquake: entropy approach to its precursors and aftershock regimes
Strategies for comparison of modern probabilistic seismic hazard models and insights from the Germany and France border region
The Earthquake Risk Model of Switzerland, ERM-CH23
Estimating ground motion intensities using simulation-based estimates of local crustal seismic response
Co- and postseismic subaquatic evidence for prehistoric fault activity near Coyhaique, Aysén Region, Chile
Forearc crustal faults as tsunami sources in the upper plate of the Lesser Antilles subduction zone: the case study of the Morne Piton fault system
The 2020 European Seismic Hazard Model: overview and results
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Analysis of Borehole Strain Anomalies Before the 2017 Jiuzhaigou Ms7.0 Earthquake Based on Graph Neural Network
Modeling Seismic Hazard and Landslide Potentials in Northwestern Yunnan, China: Exploring Complex Fault Systems with multi-segment rupturing in a Block Rotational Tectonic Zone
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
The influence of aftershocks on seismic hazard analysis: a case study from Xichang and the surrounding areas
Characteristics and mechanisms of near-surface negative atmospheric electric field anomalies preceding the 5 September 2022, Ms 6.8 Luding earthquake in China
Seismogenic depth and seismic coupling estimation in the transition zone between Alps, Dinarides and Pannonian Basin for the new Slovenian seismic hazard model
Towards a dynamic earthquake risk framework for Switzerland
Understanding flow characteristics from tsunami deposits at Odaka, Joban Coast, using a deep neural network (DNN) inverse model
Spring water anomalies before two consecutive earthquakes (Mw 7.7 and Mw 7.6) in Kahramanmaraş (Türkiye) on 6 February 2023
The quest for reference stations at the National Observatory of Athens, Greece
Update on the seismogenic potential of the Upper Rhine Graben southern region
Earthquake forecasting model for Albania: the area source model and the smoothing model
Towards a Harmonized Operational Earthquake Forecasting Model for Europe
Computing time-dependent activity rate using non-declustered and declustered catalogues. A first step towards time dependent seismic hazard calculations for operational earthquake forecasting
The footprint of a historical paleoearthquake: the sixth-century-CE event in the European western Southern Alps
Seismic background noise levels in the Italian strong-motion network
Testing machine learning models for heuristic building damage assessment applied to the Italian Database of Observed Damage (DaDO)
The seismic hazard from the Lembang Fault, Indonesia, derived from InSAR and GNSS data
Development of a regional probabilistic seismic hazard model for Central Asia
Rapid estimation of seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program (LOWESS)
Towards improving the spatial testability of aftershock forecast models
Accounting for path and site effects in spatial ground-motion correlation models using Bayesian inference
Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations
Earthquake hazard characterization by using entropy: application to northern Chilean earthquakes
Seismic risk scenarios for the residential buildings in the Sabana Centro province in Colombia
Looking for undocumented earthquake effects: a probabilistic analysis of Italian macroseismic data
Spatiotemporal seismicity pattern of the Taiwan orogen
A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides
Evaluation of liquefaction triggering potential in Italy: a seismic-hazard-based approach
Earthquake vulnerability assessment of the built environment in the city of Srinagar, Kashmir Himalaya, using a geographic information system
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matthew C. Gerstenberger
Nat. Hazards Earth Syst. Sci., 25, 1–12, https://doi.org/10.5194/nhess-25-1-2025, https://doi.org/10.5194/nhess-25-1-2025, 2025
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against observations spanning a few centuries at 12 cities in Romania. The full distributions of the hazard curves at the given locations were considered, and the testing was performed for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Ann E. Morey, Mark D. Shapley, Daniel G. Gavin, Alan R. Nelson, and Chris Goldfinger
Nat. Hazards Earth Syst. Sci., 24, 4523–4561, https://doi.org/10.5194/nhess-24-4523-2024, https://doi.org/10.5194/nhess-24-4523-2024, 2024
Short summary
Short summary
Disturbance events from historical sediments from a small lake in Oregon were evaluated to determine if Cascadia megathrust earthquakes are uniquely identifiable. Geochemical provenance data identify two likely Cascadia earthquakes, one from 1700 CE and the other from 1873 CE. A crustal earthquake deposit and flood deposits were also uniquely identified, suggesting that small Cascadia lakes are good recorders of megathrust earthquakes and other disturbances.
Ann E. Morey and Chris Goldfinger
Nat. Hazards Earth Syst. Sci., 24, 4563–4584, https://doi.org/10.5194/nhess-24-4563-2024, https://doi.org/10.5194/nhess-24-4563-2024, 2024
Short summary
Short summary
This study uses the characteristics from a deposit attributed to the 1700 CE Cascadia earthquake to identify other subduction-earthquake deposits in sediments from two lakes located near the California–Oregon border. Seven deposits were identified in these records, and an age–depth model suggests that these correlate in time to the largest Cascadia earthquakes preserved in the offshore record, suggesting that inland lakes can be good recorders of Cascadia earthquakes.
