Articles | Volume 20, issue 9
https://doi.org/10.5194/nhess-20-2397-2020
https://doi.org/10.5194/nhess-20-2397-2020
Research article
 | 
11 Sep 2020
Research article |  | 11 Sep 2020

Uncertainties in coastal flood risk assessments in small island developing states

Matteo U. Parodi, Alessio Giardino, Ap van Dongeren, Stuart G. Pearson, Jeremy D. Bricker, and Ad J. H. M. Reniers

Related authors

Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024,https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024,https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024,https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022,https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary
Probabilistic tsunami hazard analysis of Batukaras, a tourism village in Indonesia
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
Nat. Hazards Earth Syst. Sci., 25, 1057–1069, https://doi.org/10.5194/nhess-25-1057-2025,https://doi.org/10.5194/nhess-25-1057-2025, 2025
Short summary

Cited articles

Alves, J. H. G. M.: Numerical modeling of ocean swell contributions to the global wind-wave climate, Ocean Model., 11, 98–122, https://doi.org/10.1016/j.ocemod.2004.11.007, 2006. 
Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: A probabilistic modelling system for assessing flood risks, Nat. Hazards, 38, 79–100, https://doi.org/10.1007/s11069-005-8603-7, 2006. 
Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., and Giardino, A.: Collaborative modelling or participatory modelling? A framework for water resources management, Environ. Model. Softw., 91, 95–110, https://doi.org/10.1016/j.envsoft.2017.01.014, 2017. 
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J. F., and Chaumillon, E.: A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay, Coast. Eng., 94, 80–89, 2014. 
Booij, N., Holthuijsen, L. H., and Ris, R. C.: The “Swan” Wave Model for Shallow Water, Coast. Eng., 1996, 668–676, https://doi.org/10.1061/9780784402429.053, 1997. 
Download
Short summary
We investigate sources of uncertainty in coastal flood risk assessment in São Tomé and Príncipe, a small island developing state. We find that, for the present-day scenario, uncertainty from depth damage functions and digital elevation models can be more significant than that related to the estimation of significant wave height or storm surge level. For future scenarios (year 2100), sea level rise prediction becomes the input with the strongest impact on coastal flood damage estimate.
Share
Altmetrics
Final-revised paper
Preprint