Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oceanic response to the consecutive Hurricanes Dorian and Humberto (2019) in the Sargasso Sea
Laboratory of Planetary Science, Department of Physics, Universidad Central “Marta Abreu” de Las Villas, 54830, Santa Clara, Villa Clara, Cuba
KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Jan M. Baetens
KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Rolando Cardenas
Laboratory of Planetary Science, Department of Physics, Universidad Central “Marta Abreu” de Las Villas, 54830, Santa Clara, Villa Clara, Cuba
Bernard De Baets
KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Related authors
No articles found.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Jorn Van de Velde, Bernard De Baets, Matthias Demuzere, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-83, https://doi.org/10.5194/hess-2020-83, 2020
Revised manuscript not accepted
Short summary
Short summary
Though climate models have different types of biases in comparison to the observations, most research is focused on adjusting the intensity. Yet, variables like precipitation are also biased in the occurrence: there are too many days with rainfall. We compared four methods for adjusting the occurrence, with the goal of improving flood representation. From this comparison, we concluded that more advanced methods do not necessarily add value, especially in multivariate settings.
Arthur Depicker, Bernard De Baets, and Jan Marcel Baetens
Nat. Hazards Earth Syst. Sci., 20, 363–376, https://doi.org/10.5194/nhess-20-363-2020, https://doi.org/10.5194/nhess-20-363-2020, 2020
Short summary
Short summary
In recent years, several valuable nature reserves in Belgium have been severely damaged by wildfires. In order to optimize risk management and prepare for a possibly increasing number of such events, the first wildfire ignition probability map is developed for Belgium, based on data that were obtained from the government and newspaper articles. We find that most ignitions occur in the provinces of Limburg and Antwerp and that most causes are of anthropogenic nature (such as military exercises).
Minh Tu Pham, Hilde Vernieuwe, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 22, 1263–1283, https://doi.org/10.5194/hess-22-1263-2018, https://doi.org/10.5194/hess-22-1263-2018, 2018
Short summary
Short summary
In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Still, the developed model has great potential for hydrological impact analysis.
Related subject area
Sea, Ocean and Coastal Hazards
Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Regional modelling of extreme sea levels induced by hurricanes
New insights into combined surfzone, embayment, and estuarine bathing hazards
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Untangling the Waves: Decomposing Extreme Sea Levels in a non-tidal basin, the Baltic Sea
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Using Random Forests to Predict Extreme Sea-Levels at the Baltic Coast at Weekly Timescales
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Tsunami detection methods for Ocean-Bottom Pressure Gauges
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Proposal for a new meteotsunami intensity index
Probabilistic Tsunami Hazard Analysis of Batukaras Village as a Tourism Village in Indonesia
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025, https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System (ECFAS) project, presents an approach used to estimate direct impacts of coastal flood on population, buildings, and roads along European coasts. The findings demonstrate that the ECFAS impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024, https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Short summary