Niranjan Joshi, Björn Lund, and Roland Roberts
Nat. Hazards Earth Syst. Sci., 24, 4199–4223, https://doi.org/10.5194/nhess-24-4199-2024, https://doi.org/10.5194/nhess-24-4199-2024, 2024
Short summary
Short summary
Few large earthquakes and low occurrence rates make seismic hazard assessment of Sweden a challenging task. Recent expansion of the seismic network has improved the quality and quantity of the data recorded. We use these new data to estimate the Swedish seismic hazard using probabilistic methods to find that hazard was previously underestimated in the north. The north has the highest hazard in Sweden, with estimated mean peak ground acceleration of up to 0.06 g for a 475-year return period.
Zhiwen Zhu, Zihan Jiang, Federico Accornero, and Alberto Carpinteri
Nat. Hazards Earth Syst. Sci., 24, 4133–4143, https://doi.org/10.5194/nhess-24-4133-2024, https://doi.org/10.5194/nhess-24-4133-2024, 2024
Short summary
Short summary
Since April 2023, an in situ experiment in a granite tunnel in Southeast China has been revealing strong correlations between acoustic emission signals and seismic activity. Acoustic emission bursts precede seismic events by approximately 17 h, with a notable decline in the b value and natural-time variance κ1. This research provides new evidence that acoustic emission can serve as an effective earthquake precursor.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Eugenio E. Vogel, Denisse Pastén, Gonzalo Saravia, Michel Aguilera, and Antonio Posadas
Nat. Hazards Earth Syst. Sci., 24, 3895–3906, https://doi.org/10.5194/nhess-24-3895-2024, https://doi.org/10.5194/nhess-24-3895-2024, 2024
Short summary
Short summary
For the first time, an entropy analysis has been performed in Alaska, a seismic-rich region located in a subduction zone that shows non-trivial behavior: the subduction arc changes seismic activity from the eastern zone to the western zone, showing a decrease in this activity along the subduction zone. This study shows how an entropy approach can help us understand seismicity in subduction zones.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci., 24, 3755–3787, https://doi.org/10.5194/nhess-24-3755-2024, https://doi.org/10.5194/nhess-24-3755-2024, 2024
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake processes. To understand why and how recent state-of-the-art seismic hazard models for France, Germany, and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Himanshu Agrawal and John McCloskey
Nat. Hazards Earth Syst. Sci., 24, 3519–3536, https://doi.org/10.5194/nhess-24-3519-2024, https://doi.org/10.5194/nhess-24-3519-2024, 2024
Short summary
Short summary
Rapidly expanding cities in earthquake-prone regions of the Global South often lack seismic event records, hindering accurate ground motion predictions for hazard assessment. Our study demonstrates that, despite these limitations, reliable predictions can be made using simulation-based methods for small (sub)urban units undergoing rapid development. High-resolution local geological data can reveal spatial variability in ground motions, aiding effective risk mitigation.
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
Nat. Hazards Earth Syst. Sci., 24, 3401–3421, https://doi.org/10.5194/nhess-24-3401-2024, https://doi.org/10.5194/nhess-24-3401-2024, 2024
Short summary
Short summary
This study identifies a prehistoric earthquake around 4400 years ago near the city of Coyhaique (Aysén Region, Chilean Patagonia) and illustrates the potential seismic hazard in the region. We found deposits in lakes and a fjord that can be related to subaquatic and onshore landslides, all with a similar age, indicating that they were most likely caused by an earthquake. Through modeling we found that this was an earthquake of magnitude 6.3 to 7.0 on a fault near the city of Coyhaique.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Short summary
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024, https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Short summary
As part of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, funded by the European Union in collaboration with the World Bank and GFDRR, a regionally consistent probabilistic multi-hazard and multi-asset risk assessment has been developed. This paper describes the preparation of the input datasets (earthquake catalogue and active-fault database) required for the implementation of the probabilistic seismic hazard model.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Chenyang Li, Changfeng Qin, Jie Zhang, Yu Duan, and Chengquan Chi
EGUsphere, https://doi.org/10.5194/egusphere-2024-2025, https://doi.org/10.5194/egusphere-2024-2025, 2024
Short summary
Short summary
In this study, we advance the field of earthquake prediction by introducing a pre-seismic anomaly extraction method based on the structure of graph-wave network, which reveals the temporal correlation and spatial correlation of the strain observation data from different boreholes prior to the occurrence of an earthquake event.
Jia Cheng, Chong Xu, Xiwei Xu, Shimin Zhang, and Pengyu Zhu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-96, https://doi.org/10.5194/nhess-2024-96, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The Northwestern Yunnan Region (NWYR), with a complex network of active faults, presents significant seismic hazards such as multi-segment ruptures and landslides. This article introduces a new seismic hazard model, which integrates fault slip parameters to assess the risks associated with multi-segment ruptures. The results reveal the intricate relationship between these ruptures and the regional small block rotation induced by regional low-crustal flow and gravitational collapse.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024, https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary
Short summary
The ground movement and rupture produced by the 2020 Masbate earthquake in the Philippines were studied using satellite data. We highlight the importance of the complementary use of optical and radar datasets. The slip measurements and field observations helped improve our understanding of the seismotectonics of the region, which is critical for seismic hazard studies.
