Articles | Volume 21, issue 6
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, 2021
https://doi.org/10.5194/nhess-21-1867-2021

Special issue: Understanding compound weather and climate events and related...

Nat. Hazards Earth Syst. Sci., 21, 1867–1885, 2021
https://doi.org/10.5194/nhess-21-1867-2021

Research article 17 Jun 2021

Research article | 17 Jun 2021

Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards

Roberto Villalobos-Herrera et al.

Related authors

The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-191,https://doi.org/10.5194/bg-2021-191, 2021
Preprint under review for BG
Short summary
Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro catchment
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-389,https://doi.org/10.5194/hess-2021-389, 2021
Preprint under review for HESS
Short summary
A local model of snow-firn dynamics and application to Colle Gnifetti site
Fabiola Banfi and Carlo De Michele
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-145,https://doi.org/10.5194/tc-2021-145, 2021
Preprint under review for TC
Short summary
A standardized index for assessing sub-monthly compound dry and hot conditions with application in China
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021,https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021,https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021,https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297, https://doi.org/10.5194/nhess-21-2285-2021,https://doi.org/10.5194/nhess-21-2285-2021, 2021
Short summary
Formation, evolution, and drainage of short-lived glacial lakes in permafrost environments of the northern Teskey Range, Central Asia
Mirlan Daiyrov and Chiyuki Narama
Nat. Hazards Earth Syst. Sci., 21, 2245–2256, https://doi.org/10.5194/nhess-21-2245-2021,https://doi.org/10.5194/nhess-21-2245-2021, 2021
Short summary
ABWiSE v1.0: Toward and Agent-Based Approach to Simulating Wildfire Spread
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-179,https://doi.org/10.5194/nhess-2021-179, 2021
Revised manuscript accepted for NHESS
Short summary
Impact of information presentation on interpretability of spatial hazard information: Lessons from a study in avalanche safety
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-147,https://doi.org/10.5194/nhess-2021-147, 2021
Revised manuscript accepted for NHESS
Short summary

Cited articles

ASCM – American College of Sports Medicine: Prevention of Thermal Injuries During Distance Running – Position stand, Med. Sci. Sport. Exerc., 16, ix–xiv, 1984. 
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteor. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011. 
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017. 
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Science Advances, 5, 9, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. 
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020a. 
Download
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Altmetrics
Final-revised paper
Preprint