Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oceanic response to the consecutive Hurricanes Dorian and Humberto (2019) in the Sargasso Sea
Laboratory of Planetary Science, Department of Physics, Universidad Central “Marta Abreu” de Las Villas, 54830, Santa Clara, Villa Clara, Cuba
KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Jan M. Baetens
KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Rolando Cardenas
Laboratory of Planetary Science, Department of Physics, Universidad Central “Marta Abreu” de Las Villas, 54830, Santa Clara, Villa Clara, Cuba
Bernard De Baets
KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Related authors
No articles found.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Cited articles
Augustyn, A., Bauer, P., Duignan, B., Eldridge, A., Gregersen, E., McKenna, A., Petruzzello, M., Rafferty, J., Ray, M., Rogers, K., Tikkanen, A., Wallenfeldt, J., Zeidan, A., and Zelazko, A.: Sargasso Sea. Encyclopaedia Britannica, https://www.britannica.com/place/Sargasso-Sea (last access: April 2020), 2013. a
Avila-Alonso, D., Baetens, J. M., Cardenas, R., and De Baets, B.: The impact of hurricanes on the oceanographic conditions in the Exclusive Economic Zone of Cuba, Remote Sens. Environ., p. 111339, https://doi.org/10.1016/j.rse.2019.111339, 2019. a, b, c
Avila-Alonso, D., Baetens, J. M., Cardenas, R., and De Baets, B.: Oceanic response to Hurricane Irma (2017) in the Exclusive Economic Zone of Cuba and the eastern Gulf of Mexico, Ocean Dyn., 70, 603–619, https://doi.org/10.1007/s10236-020-01350-y, 2020. a, b, c
Ayala, D. J., Munk, P., Lundgreen, R. B., Traving, S. J., Jaspers, C., Jørgensen, T. S., Hansen, L. H., and Riemann, L.: Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea, Sci. Rep., 8, 6156, https://doi.org/10.1038/s41598-018-24388-x, 2018. a
Bacmeister, J. T., Reed, K. A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J. E., Rosenbloom, N., and Levy, M.: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model, Clim. Change, 146, 547–560, 2018. a
Baranowski, D. B., Flatau, P. J., Chen, S., and Black, P. G.: Upper ocean response to the passage of two sequential typhoons, Ocean Sci., 10, 559–570, https://doi.org/10.5194/os-10-559-2014, 2014. a, b, c, d
Beven, J.: Tropical cyclone preliminary report Hurricane Dennis, 24 August–7 September, 1999, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2000. a
Beven, J. and Cobb, H.: Tropical cyclone report Hurricane Ophelia, 6–17 September 2005, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2006. a
Bhatia, K., Vecchi, G., Murakami, H., Underwood, S., and Kossin, J.: Projected response of tropical cyclone intensity and intensification in a global climate model, J. Clim., 31, 8281–8303, 2018. a
Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., and Whitlock, C. E.: Recent increases in tropical cyclone intensification rates, Nat. Commun., 10, 635, https://doi.org/10.1038/s41467-019-08471-z, 2019. a
Billheimer, S. and Talley, L. D.: Annual cycle and destruction of Eighteen Degree Water, J. Geophys. Res.-Oceans, 121, 6604–6617, 2016. a
Blake, E. S.: Tropical cyclone report Tropical Storm Erin, 26–29 August 2019, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2019. a
Bonhommeau, S., Chassot, E., Planque, B., Rivot, E., Knap, A. H., and Le Pape, O.: Impact of climate on eel populations of the Northern Hemisphere, Mar. Ecol. Prog. Ser., 373, 71–80, 2008a. a
Bonhommeau, S., Chassot, E., and Rivot, E.: Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea, Fish. Oceanogr., 17, 32–44, 2008b. a