Qing Wu, Guijuan Lai, Jian Wu, and Jinmeng Bi
Nat. Hazards Earth Syst. Sci., 24, 1017–1033, https://doi.org/10.5194/nhess-24-1017-2024, https://doi.org/10.5194/nhess-24-1017-2024, 2024
Short summary
Short summary
Aftershocks are typically ignored for traditional probabilistic seismic hazard analyses, which underestimate the seismic hazard to some extent and may cause potential risks. A probabilistic seismic hazard analysis based on the Monte Carlo method was combined with the Omi–Reasenberg–Jones model to systematically study how aftershocks impact seismic hazard analyses. The influence of aftershocks on probabilistic seismic hazard analysis can exceed 50 %.
Lixin Wu, Xiao Wang, Yuan Qi, Jingchen Lu, and Wenfei Mao
Nat. Hazards Earth Syst. Sci., 24, 773–789, https://doi.org/10.5194/nhess-24-773-2024, https://doi.org/10.5194/nhess-24-773-2024, 2024
Short summary
Short summary
The atmospheric electric field (AEF) is the bridge connecting the surface charges and atmospheric particle changes before an earthquake, which is essential for the study of the coupling process between the coversphere and atmosphere caused by earthquakes. This study discovers AEF anomalies before the Luding earthquake in 2022 and clarifies the relationship between the surface changes and atmosphere changes possibly caused by the earthquake.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Rimali Mitra, Hajime Naruse, and Tomoya Abe
Nat. Hazards Earth Syst. Sci., 24, 429–444, https://doi.org/10.5194/nhess-24-429-2024, https://doi.org/10.5194/nhess-24-429-2024, 2024
Short summary
Short summary
This study estimates the behavior of the 2011 Tohoku-oki tsunami from its deposit distributed in the Joban coastal area. In this study, the flow characteristics of the tsunami were reconstructed using the DNN (deep neural network) inverse model, suggesting that the tsunami inundation occurred in the very high-velocity condition.
Sedat İnan, Hasan Çetin, and Nurettin Yakupoğlu
Nat. Hazards Earth Syst. Sci., 24, 397–409, https://doi.org/10.5194/nhess-24-397-2024, https://doi.org/10.5194/nhess-24-397-2024, 2024
Short summary
Short summary
Two devastating earthquakes, Mw 7.7 and Mw 7.6, occurred in Türkiye on 6 February 2023. We obtained commercially bottled waters from two springs, 100 km from the epicenter of Mw 7.7. Samples of the first spring emanating from fault zone in hard rocks showed positive anomalies in major ions lasting for 6 months before the earthquake. Samples from the second spring accumulated in an alluvium deposit showed no anomalies. We show that pre-earthquake anomalies are geologically site-dependent.
Olga-Joan Ktenidou, Antonia Papageorgiou, Erion-Vasilis Pikoulis, Spyros Liakopoulos, Fevronia Gkika, Ziya Cekinmez, Panagiotis Savvaidis, Kalliopi Fragouli, and Christos P. Evangelidis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-233, https://doi.org/10.5194/nhess-2023-233, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Greek seismic data are valuable in European and even global databases, due to its high seismicity and numerous seismic stations. Seismic data coming from stations that lie on rock (i.e., not soil) sits are particularly valuable in seismology to define reference ground conditions and ground motions. However, little knowledge exists yet on how rock stations in Greece behave. This is the first time the network of the National Observatory is studied systematically to reveal reference stations.
Sylvain Michel, Clara Duverger, Laurent Bollinger, Jorge Jara, and Romain Jolivet
Nat. Hazards Earth Syst. Sci., 24, 163–177, https://doi.org/10.5194/nhess-24-163-2024, https://doi.org/10.5194/nhess-24-163-2024, 2024
Short summary
Short summary
The Upper Rhine Graben, located in France and Germany, is bordered by north–south-trending faults, posing a potential threat to dense population and infrastructures on the Alsace plain. We build upon previous seismic hazard studies of the graben by exploring uncertainties in greater detail, revisiting a number of assumptions. There is a 99 % probability that a maximum-magnitude earthquake would be below 7.3 if assuming a purely dip-slip mechanism or below 7.6 if assuming a strike-slip one.
Edlira Xhafaj, Chung-Han Chan, and Kuo-Fong Ma
Nat. Hazards Earth Syst. Sci., 24, 109–119, https://doi.org/10.5194/nhess-24-109-2024, https://doi.org/10.5194/nhess-24-109-2024, 2024
Short summary
Short summary
Our study introduces new earthquake forecasting models for Albania, aiming to map out future seismic hazards. By analysing earthquakes from 1960 to 2006, we have developed models that predict where activity is most likely to occur, highlighting the western coast and southern regions as high-hazard zones. Our validation process confirms these models are effective tools for anticipating seismic events, offering valuable insights for earthquake preparedness and hazard assessment efforts.
