Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-339-2021
https://doi.org/10.5194/nhess-21-339-2021
Research article
 | 
27 Jan 2021
Research article |  | 27 Jan 2021

Near-real-time automated classification of seismic signals of slope failures with continuous random forests

Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter

Related authors

Brief communication: An autonomous UAV for catchment-wide monitoring of a debris flow torrent
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022,https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
A neural network model for automated prediction of avalanche danger level
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023,https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-79,https://doi.org/10.5194/nhess-2023-79, 2023
Revised manuscript accepted for NHESS
Short summary
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023,https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Inform@Risk. The Development of a Prototype for an Integrated Landslide Early Warning System in an Informal Settlement: the Case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-53,https://doi.org/10.5194/nhess-2023-53, 2023
Revised manuscript under review for NHESS
Short summary
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023,https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary

Cited articles

Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., and Asensio, E.: Rockfall monitoring by Terrestrial Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain), Nat. Hazards Earth Syst. Sci., 11, 829–841, https://doi.org/10.5194/nhess-11-829-2011, 2011. a
Allen, R.: Automatic phase pickers: Their present use and future prospects, Bull. Seismol. Soc. Am., 72, S225–S242, 1982. a
Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global Planet. Change, 107, 59—9, https://doi.org/10.1016/j.gloplacha.2013.04.007, 2013. a
Allstadt, K.: Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms, J. Geophys. Res.-Earth, 118, 1472–1490, https://doi.org/10.1002/jgrf.20110, 2013. a, b
Allstadt, K. E., Matoza, R. S., Lockhart, A. B., Moran, S. C., Caplan-Auerbach, J., Haney, M. M., Thelen, W. A., and Malone, S. D.: Seismic and acoustic signatures of surficial mass movements at volcanoes, J. Volcanol. Geoth. Res., 364, 76–106, https://doi.org/10.1016/j.jvolgeores.2018.09.007, 2018. a
Download
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Altmetrics
Final-revised paper
Preprint