Brown, D. P.: Tropical cyclone report Hurricane Jerry, 17–24 September, 2019, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2019. a
Bulgin, C. E., Merchant, C. J., and Ferreira, D.: Tendencies, variability and persistence of sea surface temperature anomalies, Sci. Rep., 10, 7986, https://doi.org/10.1038/s41598-020-64785-9, 2020. a
Camargo, S. J. and Wing, A. A.: Tropical cyclones in climate models, Wiley Interdiscip. Rev. Clim. Change, 7, 211–237, 2016. a
Chacko, N.: Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations, Deep Sea Res. Part I Oceanogr. Res. Pap., 124, 66–72, 2017. a
Chakraborty, K., Nimit, K., Akhand, A., Prakash, S., Paul, A., Ghosh, J., Bhaskar, T. U., and Chanda, A.: Modeling the enhancement of sea surface chlorophyll concentration during the cyclonic events in the Arabian Sea, J. Sea Res., 140, 22–31, 2018. a
Chih, C.-H. and Wu, C.-C.: Exploratory analysis of upper-ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific, J. Clim., 33, 1031–1050, 2020. a
Chune, S., Nouel, L., Fernandez, E., Derval, C., and Tressol, M.: Product user manual for the Global Ocean Sea Physical Analysis and Forecasting products, Issue: 1.5. Copernicus Marine Environment Monitoring Service, http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-024.pdf (last access: May 2020), 2019. a
Cullen, J. J.: Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?, Annu. Rev. Mar. Sci., 7, 207–239, 2015. a
Cuypers, Y., Le Vaillant, X., Bouruet-Aubertot, P., Vialard, J., and Mcphaden, M. J.: Tropical storm-induced near-inertial internal waves during the Cirene experiment: energy fluxes and impact on vertical mixing, J. Geophys. Res.-Oceans, 118, 358–380, 2013. a
Davis, A. and Yan, X.-H.: Hurricane forcing on chlorophyll a concentration off the northeast coast of the US, Geophys. Res. Lett., 31, L17 304, https://doi.org/10.1029/2004GL020668, 2004. a
de Beurs, K. M., McThompson, N. S., Owsley, B. C., and Henebry, G. M.: Hurricane damage detection on four major Caribbean islands, Remote Sens. Environ., 229, 1–13, https://doi.org/10.1016/j.rse.2019.04.028, 2019. a
Deacon, G.: The Sargasso Sea, Geogr. J., 99, 16–28, 1942. a
Defforge, C. L. and Merlis, T. M.: Observed warming trend in sea surface temperature at tropical cyclone genesis, Geophys. Res. Lett., 44, 1034–1040, 2017. a
Delcroix, T.: EOF analysis of the thermocline depth in the tropical Atlantic Ocean, Trop. Ocean Atmos. Newslett., 27, 18–19, 1984. a
Deo, A., Ganer, D., and Nair, G.: Tropical cyclone activity in global warming scenario, Nat. Hazards, 59, 771–786, 2011. a
Dierssen, H. M., Zimmerman, R. C., Drake, L. A., and Burdige, D.: Benthic ecology from space: Optics and net primary production in seagrass and benthic algae across the Great Bahama Bank, Mar. Ecol. Prog. Ser., 411, 1–15, 2010. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, 2012. a
Farfán, L. M., D'Sa, E. J., Liu, K.-b., and Rivera-Monroy, V. H.: Tropical cyclone impacts on coastal regions: the case of the Yucatán and the Baja California Peninsulas, Mexico, Estuar. Coast, 37, 1388–1402, 2014. a
Fiedler, P. C., Redfern, J. V., Van Noord, J., Hall, C., Pitman, R. L., and Ballance, L. T.: Effects of a tropical cyclone on a pelagic ecosystem from the physical environment to top predators, Mar. Ecol. Prog. Ser., 484, 1–16, https://doi.org/10.3354/meps10378, 2013. a, b
Friedland, K. D., Miller, M. J., and Knights, B.: Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel, ICES J. Mar. Sci., 64, 519–530, 2007. a