Marta Han, Leila Mizrahi, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3153, https://doi.org/10.5194/egusphere-2023-3153, 2024
Short summary
Short summary
Relying on recent accomplishments in collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a seven-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, Igor Gómez, Alireza Kharazian, Juan Luis Soler-Llorens, José Antonio Huesca-Tortosa, Arianna Guardiola-Villora, and Gonzalo Ortuño-Sáez
EGUsphere, https://doi.org/10.5194/egusphere-2023-2818, https://doi.org/10.5194/egusphere-2023-2818, 2024
Short summary
Short summary
This work presents a comparison between different methods of computing seismic activity rate in the time-dependent annual probability of exceedance computation for a given earthquake in two areas: Italy (high seismicity) and Spain (moderate seismicity). Important changes in the time-dependent annual exceedance probability are observed in Italy before L’Aquila earthquake, which can be used in Operational Earthquake Forecasting. These changes are not so evident in Spain for the chosen events.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Simone Francesco Fornasari, Deniz Ertuncay, and Giovanni Costa
Nat. Hazards Earth Syst. Sci., 23, 3219–3234, https://doi.org/10.5194/nhess-23-3219-2023, https://doi.org/10.5194/nhess-23-3219-2023, 2023
Short summary
Short summary
We analysed the background seismic noise for the Italian strong motion network by developing the Italian accelerometric low- and high-noise models. Spatial and temporal variations of the noise levels have been analysed. Several stations located near urban areas are affected by human activities, with high noise levels in the low periods. Our results provide an overview of the background noise of the strong motion network and can be used as a station selection criterion for future research.
Subash Ghimire, Philippe Guéguen, Adrien Pothon, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 3199–3218, https://doi.org/10.5194/nhess-23-3199-2023, https://doi.org/10.5194/nhess-23-3199-2023, 2023
Short summary
Short summary
This study explores the efficacy of several machine learning models for damage characterization, trained and tested on the Database of Observed Damage (DaDO) for Italian earthquakes. Reasonable damage prediction effectiveness (68 % accuracy) is observed, particularly when considering basic structural features and grouping the damage according to the traffic-light-based system used during the post-disaster period (green, yellow, and red), showing higher relevancy for rapid damage prediction.
Ekbal Hussain, Endra Gunawan, Nuraini Rahma Hanifa, and Qori'atu Zahro
Nat. Hazards Earth Syst. Sci., 23, 3185–3197, https://doi.org/10.5194/nhess-23-3185-2023, https://doi.org/10.5194/nhess-23-3185-2023, 2023
Short summary
Short summary
The earthquake potential of the Lembang Fault, located near the city of Bandung in West Java, Indonesia, is poorly understood. Bandung has a population of over 8 million people. We used satellite data to estimate the energy storage on the fault and calculate the likely size of potential future earthquakes. We use simulations to show that 1.9–2.7 million people would be exposed to high levels of ground shaking in the event of a major earthquake on the fault.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karayev, Paola Ceresa, Marco Santulin, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-132, https://doi.org/10.5194/nhess-2023-132, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
A regionally consistent probabilistic risk assessment for multiple hazards and assets was recently developed as part of the "Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia" (SFRARR) program, promoted by the European Union in collaboration with the World Bank and GFDRR. This paper describes the preparation of the source model and presents the main results of the probabilistic earthquake model for the Central Asian countries.
Huaiqun Zhao, Wenkai Chen, Can Zhang, and Dengjie Kang
Nat. Hazards Earth Syst. Sci., 23, 3031–3050, https://doi.org/10.5194/nhess-23-3031-2023, https://doi.org/10.5194/nhess-23-3031-2023, 2023
Short summary
Short summary
Early emergency response requires improving the utilization value of the data available in the early post-earthquake period. We proposed a method for assessing seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program. The seismic intensity map evaluated by the method can reflect the range of the hardest-hit areas and the spatial distribution of the possible property damage and casualties caused by the earthquake.
Asim M. Khawaja, Behnam Maleki Asayesh, Sebastian Hainzl, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 2683–2696, https://doi.org/10.5194/nhess-23-2683-2023, https://doi.org/10.5194/nhess-23-2683-2023, 2023
Short summary
Short summary
Testing of earthquake forecasts is important for model verification. Forecasts are usually spatially discretized with many equal-sized grid cells, but often few earthquakes are available for evaluation, leading to meaningless tests. Here, we propose solutions to improve the testability of earthquake forecasts and give a minimum ratio between the number of earthquakes and spatial cells for significant tests. We show applications of the proposed technique for synthetic and real case studies.
Lukas Bodenmann, Jack W. Baker, and Božidar Stojadinović
Nat. Hazards Earth Syst. Sci., 23, 2387–2402, https://doi.org/10.5194/nhess-23-2387-2023, https://doi.org/10.5194/nhess-23-2387-2023, 2023
Short summary
Short summary
Understanding spatial patterns in earthquake-induced ground motions is key for assessing the seismic risk of distributed infrastructure systems. To study such patterns, we propose a novel model that accounts for spatial proximity, as well as site and path effects, and estimate its parameters from past earthquake data by explicitly quantifying the inherent uncertainties.
José A. Álvarez-Gómez, Paula Herrero-Barbero, and José J. Martínez-Díaz
Nat. Hazards Earth Syst. Sci., 23, 2031–2052, https://doi.org/10.5194/nhess-23-2031-2023, https://doi.org/10.5194/nhess-23-2031-2023, 2023
Short summary
Short summary
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being one of the faster faults in the eastern Betics. The dimensions and location of the Carboneras fault imply a high seismic and tsunami threat. In this work, we present tsunami simulations from sources generated with physics-based earthquake simulators. We show that the Carboneras fault has the capacity to generate locally damaging tsunamis with inter-event times between 2000 and 6000 years.
