Articles | Volume 20, issue 11
Nat. Hazards Earth Syst. Sci., 20, 3179–3196, 2020
https://doi.org/10.5194/nhess-20-3179-2020
Nat. Hazards Earth Syst. Sci., 20, 3179–3196, 2020
https://doi.org/10.5194/nhess-20-3179-2020

Research article 27 Nov 2020

Research article | 27 Nov 2020

Semi-empirical prediction of dam height and stability of dams formed by rock slope failures in Norway

Thierry Oppikofer et al.

Related authors

Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphological processes
Florence Magnin, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, Paula Hilger, and Reginald L. Hermanns
Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019,https://doi.org/10.5194/esurf-7-1019-2019, 2019
Short summary
Changes in ground deformation prior to and following a large urban landslide in La Paz, Bolivia, revealed by advanced InSAR
Nicholas J. Roberts, Bernhard T. Rabus, John J. Clague, Reginald L. Hermanns, Marco-Antonio Guzmán, and Estela Minaya
Nat. Hazards Earth Syst. Sci., 19, 679–696, https://doi.org/10.5194/nhess-19-679-2019,https://doi.org/10.5194/nhess-19-679-2019, 2019
Short summary
Using street view imagery for 3-D survey of rock slope failures
Jérémie Voumard, Antonio Abellán, Pierrick Nicolet, Ivanna Penna, Marie-Aurélie Chanut, Marc-Henri Derron, and Michel Jaboyedoff
Nat. Hazards Earth Syst. Sci., 17, 2093–2107, https://doi.org/10.5194/nhess-17-2093-2017,https://doi.org/10.5194/nhess-17-2093-2017, 2017
Short summary
Brief communication: On direct impact probability of landslides on vehicles
Pierrick Nicolet, Michel Jaboyedoff, Catherine Cloutier, Giovanni B. Crosta, and Sébastien Lévy
Nat. Hazards Earth Syst. Sci., 16, 995–1004, https://doi.org/10.5194/nhess-16-995-2016,https://doi.org/10.5194/nhess-16-995-2016, 2016
Short summary
Quantitative spatial analysis of rockfalls from road inventories: a combined statistical and physical susceptibility model
M. Böhme, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-81-2014,https://doi.org/10.5194/nhessd-2-81-2014, 2014
Revised manuscript not accepted

Related subject area

Landslides and Debris Flows Hazards
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021,https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021,https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
The potential of Smartstone probes in landslide experiments: how to read motion data
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020,https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
INSPIRE standards as a framework for artificial intelligence applications: a landslide example
Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard
Nat. Hazards Earth Syst. Sci., 20, 3455–3483, https://doi.org/10.5194/nhess-20-3455-2020,https://doi.org/10.5194/nhess-20-3455-2020, 2020
Short summary

Cited articles

Böhme, M., Oppikofer, T., Longva, O., Jaboyedoff, M., Hermanns, R. L., and Derron, M.-H.: Analyses of past and present rock slope instabilities in a fjord valley: implications for hazard assessment, Geomorphology, 248, 464–474, https://doi.org/10.1016/j.geomorph.2015.06.045, 2015. 
Böhme, M., Bunkholt, H., Dehls, J. F., Oppikofer, T., Hermanns, R. L., Dalsegg, E., Kristensen, L., Lauknes, T. R., and Eriksen, H. Ø.: Geologisk modell og fare- og risikoklassifisering av det ustabile fjellpartiet Gamanjunni 3 i Manndalen, Troms, Geol. Surv. Norw., Trondheim, Norway, NGU report 2016.031, 63 pp., 2016 (in Norwegian). 
Casagli, N., Ermini, L., and Rosati, G.: Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods, Eng. Geol., 69, 83–97, https://doi.org/10.1016/S0013-7952(02)00249-1, 2003. 
Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B. W., Gerber, W., Deubelbeiss, Y., Feistl, T., and Volkwein, A.: Integral hazard management using a unified software environment: numerical simulation tool ”RAMMS” for gravitational natural hazards, in: Proceedings of the 12424 Congress INTERPRAEVENT, Grenoble, France, 23–26 April 2012, 77–86, 2012. 
Corominas, J.: The angle of reach as a mobility index for small and large landslides, Can. Geotech. J., 33, 260–271, 1996. 
Download
Short summary
Damming of rivers is an important secondary effect of landslides due to upstream flooding and possible outburst floods in case of dam failure. For preliminary regional hazard and risk assessment of dams formed by rock slope failures in Norway, we developed semi-empirical relationships to assess the height and stability of dams based on an inventory of 69 dams formed by rock slope failures in southwestern Norway and published landslide dam inventories from other parts of the world.
Altmetrics
Final-revised paper
Preprint