Shorelines retreat or advance in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, lidar and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-198, https://doi.org/10.5194/nhess-2024-198, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-196, https://doi.org/10.5194/nhess-2024-196, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantifications compared to the state-of-the-art. This win-win allows for increasing the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2222, https://doi.org/10.5194/egusphere-2024-2222, 2024
Short summary
Short summary
We designed a tool to predict the storm surges at the Baltic Sea coast with a satisfactorily predictability (70 % correct predictions) using lead times of a few days. The proportion of false warnings is typically as low as 10 to 20 %. We could identify the relevant predictor regions and their patterns – such as low pressure systems and strong winds. Due to its short computing time the method can be used as a pre-warning system triggering the application of more sophisticated algorithms.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-113, https://doi.org/10.5194/nhess-2024-113, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
To issue precise and timely tsunami alerts, detecting the propagating tsunami is fundamental. The most used instruments are pressure sensors positioned at the ocean bottom, called Ocean-Bottom Pressure Gauges (OBPGs). In this work, we study four different techniques that allow to recognize a tsunami as soon as it is recorded by an OBPG and a methodology to calibrate them. The techniques are compared in terms of their ability to detect and characterize the tsunami wave in real time.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario Martina
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-72, https://doi.org/10.5194/nhess-2024-72, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
By combining limited tsunami simulations with a machine learning, we developed a fast and efficient framework to predict tsunami impacts such as wave heights and inundation depths along different coastal regions. Testing our model with historical tsunami source scenarios helped assess its reliability and broad applicability. This work enables more efficient and comprehensive tsunami hazard modelling workflow, essential for tsunami risk evaluations and enhancing coastal disaster preparedness.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2860, https://doi.org/10.5194/egusphere-2023-2860, 2024
Short summary
Short summary
Batukaras Village is a village on the southern coast of Java Island which is prone to tsunami hazards. To assess the potential tsunami hazard in the area, PTHA method was employed. It resulted in tsunami heights of 0.84 m, 1.63 m, 2.97 m, and 5.7 m for each earthquake return period of 250 years, 500 years, 1000 years, and 2500 years, respectively. The largest contribution of earthquake sources comes from the West Java-Central Java megathrust segment.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Cited articles
Augustyn, A., Bauer, P., Duignan, B., Eldridge, A., Gregersen, E., McKenna, A., Petruzzello, M., Rafferty, J., Ray, M., Rogers, K., Tikkanen, A., Wallenfeldt, J., Zeidan, A., and Zelazko, A.: Sargasso Sea. Encyclopaedia Britannica, https://www.britannica.com/place/Sargasso-Sea (last access: April 2020), 2013. a
Avila-Alonso, D., Baetens, J. M., Cardenas, R., and De Baets, B.: The impact of hurricanes on the oceanographic conditions in the Exclusive Economic Zone of Cuba, Remote Sens. Environ., p. 111339, https://doi.org/10.1016/j.rse.2019.111339, 2019. a, b, c
Avila-Alonso, D., Baetens, J. M., Cardenas, R., and De Baets, B.: Oceanic response to Hurricane Irma (2017) in the Exclusive Economic Zone of Cuba and the eastern Gulf of Mexico, Ocean Dyn., 70, 603–619, https://doi.org/10.1007/s10236-020-01350-y, 2020. a, b, c
Ayala, D. J., Munk, P., Lundgreen, R. B., Traving, S. J., Jaspers, C., Jørgensen, T. S., Hansen, L. H., and Riemann, L.: Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea, Sci. Rep., 8, 6156, https://doi.org/10.1038/s41598-018-24388-x, 2018. a