Antonio Posadas, Denisse Pasten, Eugenio E. Vogel, and Gonzalo Saravia
Nat. Hazards Earth Syst. Sci., 23, 1911–1920, https://doi.org/10.5194/nhess-23-1911-2023, https://doi.org/10.5194/nhess-23-1911-2023, 2023
Short summary
Short summary
In this paper we understand an earthquake from a thermodynamics point of view as an irreversible transition; then it must suppose an increase in entropy. We use > 100 000 earthquakes in northern Chile to test the theory that Shannon entropy, H, is an indicator of the equilibrium state. Using variation in H, we were able to detect major earthquakes and their foreshocks and aftershocks, including the 2007 Mw 7.8 Tocopilla earthquake and 2014 Mw 8.1 Iquique earthquake.
Dirsa Feliciano, Orlando Arroyo, Tamara Cabrera, Diana Contreras, Jairo Andrés Valcárcel Torres, and Juan Camilo Gómez Zapata
Nat. Hazards Earth Syst. Sci., 23, 1863–1890, https://doi.org/10.5194/nhess-23-1863-2023, https://doi.org/10.5194/nhess-23-1863-2023, 2023
Short summary
Short summary
This article presents the number of damaged buildings and estimates the economic losses from a set of earthquakes in Sabana Centro, a region of 11 towns in Colombia.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 23, 1805–1816, https://doi.org/10.5194/nhess-23-1805-2023, https://doi.org/10.5194/nhess-23-1805-2023, 2023
Short summary
Short summary
The earthquake effects undocumented at 228 Italian localities were calculated through a probabilistic approach starting from the values obtained through the use of an intensity prediction equation, taking into account the intensity data documented at close localities for a given earthquake. The results showed some geographical dependencies and correlations with the intensity levels investigated.
Yi-Ying Wen, Chien-Chih Chen, Strong Wen, and Wei-Tsen Lu
Nat. Hazards Earth Syst. Sci., 23, 1835–1846, https://doi.org/10.5194/nhess-23-1835-2023, https://doi.org/10.5194/nhess-23-1835-2023, 2023
Short summary
Short summary
Knowing the spatiotemporal seismicity patterns prior to impending large earthquakes might help earthquake hazard assessment. Several recent moderate earthquakes occurred in the various regions of Taiwan, which help to further investigate the spatiotemporal seismic pattern related to the regional tectonic stress. We should pay attention when a seismicity decrease of 2.5 < M < 4.5 events around the southern Central Range or an accelerating seismicity of 3 < M < 5 events appears in central Taiwan.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Midhat Fayaz, Shakil A. Romshoo, Irfan Rashid, and Rakesh Chandra
Nat. Hazards Earth Syst. Sci., 23, 1593–1611, https://doi.org/10.5194/nhess-23-1593-2023, https://doi.org/10.5194/nhess-23-1593-2023, 2023
Short summary
Short summary
Earthquakes cause immense loss of lives and damage to properties, particularly in major urban centres. The city of Srinagar, which houses around 1.5 million people, is susceptible to high seismic hazards due to its peculiar geological setting, urban setting, demographic profile, and tectonic setting. Keeping in view all of these factors, the present study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the northwestern Himalayas, India.
Cited articles
Acocella, V. and Funiciello, R.: Transverse systems along the
extensional Tyrrhenian margin of central Italy and their influence on
volcanism, Tectonics, 25, TC2003, https://doi.org/10.1029/2005tc001845, 2006.
Alfonsi, L., Funiciello, R., Mattei, M., Girotti, O., Maiorani, A., Preite
Martinez, M., Trudu, C., and Turi, B.: Structural and geochemical features of
the Sabina strike-slip fault (Central Apennines), B.
Soc. Geol. Ital., 110, 217–230, 1991.
Amato, A. and Chiarabba, C.: Earthquake occurrence and crustal structure,
in: The Volcano of the Alban Hills, edited by: Trigila, R., Univ. degli Studi
di Roma “La Sapienza”, Rome, La Sapienza University of Rome, Italy, 193–211, 1995.
Amato, A., Alessandrini, B., Cimini, G. B., Frepoli, A., and Selvaggi, G.: Active
and remnant subducted slabs beneath Italy: evidence from seismic tomography
and seismicity, Ann. Geofis., 36, 201–214, 1993.
Bahrami, S.: Analyzing the drainage system anomaly of zagros basins:
Implications for active tectonics, Tectonophysics, 608, 914–928, 2013.
Barberi, F., Buonasorte, G., Cioni, R., Fiordelisi, A., Foresi, L.,
Iaccarino, S., Laurenzi, M. A., Sbrana, A., Vernia, L., and Villa, I. M.:
Plio-Pleistocene geological evolution of the geothermal area of Tuscany and
Latium, Mem. Descr. Carta Geol. Ital., 49, 77–134, 1994.
Basili, A., Cantore, L., Cocco, M., Frepoli, A., Margheriti, L., Nostro, C.,
and Selvaggi, G.: The June 12, 1995 microearthquake sequence in the city of
Rome, Ann. Geofis., 39, 1167–1175, 1996.
