Articles | Volume 20, issue 9
https://doi.org/10.5194/nhess-20-2397-2020
https://doi.org/10.5194/nhess-20-2397-2020
Research article
 | 
11 Sep 2020
Research article |  | 11 Sep 2020

Uncertainties in coastal flood risk assessments in small island developing states

Matteo U. Parodi, Alessio Giardino, Ap van Dongeren, Stuart G. Pearson, Jeremy D. Bricker, and Ad J. H. M. Reniers

Related authors

Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024,https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
A subgrid method for the linear inertial equations of a compound flood model
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1839,https://doi.org/10.5194/egusphere-2024-1839, 2024
Short summary
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024,https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024,https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022,https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024,https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024,https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024,https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
A brief history of tsunamis in the Vanuatu Arc
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024,https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024,https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary

Cited articles

Alves, J. H. G. M.: Numerical modeling of ocean swell contributions to the global wind-wave climate, Ocean Model., 11, 98–122, https://doi.org/10.1016/j.ocemod.2004.11.007, 2006. 
Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: A probabilistic modelling system for assessing flood risks, Nat. Hazards, 38, 79–100, https://doi.org/10.1007/s11069-005-8603-7, 2006. 
Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., and Giardino, A.: Collaborative modelling or participatory modelling? A framework for water resources management, Environ. Model. Softw., 91, 95–110, https://doi.org/10.1016/j.envsoft.2017.01.014, 2017. 
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J. F., and Chaumillon, E.: A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay, Coast. Eng., 94, 80–89, 2014. 
Booij, N., Holthuijsen, L. H., and Ris, R. C.: The “Swan” Wave Model for Shallow Water, Coast. Eng., 1996, 668–676, https://doi.org/10.1061/9780784402429.053, 1997. 
Download
Short summary
We investigate sources of uncertainty in coastal flood risk assessment in São Tomé and Príncipe, a small island developing state. We find that, for the present-day scenario, uncertainty from depth damage functions and digital elevation models can be more significant than that related to the estimation of significant wave height or storm surge level. For future scenarios (year 2100), sea level rise prediction becomes the input with the strongest impact on coastal flood damage estimate.
Altmetrics
Final-revised paper
Preprint