Bacmeister, J. T., Reed, K. A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J. E., Rosenbloom, N., and Levy, M.: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model, Clim. Change, 146, 547–560, 2018. a
Baranowski, D. B., Flatau, P. J., Chen, S., and Black, P. G.: Upper ocean response to the passage of two sequential typhoons, Ocean Sci., 10, 559–570, https://doi.org/10.5194/os-10-559-2014, 2014. a, b, c, d
Beven, J.: Tropical cyclone preliminary report Hurricane Dennis, 24 August–7 September, 1999, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2000. a
Beven, J. and Cobb, H.: Tropical cyclone report Hurricane Ophelia, 6–17 September 2005, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2006. a
Bhatia, K., Vecchi, G., Murakami, H., Underwood, S., and Kossin, J.: Projected response of tropical cyclone intensity and intensification in a global climate model, J. Clim., 31, 8281–8303, 2018. a
Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., and Whitlock, C. E.: Recent increases in tropical cyclone intensification rates, Nat. Commun., 10, 635, https://doi.org/10.1038/s41467-019-08471-z, 2019. a
Billheimer, S. and Talley, L. D.: Annual cycle and destruction of Eighteen Degree Water, J. Geophys. Res.-Oceans, 121, 6604–6617, 2016. a
Blake, E. S.: Tropical cyclone report Tropical Storm Erin, 26–29 August 2019, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2019. a
Bonhommeau, S., Chassot, E., Planque, B., Rivot, E., Knap, A. H., and Le Pape, O.: Impact of climate on eel populations of the Northern Hemisphere, Mar. Ecol. Prog. Ser., 373, 71–80, 2008a. a
Bonhommeau, S., Chassot, E., and Rivot, E.: Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea, Fish. Oceanogr., 17, 32–44, 2008b. a
Brown, D. P.: Tropical cyclone report Hurricane Jerry, 17–24 September, 2019, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2019. a
Bulgin, C. E., Merchant, C. J., and Ferreira, D.: Tendencies, variability and persistence of sea surface temperature anomalies, Sci. Rep., 10, 7986, https://doi.org/10.1038/s41598-020-64785-9, 2020. a
Camargo, S. J. and Wing, A. A.: Tropical cyclones in climate models, Wiley Interdiscip. Rev. Clim. Change, 7, 211–237, 2016. a
Chacko, N.: Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations, Deep Sea Res. Part I Oceanogr. Res. Pap., 124, 66–72, 2017. a
Chakraborty, K., Nimit, K., Akhand, A., Prakash, S., Paul, A., Ghosh, J., Bhaskar, T. U., and Chanda, A.: Modeling the enhancement of sea surface chlorophyll concentration during the cyclonic events in the Arabian Sea, J. Sea Res., 140, 22–31, 2018. a
Chih, C.-H. and Wu, C.-C.: Exploratory analysis of upper-ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific, J. Clim., 33, 1031–1050, 2020. a
Chune, S., Nouel, L., Fernandez, E., Derval, C., and Tressol, M.: Product user manual for the Global Ocean Sea Physical Analysis and Forecasting products, Issue: 1.5. Copernicus Marine Environment Monitoring Service, http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-024.pdf (last access: May 2020), 2019. a
Cullen, J. J.: Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?, Annu. Rev. Mar. Sci., 7, 207–239, 2015. a
Cuypers, Y., Le Vaillant, X., Bouruet-Aubertot, P., Vialard, J., and Mcphaden, M. J.: Tropical storm-induced near-inertial internal waves during the Cirene experiment: energy fluxes and impact on vertical mixing, J. Geophys. Res.-Oceans, 118, 358–380, 2013. a
Davis, A. and Yan, X.-H.: Hurricane forcing on chlorophyll a concentration off the northeast coast of the US, Geophys. Res. Lett., 31, L17 304, https://doi.org/10.1029/2004GL020668, 2004. a
de Beurs, K. M., McThompson, N. S., Owsley, B. C., and Henebry, G. M.: Hurricane damage detection on four major Caribbean islands, Remote Sens. Environ., 229, 1–13, https://doi.org/10.1016/j.rse.2019.04.028, 2019. a