Boulton, S. J., Stokes, M., and Mather, A. E.: Transient fluvial incision as an
indicator of active faulting and Plio-Quaternary uplift of the Moroccan High
Atlas, Tectonophysics, 633, 16–33, https://doi.org/10.1016/j.tecto.2014.06.032, 2014.
Calzolari, G., Della Seta, M., Rossetti, F., Nozaem, R., Vignaroli, G.,
Cosentino, D., and Faccenna, F.: Geomorphic signal of active faulting at the
northern edge of Lut Block: Insights on the kinematic scenario of Central
Iran, Tectonics, 35, 76–102, https://doi.org/10.1002/2015TC003869, 2016.
Caputo, C., Ciccacci, S., De Rita, D., Fredi, P., Lupia Palmieri, E., and
Salvini, F.: Drainage pattern and tectonics in some volcanic areas of Latium
(Italy), Geologica Romana, 29, 1–13, 1993.
Chatelain, J. L.: Etude fine de la sismicité en zone de collision
continentale à l'aide d'un réseau de stations portables: la region
Hindu-Kush-Pamir, Thèse de 3 éme cycle, Univ. Paul Sabatier,
Toulouse, 1978.
Ciccacci, S., Fredi, P., Lupia Palmieri, E., and Salvini, F.: An approach to the
quantitative analysis of the relations between drainage pattern and fracture
trend, in: International Geomorphology 1986, edited by: Gardiner, V.,
Proceedings of the First International Conference on Geomorphology, Part II,
John Wiley and Sons Ltd, Chichester, 49–68, 1987.
Del Monte, M., D'Orefice, M., Luberti, G. M., Marini, R., Pica, A., and Vergari,
F.: Geomorphological classification of urban landscapes: the case study of
Rome (Italy), J. Maps, 12, 178–189,
https://doi.org/10.1080/17445647.2016.1187977, 2016.
De Luca, G., Cattaneo, M., Monachesi, G., and Amato, A.: Seismicity in central
and northern Apennines integrating the Italian national and regional
networks, Tectonophysics, 476, 121–135, https://doi.org/10.1016/j.tecto.2008.11.032,
2009.
Faccenna, C., Funiciello, R., and Mattei, M.: Late Pleistocene N–S shear zones
along the Latium Tyrrhenian margin: structural characters and volcanological
implications, Bollettino di Geofisica Teorica Applicata, 36, 507–522, 1994a.
Faccenna, C., Funiciello, R., Montone, P., Parotto, M., and Voltaggio, M.: An
example of late Pleistocene strike-slip tectonics: the Acque Albule basin
(Tivoli, Latium), Mem. Descr. d. Carta Geol. d'It., 49, 37–50, 1994b.
Faccenna, C., Davy, P., Brun, J. P., Funiciello, R., Giardini, D., Mattei,
M., and Nalpas, T.: The dynamics of back-arc extension: an experimental approach
to the opening ofthe Tyrrhenian Sea, Geophys. J. Int., 126,
781–795, 1996.
Faccenna, C., Soligo, M., Billi, A., De Filippis, L., Funiciello, R.,
Rossetti, C., and Tucciemei, P.: Late Pleistocene depositional cycles of the
Lapis Tiburtinus travertine (Tivoli, Central Italy): Possible influence of
climate and fault activity, Global Planet. Change, 63, 299–308,
https://doi.org/10.1016/j.gloplacha.2008.06.006, 2008.
Forte, A. M. and Whipple, K. X.: Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox, Earth Surf. Dynam., 7, 87–95, https://doi.org/10.5194/esurf-7-87-2019, 2019.
Frepoli, A. and Amato, A.: Contemporaneous extension and compression in the
northern Apennines from earthquake fault-plane solutions, Geophys. J. Int.,
129, 368–388, 1997.
Frepoli, A., Marra, F., Maggi, C., Marchetti, A., Nardi, A., Pagliuca, N. M., and Pirro, M.:
Seismicity, seismogenic structures and crustal stress field in the greater
area of Rome (Central Italy), J. Geophys. Res., 115, B12303,
https://doi.org/10.1029/2009JB006322, 2010.
Frepoli, A., Cimini, G.B., De Gori, P., De Luca, G., Marchetti, A., Monna,
S., Montuori, C., Pagliuca, N.: Seismic sequences and swarms in the
Latium-Abruzzo-Molise Apennines (central Italy): new observations and
analysis from a dense monitoring of the recent activity, Tectonophysics,
712–713, 312–329, https://doi.org/10.1016/j.tecto.2017.05.026, 2017.
Galli, P. A. C. and Molin, D.: Beyond the damage threshold: the historic
earthquakes of Rome, B. Earthquake Eng., 12, 1277–1306,
https://doi.org/10.1007/s10518-012-9409-0, 2014.
Gaeta, M., Freda, C., Marra, F., Arienzo, I., Gozzi, F., Jicha, B., Di
and Rocco, T.: Paleozoic metasomatism at the origin of Mediterranean
ultrapotassic magmas: constraints from time-dependent geochemistry of Colli
Albani volcanic products (Central Italy), Lithos, 244, 151–164, 2016.