Garnesson, P., Mangin, A., and Bretagnon, M.: Ocean colour production centre. Satellite Observation. GlobColour-Copernicus Products. Quality information document, Copernicus Marine Environment Monitoring Service, 82 pp., http://marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-030-032-033-037-081-082-083-085-086-098.pdf (last access: May 2020), 2019a. a, b
Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-15-819-2019, 2019. a, b
Goericke, R. and Welschmeyer, N. A.: Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing, J Plankton Res., 20, 2223–2249, 1998. a
Gohin, F.: Annual cycles of chlorophyll a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters, Ocean Sci., 7, 705–732, https://doi.org/10.5194/os-7-705-2011, 2011. a
Gohin, F., Druon, J., and Lampert, L.: A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters, Int. J. Remote Sens., 23, 1639–1661, 2002. a
Haakman, K., Sayol, J.-M., van der Boog, C. G., and Katsman, C. A.: Statistical characterization of the observed cold wake induced by North Atlantic hurricanes, Remote Sens., 11, 2368, https://doi.org/10.3390/rs11202368, 2019. a
Hanshaw, M. N., Lozier, M. S., and Palter, J. B.: Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic, Geophys. Res. Lett., 35, https://doi.org/10.1029/2007GL031862, 2008. a, b
Hatcher, P. E. and Battey, N.: Biological diversity: exploiters and exploited, John Wiley & Sons, USA, 2011. a
Henderson-Sellers, A., Zhang, H., Berz, G., Emanuel, K., Gray, W., Landsea, C., Holland, G., Lighthill, J., Shieh, S.-L., Webster, P., and McGuffie, K.: Tropical cyclones and global climate change: a post-IPCC assessment, Bull. Am. Meteorol. Soc., 79, 19–38, 1998. a
Hernández, W. J., Ortiz-Rosa, S., Armstrong, R. A., Geiger, E. F., Eakin, C. M., and Warner, R. A.: Quantifying the effects of Hurricanes Irma and Maria on coastal water quality in Puerto Rico using Moderate Resolution Satellite Sensors, Remote Sens., 12, 964, https://doi.org/10.3390/rs12060964, 2020. a
Hill, M.: Composition of sea-water comparative and descriptive oceanography, vol. 2, Harvard University Press, USA, Cambridge, Massachusetts, 2005. a
Hu, C., Lee, Z., and Franz, B.: chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference, J. Geophys. Res.-Oceans, 117, C01 011, https://doi.org/10.1029/2011JC007395, 2012. a
Huang, P., Lin, I.-I., Chou, C., and Huang, R.-H.: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming, Nat. Commun., 6, 7188, https://doi.org/10.1038/ncomms8188, 2015. a
Hung, C.-C., Gong, G.-C., Lee, M.-A., Liao, C.-H., Chang, Y., Shih, Y.-Y., Chen, K.-S., Chen, M.-H., and Santschi, P. H.: Impacts of typhoons on nutrient supply and potential fish production in the Southern East China Sea, in: Typhoon Impact and Crisis Management, 267–282, Springer, Berlin, Heidelberg, 2014. a
Jaimes, B. and Shay, L. K.: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita, Mon. Weather Rev., 137, 4188–4207, 2009. a
Jaimes, B. and Shay, L. K.: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory, J. Phys. Oceanogr., 45, 1667–1689, 2015. a
Jayaram, C., Bhaskar, T. U., Kumar, J. P., and Swain, D.: Cyclone enhanced chlorophyll in the Bay of Bengal as evidenced from satellite and BGC-Argo float observations, J. Indian Soc. Remote Sens., 47, 1875–1882, 2019. a
Kleckner, R. C. and McCleave, J. D.: The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses, J. Mar. Res., 46, 647–667, 1988. a
Klotzbach, P. J., Schreck III, C. J., Collins, J. M., Bell, M. M., Blake, E. S., and Roache, D.: The extremely active 2017 North Atlantic hurricane season, Mon. Weather Rev., 146, 3425–3443, 2018. a