Deacon, G.: The Sargasso Sea, Geogr. J., 99, 16–28, 1942. a
Defforge, C. L. and Merlis, T. M.: Observed warming trend in sea surface temperature at tropical cyclone genesis, Geophys. Res. Lett., 44, 1034–1040, 2017. a
Delcroix, T.: EOF analysis of the thermocline depth in the tropical Atlantic Ocean, Trop. Ocean Atmos. Newslett., 27, 18–19, 1984. a
Deo, A., Ganer, D., and Nair, G.: Tropical cyclone activity in global warming scenario, Nat. Hazards, 59, 771–786, 2011. a
Dierssen, H. M., Zimmerman, R. C., Drake, L. A., and Burdige, D.: Benthic ecology from space: Optics and net primary production in seagrass and benthic algae across the Great Bahama Bank, Mar. Ecol. Prog. Ser., 411, 1–15, 2010. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, 2012. a
Farfán, L. M., D'Sa, E. J., Liu, K.-b., and Rivera-Monroy, V. H.: Tropical cyclone impacts on coastal regions: the case of the Yucatán and the Baja California Peninsulas, Mexico, Estuar. Coast, 37, 1388–1402, 2014. a
Fiedler, P. C., Redfern, J. V., Van Noord, J., Hall, C., Pitman, R. L., and Ballance, L. T.: Effects of a tropical cyclone on a pelagic ecosystem from the physical environment to top predators, Mar. Ecol. Prog. Ser., 484, 1–16, https://doi.org/10.3354/meps10378, 2013. a, b
Friedland, K. D., Miller, M. J., and Knights, B.: Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel, ICES J. Mar. Sci., 64, 519–530, 2007. a
Garnesson, P., Mangin, A., and Bretagnon, M.: Ocean colour production centre. Satellite Observation. GlobColour-Copernicus Products. Quality information document, Copernicus Marine Environment Monitoring Service, 82 pp., http://marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-030-032-033-037-081-082-083-085-086-098.pdf (last access: May 2020), 2019a. a, b
Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, 2019. a, b
Goericke, R. and Welschmeyer, N. A.: Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing, J Plankton Res., 20, 2223–2249, 1998. a
Gohin, F.: Annual cycles of chlorophyll a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters, Ocean Sci., 7, 705–732, https://doi.org/10.5194/os-7-705-2011, 2011. a
Gohin, F., Druon, J., and Lampert, L.: A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters, Int. J. Remote Sens., 23, 1639–1661, 2002. a
Haakman, K., Sayol, J.-M., van der Boog, C. G., and Katsman, C. A.: Statistical characterization of the observed cold wake induced by North Atlantic hurricanes, Remote Sens., 11, 2368, https://doi.org/10.3390/rs11202368, 2019. a
Hanshaw, M. N., Lozier, M. S., and Palter, J. B.: Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic, Geophys. Res. Lett., 35, https://doi.org/10.1029/2007GL031862, 2008. a, b
Hatcher, P. E. and Battey, N.: Biological diversity: exploiters and exploited, John Wiley & Sons, USA, 2011. a
Henderson-Sellers, A., Zhang, H., Berz, G., Emanuel, K., Gray, W., Landsea, C., Holland, G., Lighthill, J., Shieh, S.-L., Webster, P., and McGuffie, K.: Tropical cyclones and global climate change: a post-IPCC assessment, Bull. Am. Meteorol. Soc., 79, 19–38, 1998. a
Hernández, W. J., Ortiz-Rosa, S., Armstrong, R. A., Geiger, E. F., Eakin, C. M., and Warner, R. A.: Quantifying the effects of Hurricanes Irma and Maria on coastal water quality in Puerto Rico using Moderate Resolution Satellite Sensors, Remote Sens., 12, 964, https://doi.org/10.3390/rs12060964, 2020. a
Hill, M.: Composition of sea-water comparative and descriptive oceanography, vol. 2, Harvard University Press, USA, Cambridge, Massachusetts, 2005. a
Hu, C., Lee, Z., and Franz, B.: chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference, J. Geophys. Res.-Oceans, 117, C01 011, https://doi.org/10.1029/2011JC007395, 2012. a
Huang, P., Lin, I.-I., Chou, C., and Huang, R.-H.: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming, Nat. Commun., 6, 7188, https://doi.org/10.1038/ncomms8188, 2015. a