Gioia, D., Schiattarella, M., and Giano, S.: Right-Angle Pattern of Minor
Fluvial Networks from the Ionian Terraced Belt, Southern Italy: Passive
Structural Control or Foreland Bending?, Geosciences, 8, 331, https://doi.org/10.3390/geosciences8090331, 2018.
Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G.,
Sgattoni, G., and Valensise, G.: CFTI5Med, Catalogo dei Forti Terremoti in
Italia (461 a.C.–1997) e nell'area Mediterranea (760 a.C.–1500), Istituto
Nazionale di Geofisica e Vulcanologia (INGV),
http://storing.ingv.it/cfti/cfti5 (last access: 23 July 2022), 2018.
Holland, J. H.: Adaptation in Natural and artificial systems, University of
Michigan Press, Ann Arbor, 1975.
Horvath, F. and Berckhemer, H.: Mediterranean back arc basins, in: Alpine
Mediterranean Geodynamics, 145–175, edited by: Berckhemer, H. and Hsu, K. J.,
Geodyn. Ser., 7, American Geophys. Un., Whashington, D.C., ISBN 978-1-118-67024-8, 1982.
Jones, R. R. and Tanner, P. W. G.: Strain partitioning in transpression zones,
J. Struct. Geol., 17, 793–802, 1995.
Kent, E., Boulton, S. J., Whittaker, A. C., Stewart, I. S., Cihat
and Alçiçek, M.: Normal fault growth and linkage in the Gediz
(Alaşehir) Graben, Western Turkey, revealed by transient river
long-profiles and slope-break knickpoints, Earth Surf. Proc.
Land., 42, 836–352, https://doi.org/10.1002/esp.4049, 2017.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75,
https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Lahr, J. C.: HYPOELLIPSE/Version 2.0: a computer program for determining
local earthquake hypocentral parameters, magnitude and first-motion pattern,
U.S. Geol. Surv. Open-file Report, 95, 89–116, https://doi.org/10.3133/ofr89116, 1989.
Locardi, E., Lombardi, G., Funiciello, R., Parotto, M.: The Main volcanic
groups of Latium (Italy): relations between structural evolution and
petrogenesis, Geologica Romana, 15, 279–300, 1977.
Lucente, F. P. and Speranza, F.: Belt bending driven by lateral bending of
subducting lithospheric slab: geophysical evidences from the northern
Apennines (Italy), Tectonophysics, 337, 53–64, 2001.
Macka, Z.: Structural control on drainage network orientation an example from
the Loucka drainage basin, SE margin of the Bohemian Massif (S Moravia,
Czech Rep.), Landform Analysis, 4, 109–117, 2003.
Malinverno, A. and Ryan, W. B. F.: Extension in the Tyrrhenian sea and
shortening in the Apennines as results of arc migration driven by sinking of
the lithosphere, Tectonics, 5, 227–245, 1986.
Mariucci, M. T., Amato, A., and Montone, P.: Recent tectonic evolution and
present stress in the Northern Apennines (Italy), Tectonics, 18, 108–118,
1999.
Marra, F.: Low-magnitude earthquakes in Rome: structural interpretation and
implications for local stress-field, Geophys. J. Int., 138,
231–243, 1999.
Marra, F.: Strike-slip faulting and block rotation: A possible triggering
mechanism for lava flows in the Alban Hills?, J. Struct. Geol., 23,
129–141, 2001.
Marra, F., Taddeucci, J., Freda, C., Marzocchi, W., and Scarlato, P.: Recurrence
of volcanic activity along the Roman Comagmatic Province (Tyrrhenian margin
of Italy) and its tectonic significance, Tectonics, 23, TC4013,
https://doi.org/10.1029/2003TC001600, 2004a.
Marra, F., Montone, P., Pirro, M., and Boschi, E.: Evidence of Active Tectonics
on a Roman Aqueduct System (II–III Century A.D.) near Rome, Italy, J.
Struct. Geol., 26, 679–690, 2004b.
Marra F., Karner, D. B., Freda, C., Gaeta, M., and Renne, P. R.: Large mafic
eruptions at the Alban Hills Volcanic District (Central Italy):
chronostratigraphy, petrography and eruptive behavior, J. Volcanol. Geoth. Res., 179, 217–232,
https://doi.org/10.1016/j.jvolgeores.2008.11.009, 2009.
Marra, F., Sottili, G., Gaeta, M., Giaccio, B., Jicha, B., Masotta M.,
and Palladino, D.: Major explosive activity in the Sabatini Volcanic District
(central Italy) over the 800–390 ka interval: geochronological – geochemical
overview and tephrostratigraphic implications, Quaternary Sci. Rev.,
94, 74–101, https://doi.org/10.1016/j.quascirev.2014.04.010, 2014.
Marra, F., Florindo, F., Anzidei, M., and Sepe, V.: Paleo-surfaces of
glacio-eustatically forced aggradational successions in the coastal area of
Rome: assessing interplay between tectonics and sea-level during the last
ten interglacials, Quaternary Sci. Rev., 148, 85–100,
https://doi.org/10.1016/j.quascirev.2016.07.003, 2016.