Klotzbach, P. J., Bell, M. M., and Jones, J.: Summary of 2019 Atlantic tropical cyclone activity and verification of authors' seasonal and two-week forecasts, Department of Atmospheric Science Colorado State University, https://tropical.colostate.edu/archive.html (last access: April 2020), 2019. a
Kossin, J. P.: A global slowdown of tropical-cyclone translation speed, Nature, 558, 104–107, 2018. a
Kourafalou, V. H., Androulidakis, Y. S., Halliwell Jr, G. R., Kang, H., Mehari, M. M., Le Hénaff, M., Atlas, R., and Lumpkin, R.: North Atlantic Ocean OSSE system development: Nature Run evaluation and application to hurricane interaction with the Gulf Stream, Prog. Oceanogr., 148, 1–25, 2016. a
Kwon, Y.-O. and Riser, S. C.: North Atlantic Subtropical Mode Water: a history of ocean-atmosphere interaction 1961–2000, Geophys. Res. Lett., 31, L19 307, https://doi.org/10.1029/2004GL021116, 2004. a
Laffoley, D. d., Roe, H. S. J., Angel, M. V., Ardron, J., Bates, N. R., Boyd, I. L., Brooke, S., Buck, K. N., Carlson, C. A., Causey, B., Conte, M. H., Christiansen, S., Cleary, J., Donnelly, J., Earle, S. A., Edwards, R., Gjerde, K. M., Giovannoni, S. J., Gulick, S., Gollock, M., Hallett, J., Halpin, P., Hanel, R., Hemphill, A., Johnson, R. J., Knap, A. H., Lomas, M. W., McKenna, S. A., Miller, M. J., Miller, P. I., Ming, F. W., Moffitt, R., Nelson, N. B., Parson, L., Peters, A. J., Pitt, J., Rouja, P., Roberts, J., Roberts, J., Seigel, D. A., Siuda, A. N. S., Steinberg, D. K., Stevenson, A., Sumaila, V. R., Swartz, W., Thorrold, S., Trott, T. M., and Vats, V.: The protection and management of the Sargasso Sea: the golden floating rainforest of the Atlantic Ocean, Sargasso Sea Alliance, USA, 2011. a
Lamouroux, J., Perruche, C., Mignot, A., Paul, J., and Szczypta, C.: Quality information document for Global Biogeochemical Analysis and Forecast product, Issue: 1.0. Copernicus Marine Environment Monitoring Service, http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-028.pdf (last access: April 2020), 2019. a, b, c
Lanzante, J. R.: Uncertainties in tropical-cyclone translation speed, Nature, 570, E6–E15, 2019. a
Latasa, M., Gutiérrez-Rodríguez, A., Cabello, A. M. M., and Scharek, R.: Influence of light and nutrients on the vertical distribution of marine phytoplankton groups in the deep chlorophyll maximum, Sci. Mar., 80, 57–62, 2016. a
Lawrence, M. B. and Clark, G. B.: Atlantic hurricane season of 1984, Mon. Weather Rev., 113, 1228–1237, 1985. a
Leipper, D. F. and Volgenau, D.: Hurricane heat potential of the Gulf of Mexico, J. Phys. Oceanogr., 2, 218–224, 1972. a
Lellouche, J.-M., Legalloudec, O., Regnier, C., Levier, B., Greiner, E., and Drevillon, M.: Quality information document for Global Sea Physical Analysis and Forecasting product, Issue: 2.1. Copernicus Marine Environment Monitoring Service, http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-024.pdf (last access: April 2020), 2016. a
Lenzen, M., Malik, A., Kenway, S., Daniels, P., Lam, K. L., and Geschke, A.: Economic damage and spillovers from a tropical cyclone, Nat. Hazards Earth Syst. Sci., 19, 137–151, https://doi.org/10.5194/nhess-19-137-2019, 2019. a
Lim, Y.-K., Schubert, S. D., Kovach, R., Molod, A. M., and Pawson, S.: The roles of climate change and climate variability in the 2017 Atlantic hurricane season, Sci. Rep., 8, 16 172, https://doi.org/10.1038/s41598-018-34343-5, 2018. a
Lin, T.-C., Hogan, J. A., and Chang, C.-T.: Tropical cyclone ecology: a scale-link perspective, Trends Ecol. Evol., 32, 594–604, https://doi.org/10.1016/j.tree.2020.02.012, 2020. a
Lin, Y.-C. and Oey, L.-Y.: Rainfall-enhanced blooming in typhoon wakes, Sci. Rep., 6, 31310, https://doi.org/10.1038/srep31310, 2016. a, b