Hung, C.-C., Gong, G.-C., Lee, M.-A., Liao, C.-H., Chang, Y., Shih, Y.-Y., Chen, K.-S., Chen, M.-H., and Santschi, P. H.: Impacts of typhoons on nutrient supply and potential fish production in the Southern East China Sea, in: Typhoon Impact and Crisis Management, 267–282, Springer, Berlin, Heidelberg, 2014. a
Jaimes, B. and Shay, L. K.: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita, Mon. Weather Rev., 137, 4188–4207, 2009. a
Jaimes, B. and Shay, L. K.: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory, J. Phys. Oceanogr., 45, 1667–1689, 2015. a
Jayaram, C., Bhaskar, T. U., Kumar, J. P., and Swain, D.: Cyclone enhanced chlorophyll in the Bay of Bengal as evidenced from satellite and BGC-Argo float observations, J. Indian Soc. Remote Sens., 47, 1875–1882, 2019. a
Kleckner, R. C. and McCleave, J. D.: The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses, J. Mar. Res., 46, 647–667, 1988. a
Klotzbach, P. J., Schreck III, C. J., Collins, J. M., Bell, M. M., Blake, E. S., and Roache, D.: The extremely active 2017 North Atlantic hurricane season, Mon. Weather Rev., 146, 3425–3443, 2018. a
Klotzbach, P. J., Bell, M. M., and Jones, J.: Summary of 2019 Atlantic tropical cyclone activity and verification of authors' seasonal and two-week forecasts, Department of Atmospheric Science Colorado State University, https://tropical.colostate.edu/archive.html (last access: April 2020), 2019. a
Kossin, J. P.: A global slowdown of tropical-cyclone translation speed, Nature, 558, 104–107, 2018. a
Kourafalou, V. H., Androulidakis, Y. S., Halliwell Jr, G. R., Kang, H., Mehari, M. M., Le Hénaff, M., Atlas, R., and Lumpkin, R.: North Atlantic Ocean OSSE system development: Nature Run evaluation and application to hurricane interaction with the Gulf Stream, Prog. Oceanogr., 148, 1–25, 2016. a
Kwon, Y.-O. and Riser, S. C.: North Atlantic Subtropical Mode Water: a history of ocean-atmosphere interaction 1961–2000, Geophys. Res. Lett., 31, L19 307, https://doi.org/10.1029/2004GL021116, 2004. a
Laffoley, D. d., Roe, H. S. J., Angel, M. V., Ardron, J., Bates, N. R., Boyd, I. L., Brooke, S., Buck, K. N., Carlson, C. A., Causey, B., Conte, M. H., Christiansen, S., Cleary, J., Donnelly, J., Earle, S. A., Edwards, R., Gjerde, K. M., Giovannoni, S. J., Gulick, S., Gollock, M., Hallett, J., Halpin, P., Hanel, R., Hemphill, A., Johnson, R. J., Knap, A. H., Lomas, M. W., McKenna, S. A., Miller, M. J., Miller, P. I., Ming, F. W., Moffitt, R., Nelson, N. B., Parson, L., Peters, A. J., Pitt, J., Rouja, P., Roberts, J., Roberts, J., Seigel, D. A., Siuda, A. N. S., Steinberg, D. K., Stevenson, A., Sumaila, V. R., Swartz, W., Thorrold, S., Trott, T. M., and Vats, V.: The protection and management of the Sargasso Sea: the golden floating rainforest of the Atlantic Ocean, Sargasso Sea Alliance, USA, 2011. a
Lamouroux, J., Perruche, C., Mignot, A., Paul, J., and Szczypta, C.: Quality information document for Global Biogeochemical Analysis and Forecast product, Issue: 1.0. Copernicus Marine Environment Monitoring Service, http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-028.pdf (last access: April 2020), 2019. a, b, c
Lanzante, J. R.: Uncertainties in tropical-cyclone translation speed, Nature, 570, E6–E15, 2019. a
Latasa, M., Gutiérrez-Rodríguez, A., Cabello, A. M. M., and Scharek, R.: Influence of light and nutrients on the vertical distribution of marine phytoplankton groups in the deep chlorophyll maximum, Sci. Mar., 80, 57–62, 2016. a
Lawrence, M. B. and Clark, G. B.: Atlantic hurricane season of 1984, Mon. Weather Rev., 113, 1228–1237, 1985. a
Leipper, D. F. and Volgenau, D.: Hurricane heat potential of the Gulf of Mexico, J. Phys. Oceanogr., 2, 218–224, 1972. a
Lellouche, J.-M., Legalloudec, O., Regnier, C., Levier, B., Greiner, E., and Drevillon, M.: Quality information document for Global Sea Physical Analysis and Forecasting product, Issue: 2.1. Copernicus Marine Environment Monitoring Service, http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-024.pdf (last access: April 2020), 2016. a