Molin, D. and Rossi, A.: Effetti prodotti in Roma dai terremoti del 1703, in: Settecento abruzzese. Eventi sismici, mutamenti economico-sociali e ricerca storiografica, edited by: Colapietra, R., Marinangeli, G., and Muzzi, P., 69–106, ISBN 8888676414, 2004.
Montone, P. and Mariucci, M. T.: The new release of the Italian contemporary
stress map, Geophys. J. Int., 205, 1525–1531,
https://doi.org/10.1093/gji/ggw100, 2016.
Montone, P., Amato, A., Chiarabba, C., Buonasorte, G., and Fiordelisi, A.: Evidence of
active extension in Quaternary volcanoes of Central Italy from breakout
analysis and seismicity, Geophys. Res. Lett., 22, 1909–1912, 1995.
Patacca, E. and Scandone, P.: Post-Tortonian mountain building in the
Apennines. The role of the passive sinking of a relic lithospheric slab, in:
The Lithosphere in Italy, edited by: Boriani, A., Bonafede, M., Piccardo, G. B., and Vai, G. B., Advances in Earth Science Research, It. Nat. Comm. Int. Lith. Progr., Mid-term Conf., Rome, 5–6 May 1987, Atti Conv. Lincei, 80, 157–176, 1989.
Parotto, M. and Praturlon, A.: Geological summary of the Central Appenines,
in: Structural Model of Italy, edited by: Ogniben, L., Parotto, M., and Praturlon,
A., Quad. Ric. Scient., 90, 257–311, 1975.
Pavano, F., Pazzaglia, F. J., and Catalano, S.: Knickpoints as geomorphic markers
of active tectonics: A case study from northeastern Sicily (southern Italy),
Lithosphere, 8, 633–648, https://doi.org/10.1130/L577.1, 2016.
Peccerillo, A.: Cenozoic Volcanism in the Tyrrhenian Sea Region, S. IAVCEI,
Barcelona, Springer, ISBN 978-3-319-42491-0, 2017.
Reasenberg, P. and Oppenheimer, D.: FPFIT, FPPLOT and FPPAGE: FORTRAN
computer programs for calculating and displaying earthquake fault plane
solutions, USGS Open-file Report, 85–739, https://doi.org/10.3133/ofr85739 1985.
Reutter, K. J., Giese, P., and Closs, H.: Lithospheric split in the descending
plate: observation from the Northern apennines, Tectonophysics, 64, T1–T9,
1980.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The Italian
earthquake catalogue CPTI15, B. Earthqu. Eng., 18,
2953–2984, https://doi.org/10.1007/s10518-020-00818-y,
2020.
Sambridge, M. and Gallagher, K.: Earthquake hypocenter location using genetic
algorithms, B. Seismol. Soc. Am., 83, 1467–1491, 1993.
Selvaggi, G., and Amato, A.: Subcrustal earthquakes in the Northern Apennines
(Italy): evidence for a still active subduction?, Geophys. Res. Lett., 19,
2127–2130, 1992.
Serri, G.: Neogene-Quaternary magmatic activity and its geodynamic
implications in the Central Mediterranean region, Ann. Geofis., 3,
681–703, 1997.
Serri, G., Innocenti, F., and Manetti, P.: Geochemical and Petrological
evidence of the subduction of delaminated Adriatic continental lithosphere
in the genesis of the Neogene-Quaternary magmatism of Central Italy,
Tectonophysics, 223, 117–147, 1993.
Sylvester, A. G.: Strike-slip faults, GSA Bulletin, 100, 1666–1703,
https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2, 1988.
Tapponnier, P.: Evolution tectonique du systeme alpin en Mediterranee; poinconnement et ecrasement rigide-plastique, B. Soc. Géol. Fr., 3, 437–460, https://doi.org/10.2113/gssgfbull.S7-XIX.3.437, 1977.
Tertulliani, A. and Riguzzi, F.: Earthquakes in Rome during the past one
hundred years, Ann. Geofis., 38, 591–606, 1995.
Tertulliani, A., Graziani, L., and Esposito, A.: How historical seismology can benefit
from bureaucracy: the case of the “Lettere Patenti” of the city of Rome in
1703, Seismol. Res. Lett., 91, 2511–2519,
https://doi.org/10.1785/0220200046, 2020.
Trasatti, E., Marra, F., Polcari, M., Etiope, G., Ciotoli, G., Darrah, T.,
Tedesco, D., Florindo, F., and Ventura, G.: Coeval uplift and subsidence reveal
magma recharging near Rome, Geochem. Geophy. Geosy., 19 1484–1498,
https://doi.org/10.1029/2017GC007303, 2018.
Tveite, H.: The QGIS Line Direction Histogram Plugin,
http://plugins.qgis.org/plugins/LineDirectionHistogram/ (last access: 23 July 2022), 2015.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Sol.
Ea., 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise,
and pitfalls, Special Paper of the Geological Society of America, 55–74, https://doi.org/10.1130/2006.2398(04),
2006.
Short summary
Through the analysis of the morphostructural setting in which the seismicity of Rome is framed, we explain why the city should not expect to suffer damage from a big earthquake.
Through the analysis of the morphostructural setting in which the seismicity of Rome is framed,...
Altmetrics
Final-revised paper
Preprint