Liu, F., Zhang, H., Ming, J., Zheng, J., Tian, D., and Chen, D.: Importance of precipitation on the upper ocean salinity response to Typhoon Kalmaegi (2014), Water, 12, 614, https://doi.org/10.3390/w12020614, 2020. a
Macías, D., Rodríguez Santana, Á., Ramírez-Romero, E., Bruno, M., Pelegrí Llopart, J. L., Sangrà, P., Aguiar González, M. B., and García, C. M.: Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean, Sci. Mar., 77, 541–549, https://doi.org/10.3989/scimar.03854.03A, 2013. a
Michaels, A. F., Siegel, D. A., Johnson, R. J., Knap, A. H., and Galloway, J. N.: Episodic inputs of atmospheric nitrogen to the Sargasso Sea: contributions to new production and phytoplankton blooms, Global Biogeochem. Cycles, 7, 339–351, 1993. a
Mignot, A., Claustre, H., D'Ortenzio, F., Xing, X., Poteau, A., and Ras, J.: From the shape of the vertical profile of in vivo fluorescence to chlorophyll a concentration, Biogeosciences, 8, 2391–2406, https://doi.org/10.5194/bg-8-2391-2011, 2011. a, b
Miller, M. J., Feunteun, E., and Tsukamoto, K.: Did a “perfect storm” of oceanic changes and continental anthropogenic impacts cause northern hemisphere anguillid recruitment reductions?, ICES J. Mar. Sci., 73, 43–56, 2016. a
Miller, M. J., Westerberg, H., Sparholt, H., Wysujack, K., Sørensen, S. R., Marohn, L., Jacobsen, M. W., Freese, M., Ayala, D. J., Pohlmann, J.-D., Svendsen, J. C., Watanabe, S., Andersen, L., Møller, P. R., Tsukamoto, K., Munk, P., and Hanel, R.: Spawning by the European eel across 2000 km of the Sargasso Sea, Biol. Lett., 15, 20180 835, https://doi.org/10.1098/rsbl.2018.0835, 2019a. a
Miller, P., Kumar, A., Mote, T., Moraes, F., and Mishra, D.: Persistent hydrological consequences of Hurricane Maria in Puerto Rico, Geophys. Res. Lett., 46, 1413–1422, 2019b. a
Moeller, H. V., Laufkötter, C., Sweeney, E. M., and Johnson, M. D.: Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima, Nat. Commun., 10, 1978, https://doi.org/10.1038/s41467-019-09591-2, 2019. a, b
Moon, I.-J., Kim, S.-H., and Chan, J. C.: Climate change and tropical cyclone trend, Nature, 570, E3–E5, 2019. a
Morel, A.: In-water and remote measurements of ocean color, Bound.-Layer Meteorol., 18, 177–201, 1980. a
Morey, S. L., Bourassa, M. A., Dukhovskoy, D. S., and O'Brien, J. J.: Modeling studies of the upper ocean response to a tropical cyclone, Ocean Dyn., 56, 594–606, 2006. a
Morozov, E. G. and Velarde, M. G.: Inertial oscillations as deep ocean response to hurricanes, J. Oceanogr., 64, 495–509, 2008. a
Munk, P., Hansen, M. M., Maes, G. E., Nielsen, T. G., Castonguay, M., Riemann, L., Sparholt, H., Als, T. D., Aarestrup, K., Andersen, N. G., and Bachler, M.: Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels, P. Roy. Soc. B-Biol. Sci., 277, 3593–3599, 2010. a
Neely, W.: The greatest and deadliest hurricanes of the Caribbean and the Americas: the stories behind the great storms of the North Atlantic, iUniverse, Bloomington, Indiana, USA, 2016. a
Nigam, T., Prakash, K. R., and Pant, V.: An assessment of the impact of oceanic initial conditions on the interaction of upper ocean with the tropical cyclones in the Arabian Sea, J. Oper. Oceanogr., 13, 121–137, https://doi.org/10.1080/1755876X.2019.1658567, 2019. a
Ning, J., Xu, Q., Feng, T., Zhang, H., and Wang, T.: Upper ocean response to two sequential tropical cyclones over the northwestern Pacific Ocean, Remote Sens., 11, 2431, https://doi.org/10.3390/rs11202431, 2019. a, b, c, d
Oey, L. Y., Ezer, T., Wang, D. P., Fan, S. J., and Yin, X. Q.: Loop Current warming by Hurricane Wilma, Geophys. Res. Lett., 33, L08613, https://doi.org/10.1029/2006GL025873, 2006. a, b