Lenzen, M., Malik, A., Kenway, S., Daniels, P., Lam, K. L., and Geschke, A.: Economic damage and spillovers from a tropical cyclone, Nat. Hazards Earth Syst. Sci., 19, 137–151, https://doi.org/10.5194/nhess-19-137-2019, 2019. a
Lim, Y.-K., Schubert, S. D., Kovach, R., Molod, A. M., and Pawson, S.: The roles of climate change and climate variability in the 2017 Atlantic hurricane season, Sci. Rep., 8, 16 172, https://doi.org/10.1038/s41598-018-34343-5, 2018. a
Lin, T.-C., Hogan, J. A., and Chang, C.-T.: Tropical cyclone ecology: a scale-link perspective, Trends Ecol. Evol., 32, 594–604, https://doi.org/10.1016/j.tree.2020.02.012, 2020. a
Lin, Y.-C. and Oey, L.-Y.: Rainfall-enhanced blooming in typhoon wakes, Sci. Rep., 6, 31310, https://doi.org/10.1038/srep31310, 2016. a, b
Liu, F., Zhang, H., Ming, J., Zheng, J., Tian, D., and Chen, D.: Importance of precipitation on the upper ocean salinity response to Typhoon Kalmaegi (2014), Water, 12, 614, https://doi.org/10.3390/w12020614, 2020. a
Macías, D., Rodríguez Santana, Á., Ramírez-Romero, E., Bruno, M., Pelegrí Llopart, J. L., Sangrà, P., Aguiar González, M. B., and García, C. M.: Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean, Sci. Mar., 77, 541–549, https://doi.org/10.3989/scimar.03854.03A, 2013. a
Michaels, A. F., Siegel, D. A., Johnson, R. J., Knap, A. H., and Galloway, J. N.: Episodic inputs of atmospheric nitrogen to the Sargasso Sea: contributions to new production and phytoplankton blooms, Global Biogeochem. Cycles, 7, 339–351, 1993. a
Mignot, A., Claustre, H., D'Ortenzio, F., Xing, X., Poteau, A., and Ras, J.: From the shape of the vertical profile of in vivo fluorescence to chlorophyll a concentration, Biogeosciences, 8, 2391–2406, https://doi.org/10.5194/bg-8-2391-2011, 2011. a, b
Miller, M. J., Feunteun, E., and Tsukamoto, K.: Did a “perfect storm” of oceanic changes and continental anthropogenic impacts cause northern hemisphere anguillid recruitment reductions?, ICES J. Mar. Sci., 73, 43–56, 2016. a
Miller, M. J., Westerberg, H., Sparholt, H., Wysujack, K., Sørensen, S. R., Marohn, L., Jacobsen, M. W., Freese, M., Ayala, D. J., Pohlmann, J.-D., Svendsen, J. C., Watanabe, S., Andersen, L., Møller, P. R., Tsukamoto, K., Munk, P., and Hanel, R.: Spawning by the European eel across 2000 km of the Sargasso Sea, Biol. Lett., 15, 20180 835, https://doi.org/10.1098/rsbl.2018.0835, 2019a. a
Miller, P., Kumar, A., Mote, T., Moraes, F., and Mishra, D.: Persistent hydrological consequences of Hurricane Maria in Puerto Rico, Geophys. Res. Lett., 46, 1413–1422, 2019b. a
Moeller, H. V., Laufkötter, C., Sweeney, E. M., and Johnson, M. D.: Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima, Nat. Commun., 10, 1978, https://doi.org/10.1038/s41467-019-09591-2, 2019. a, b
Moon, I.-J., Kim, S.-H., and Chan, J. C.: Climate change and tropical cyclone trend, Nature, 570, E3–E5, 2019. a
Morel, A.: In-water and remote measurements of ocean color, Bound.-Layer Meteorol., 18, 177–201, 1980. a
Morey, S. L., Bourassa, M. A., Dukhovskoy, D. S., and O'Brien, J. J.: Modeling studies of the upper ocean response to a tropical cyclone, Ocean Dyn., 56, 594–606, 2006. a
Morozov, E. G. and Velarde, M. G.: Inertial oscillations as deep ocean response to hurricanes, J. Oceanogr., 64, 495–509, 2008. a
Munk, P., Hansen, M. M., Maes, G. E., Nielsen, T. G., Castonguay, M., Riemann, L., Sparholt, H., Als, T. D., Aarestrup, K., Andersen, N. G., and Bachler, M.: Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels, P. Roy. Soc. B-Biol. Sci., 277, 3593–3599, 2010. a
Neely, W.: The greatest and deadliest hurricanes of the Caribbean and the Americas: the stories behind the great storms of the North Atlantic, iUniverse, Bloomington, Indiana, USA, 2016. a
Nigam, T., Prakash, K. R., and Pant, V.: An assessment of the impact of oceanic initial conditions on the interaction of upper ocean with the tropical cyclones in the Arabian Sea, J. Oper. Oceanogr., 13, 121–137, https://doi.org/10.1080/1755876X.2019.1658567, 2019. a
Ning, J., Xu, Q., Feng, T., Zhang, H., and Wang, T.: Upper ocean response to two sequential tropical cyclones over the northwestern Pacific Ocean, Remote Sens., 11, 2431, https://doi.org/10.3390/rs11202431, 2019. a, b, c, d
Oey, L. Y., Ezer, T., Wang, D. P., Fan, S. J., and Yin, X. Q.: Loop Current warming by Hurricane Wilma, Geophys. Res. Lett., 33, L08613, https://doi.org/10.1029/2006GL025873, 2006. a, b
Paerl, H. W., Hall, N. S., Hounshell, A. G., Luettich, R. A., Rossignol, K. L., Osburn, C. L., and Bales, J.: Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: long-term observations suggest a regime shift, Sci. Rep., 9, 10 620, https://doi.org/10.1038/s41598-019-46928-9, 2019. a
Pasch, R., Kimberlain, T., and Stewart, S.: Tropical cyclone preliminary report Hurricane Floyd, 7–17 September, 1999, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 1999. a
Pedrosa-Pàmies, R., Conte, M., Weber, J., and Johnson, R.: Carbon cycling in the Sargasso Sea water column: insights from lipid biomarkers in suspended particles, Prog. Oceanogr., 168, 248–278, 2018. a
Pedrosa-Pàmies, R., Conte, M., Weber, J., and Johnson, R.: Hurricanes enhance labile carbon export to the deep ocean, Geophys. Res. Lett., 46, 10 484–10 494, 2019. a
Prakash, K. R., Nigam, T., and Pant, V.: Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model, Ocean Sci., 14, 259–272, https://doi.org/10.5194/os-14-259-2018, 2018. a, b
Price, J. F.: Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?, Ocean Sci., 5, 351–368, https://doi.org/10.5194/os-5-351-2009, 2009. a, b, c
Reverdin, G., Molinari, R., and Du Penhoat, Y.: Objective analysis of thermocline depth distributions obtained in the tropical Atlantic Ocean during FGGE, 1979, Deep Sea Res. Part I Oceanogr. Res. Pap., 33, 43–53, 1986. a
Riemann, L., Alfredsson, H., Hansen, M. M., Als, T. D., Nielsen, T. G., Munk, P., Aarestrup, K., Maes, G. E., Sparholt, H., Petersen, M. I., Bachler, M., and Castonguay, M.: Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding, Biol. Lett., 6, 819–822, 2010. a
Santer, B. D., Wigley, T., Gleckler, P., Bonfils, C., Wehner, M., AchutaRao, K., Barnett, T., Boyle, J., Brüggemann, W., Fiorino, M., Gillett, N., Hansen, J.E., Jones, P. D., Klein, S. A., Meehl, G. A., Raper, S. C. B., Reynolds, R. W., Taylor, K. E., and Washington, W. M.: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions, P. Natl. A Sci., 103, 13 905–13 910, 2006. a
Schmidt, J.: The breeding places of the eel, Philosophical Transactions of the Royal Society of London. Series B, Cont. Pap. Biol. Char., 211, 179–208, 1923. a
Schroeder, E., Stommel, H., Menzel, D., and Sutcliffe Jr, W.: Climatic stability of eighteen degree water at Bermuda, J. Geophys. Res., 64, 363–366, 1959. a
Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., and Zhang, H.: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases, Nat. Clim. Change, 9, 517–522, 2019. a
Shay, L. K. and Elsberry, R. L.: Near-inertial ocean current response to Hurricane Frederic, J. Phys. Oceanogr., 17, 1249–1269, 1987. a
Shay, L. K., Brewster, J. K., Maturi, E., Donahue, D., Meyers, P., and McCaskill, C.: Algorithm theoretical basis document for satellite derived oceanic heat content product version 3.2. ATBD: satellite-derived oceanic heat content product, NOAA/RSMAS, https://www.ospo.noaa.gov/Products/ocean/assets/ATBD_OHC_NESDIS_V3.2.pdf (last access: May 2020), 2019. a, b
Shi, W. and Wang, M.: Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico, Geophys. Res. Lett., 34, L11 607, https://doi.org/10.1029/2007GL029724, 2007. a