Paerl, H. W., Hall, N. S., Hounshell, A. G., Luettich, R. A., Rossignol, K. L., Osburn, C. L., and Bales, J.: Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: long-term observations suggest a regime shift, Sci. Rep., 9, 10 620, https://doi.org/10.1038/s41598-019-46928-9, 2019. a
Pasch, R., Kimberlain, T., and Stewart, S.: Tropical cyclone preliminary report Hurricane Floyd, 7–17 September, 1999, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 1999. a
Pedrosa-Pàmies, R., Conte, M., Weber, J., and Johnson, R.: Carbon cycling in the Sargasso Sea water column: insights from lipid biomarkers in suspended particles, Prog. Oceanogr., 168, 248–278, 2018. a
Pedrosa-Pàmies, R., Conte, M., Weber, J., and Johnson, R.: Hurricanes enhance labile carbon export to the deep ocean, Geophys. Res. Lett., 46, 10 484–10 494, 2019. a
Prakash, K. R., Nigam, T., and Pant, V.: Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model, Ocean Sci., 14, 259–272, https://doi.org/10.5194/os-14-259-2018, 2018. a, b
Price, J. F.: Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?, Ocean Sci., 5, 351–368, https://doi.org/10.5194/os-5-351-2009, 2009. a, b, c
Reverdin, G., Molinari, R., and Du Penhoat, Y.: Objective analysis of thermocline depth distributions obtained in the tropical Atlantic Ocean during FGGE, 1979, Deep Sea Res. Part I Oceanogr. Res. Pap., 33, 43–53, 1986. a
Riemann, L., Alfredsson, H., Hansen, M. M., Als, T. D., Nielsen, T. G., Munk, P., Aarestrup, K., Maes, G. E., Sparholt, H., Petersen, M. I., Bachler, M., and Castonguay, M.: Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding, Biol. Lett., 6, 819–822, 2010. a
Santer, B. D., Wigley, T., Gleckler, P., Bonfils, C., Wehner, M., AchutaRao, K., Barnett, T., Boyle, J., Brüggemann, W., Fiorino, M., Gillett, N., Hansen, J.E., Jones, P. D., Klein, S. A., Meehl, G. A., Raper, S. C. B., Reynolds, R. W., Taylor, K. E., and Washington, W. M.: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions, P. Natl. A Sci., 103, 13 905–13 910, 2006. a
Schmidt, J.: The breeding places of the eel, Philosophical Transactions of the Royal Society of London. Series B, Cont. Pap. Biol. Char., 211, 179–208, 1923. a
Schroeder, E., Stommel, H., Menzel, D., and Sutcliffe Jr, W.: Climatic stability of eighteen degree water at Bermuda, J. Geophys. Res., 64, 363–366, 1959. a
Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., and Zhang, H.: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases, Nat. Clim. Change, 9, 517–522, 2019. a
Shay, L. K. and Elsberry, R. L.: Near-inertial ocean current response to Hurricane Frederic, J. Phys. Oceanogr., 17, 1249–1269, 1987. a
Shay, L. K., Brewster, J. K., Maturi, E., Donahue, D., Meyers, P., and McCaskill, C.: Algorithm theoretical basis document for satellite derived oceanic heat content product version 3.2. ATBD: satellite-derived oceanic heat content product, NOAA/RSMAS, https://www.ospo.noaa.gov/Products/ocean/assets/ATBD_OHC_NESDIS_V3.2.pdf (last access: May 2020), 2019. a, b
Shi, W. and Wang, M.: Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico, Geophys. Res. Lett., 34, L11 607, https://doi.org/10.1029/2007GL029724, 2007. a
Song, J., Klotzbach, P. J., Tang, J., and Wang, Y.: The increasing variability of tropical cyclone lifetime maximum intensity, Sci. Rep., 8, 16 641, https://doi.org/10.1038/s41598-018-35131-x, 2018. a
Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J., Michaels, A. F., and Knap, A. H.: Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry, Deep Sea Res. Part II Top. Stud. Oceanogr., 48, 1405–1447, 2001. a