Song, J., Klotzbach, P. J., Tang, J., and Wang, Y.: The increasing variability of tropical cyclone lifetime maximum intensity, Sci. Rep., 8, 16 641, https://doi.org/10.1038/s41598-018-35131-x, 2018. a
Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J., Michaels, A. F., and Knap, A. H.: Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry, Deep Sea Res. Part II Top. Stud. Oceanogr., 48, 1405–1447, 2001. a
Stewart, S. R.: Tropical cyclone report Hurricane Matthew, 28 September–9 October 2016, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2017. a
Sun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., Chen, H., Liao, Q., Ma, C., and Li, Q.: Impact of ocean warming on tropical cyclone size and its destructiveness, Sci. Rep., 7, 8154, https://doi.org/10.1038/s41598-017-08533-6, 2017. a
Trepanier, J. C.: North Atlantic hurricane winds in warmer than normal seas, Atmosphere, 11, 293, https://doi.org/10.3390/atmos11030293, 2020. a
van Ginneken, V. J. and Maes, G. E.: The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review, Rev.Fish Biol. Fish., 15, 367–398, 2005. a
Vincent, E. M., Lengaigne, M., Madec, G., Vialard, J., Samson, G., Jourdain, N. C., Menkes, C. E., and Jullien, S.: Processes setting the characteristics of sea surface cooling induced by tropical cyclones, J. Geophys. Res.-Oceans, 117, C02 020, https://doi.org/10.1029/2011JC007396, 2012a. a, b
Vincent, E. M., Lengaigne, M., Vialard, J., Madec, G., Jourdain, N. C., and Masson, S.: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones, J. Geophys. Res.-Oceans, 117, C05 023, https://doi.org/10.1029/2011JC007705, 2012b. a
Walker, N. D., Leben, R. R., and Balasubramanian, S.: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico, Geophys. Res. Lett., 32, L18610, https://doi.org/10.1029/2005GL023716, 2005. a, b
Wang, T., Zhang, S., Chen, F., MA, Y., Jiang, C., and Yu, J.: Influence of sequential tropical cyclones on phytoplankton blooms in the northwestern South China Sea, Chin. J. Oceanol. Limnol., https://doi.org/10.1007/s00343-020-9266-7, 2020. a, b, c
Welker, C. and Faust, E.: Tropical cyclone-related socio-economic losses in the western North Pacific region, Nat. Hazards Earth Syst. Sci., 13, 115–124, https://doi.org/10.5194/nhess-13-115-2013, 2013. a
Yamaguchi, M., Chan, J. C., Moon, I.-J., Yoshida, K., and Mizuta, R.: Global warming changes tropical cyclone translation speed, Nat. Commun., 11, 1–7, 2020. a
Ye, H., Sui, Y., Tang, D., and Afanasyev, Y.: A subsurface chlorophyll a bloom induced by typhoon in the South China Sea, J. Mar. Syst., 128, 138–145, 2013. a
Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P.: Global reconstruction of historical ocean heat storage and transport, P. Natl. A Sci., 116, 1126–1131, 2019. a
Zhang, H., Chen, D., Zhou, L., Liu, X., Ding, T., and Zhou, B.: Upper ocean response to typhoon Kalmaegi (2014), J. Geophys. Res.-Oceans, 121, 6520–6535, 2016. a
Zhang, L., Karnauskas, K. B., Donnelly, J. P., and Emanuel, K.: Response of the North Pacific tropical cyclone climatology to global warming: application of dynamical downscaling to CMIP5 models, J. Clim., 30, 1233–1243, 2017. a
Zhao, H., Shao, J., Han, G., Yang, D., and Lv, J.: Influence of typhoon matsa on phytoplankton chlorophyll a off East China, PLOS ONE, 10, e0137 863, https://doi.org/10.1371/journal.pone.0137863, 2015. a
Short summary
Hurricanes are extreme storms that induce substantial biophysical changes on oceans. We investigated the effects induced by consecutive Hurricanes Dorian and Humberto over the western Sargasso Sea in 2019 using satellite remote sensing and modelled data. These hurricanes superimposed effects on the upper-ocean response because of the strong induced mixing and upwelling. The sea surface cooling and phytoplankton bloom induced by these hurricanes were higher compared to climatological records.
Hurricanes are extreme storms that induce substantial biophysical changes on oceans. We...
Altmetrics
Final-revised paper
Preprint