Stewart, S. R.: Tropical cyclone report Hurricane Matthew, 28 September–9 October 2016, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr (last access: May 2020), 2017. a
Sun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., Chen, H., Liao, Q., Ma, C., and Li, Q.: Impact of ocean warming on tropical cyclone size and its destructiveness, Sci. Rep., 7, 8154, https://doi.org/10.1038/s41598-017-08533-6, 2017. a
Trepanier, J. C.: North Atlantic hurricane winds in warmer than normal seas, Atmosphere, 11, 293, https://doi.org/10.3390/atmos11030293, 2020. a
van Ginneken, V. J. and Maes, G. E.: The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review, Rev.Fish Biol. Fish., 15, 367–398, 2005. a
Vincent, E. M., Lengaigne, M., Madec, G., Vialard, J., Samson, G., Jourdain, N. C., Menkes, C. E., and Jullien, S.: Processes setting the characteristics of sea surface cooling induced by tropical cyclones, J. Geophys. Res.-Oceans, 117, C02 020, https://doi.org/10.1029/2011JC007396, 2012a. a, b
Vincent, E. M., Lengaigne, M., Vialard, J., Madec, G., Jourdain, N. C., and Masson, S.: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones, J. Geophys. Res.-Oceans, 117, C05 023, https://doi.org/10.1029/2011JC007705, 2012b. a
Walker, N. D., Leben, R. R., and Balasubramanian, S.: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico, Geophys. Res. Lett., 32, L18610, https://doi.org/10.1029/2005GL023716, 2005. a, b
Wang, T., Zhang, S., Chen, F., MA, Y., Jiang, C., and Yu, J.: Influence of sequential tropical cyclones on phytoplankton blooms in the northwestern South China Sea, Chin. J. Oceanol. Limnol., https://doi.org/10.1007/s00343-020-9266-7, 2020. a, b, c
Welker, C. and Faust, E.: Tropical cyclone-related socio-economic losses in the western North Pacific region, Nat. Hazards Earth Syst. Sci., 13, 115–124, https://doi.org/10.5194/nhess-13-115-2013, 2013. a
Yamaguchi, M., Chan, J. C., Moon, I.-J., Yoshida, K., and Mizuta, R.: Global warming changes tropical cyclone translation speed, Nat. Commun., 11, 1–7, 2020. a
Ye, H., Sui, Y., Tang, D., and Afanasyev, Y.: A subsurface chlorophyll a bloom induced by typhoon in the South China Sea, J. Mar. Syst., 128, 138–145, 2013. a
Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P.: Global reconstruction of historical ocean heat storage and transport, P. Natl. A Sci., 116, 1126–1131, 2019. a
Zhang, H., Chen, D., Zhou, L., Liu, X., Ding, T., and Zhou, B.: Upper ocean response to typhoon Kalmaegi (2014), J. Geophys. Res.-Oceans, 121, 6520–6535, 2016. a
Zhang, L., Karnauskas, K. B., Donnelly, J. P., and Emanuel, K.: Response of the North Pacific tropical cyclone climatology to global warming: application of dynamical downscaling to CMIP5 models, J. Clim., 30, 1233–1243, 2017. a
Zhao, H., Shao, J., Han, G., Yang, D., and Lv, J.: Influence of typhoon matsa on phytoplankton chlorophyll a off East China, PLOS ONE, 10, e0137 863, https://doi.org/10.1371/journal.pone.0137863, 2015. a
Short summary
Hurricanes are extreme storms that induce substantial biophysical changes on oceans. We investigated the effects induced by consecutive Hurricanes Dorian and Humberto over the western Sargasso Sea in 2019 using satellite remote sensing and modelled data. These hurricanes superimposed effects on the upper-ocean response because of the strong induced mixing and upwelling. The sea surface cooling and phytoplankton bloom induced by these hurricanes were higher compared to climatological records.
Hurricanes are extreme storms that induce substantial biophysical changes on oceans. We...
Altmetrics
Final-revised paper
Preprint