Articles | Volume 20, issue 8
https://doi.org/10.5194/nhess-20-2255-2020
https://doi.org/10.5194/nhess-20-2255-2020
Research article
 | 
18 Aug 2020
Research article |  | 18 Aug 2020

The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D

Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, and Bernhard Gems

Related authors

Late Pleistocene to Holocene event stratigraphy of Lake Hallstatt (Salzkammergut, Austria): revealed by the Hipercorig drilling system and borehole logging
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024,https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Limited effect of the confluence angle and tributary gradient on Alpine confluence morphodynamics under intense sediment loads
Theo St. Pierre Ostrander, Thomé Kraus, Bruno Mazzorana, Johannes Holzner, Andrea Andreoli, Francesco Comiti, and Bernhard Gems
EGUsphere, https://doi.org/10.5194/egusphere-2023-2432,https://doi.org/10.5194/egusphere-2023-2432, 2023
Short summary
Magnitude and source area estimations of severe prehistoric earthquakes in the western Austrian Alps
Patrick Oswald, Michael Strasser, Jens Skapski, and Jasper Moernaut
Nat. Hazards Earth Syst. Sci., 22, 2057–2079, https://doi.org/10.5194/nhess-22-2057-2022,https://doi.org/10.5194/nhess-22-2057-2022, 2022
Short summary
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021,https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Hipercorig – an innovative hydraulic coring system recovering over 60 m long sediment cores from deep perialpine lakes
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020,https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
A regional early warning for slushflow hazard
Monica Sund, Heidi A. Grønsten, and Siv Å. Seljesæter
Nat. Hazards Earth Syst. Sci., 24, 1185–1201, https://doi.org/10.5194/nhess-24-1185-2024,https://doi.org/10.5194/nhess-24-1185-2024, 2024
Short summary
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024,https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci., 24, 947–971, https://doi.org/10.5194/nhess-24-947-2024,https://doi.org/10.5194/nhess-24-947-2024, 2024
Short summary
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024,https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary

Cited articles

Basu, D., Das, K., Green, S., Janetzke, R., and Stamatakos, J.: Numerical simulation of surface waves generated by subaerial landslide at Lituya Bay Alaska, J. Offshore Mech. Arct., 132, 041101, https://doi.org/10.1115/1.4001442, 2010. 
Braathen, A., Blikra, L. H., Berg, S. S., and Karlsen, F.: Rock-slope failures in Norway: type, geometry, deformation mechanisms and stability, Norsk Geol. Tidsskr., 84, 67–88, 2004. 
Bridge, T.: When mountains fall into the sea: https://www.hakaimagazine.com/, last access: September 2018. 
Chuanqi, S., Yi, A., Qiang, W., Qingquan, L., and Zhixian, C.: Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hydrodynamics model, Adv. Water Resour., 92, 130–141, https://doi.org/10.1016/j.advwatres.2016.04.002, 2016. 
Das, K., Janetzke, R., Basu, D., Green, S., and Stamatakos, J.: Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, USA, 5, 581–594, https://doi.org/10.1115/OMAE2009-79596, 2009. 
Download
Short summary
This study highlights the use of the software Flow-3D in reproducing landslide-generated impulse waves. Due to the available data and the possibility of comparing the results with other previous works, a numerical modelling investigation on the 1958 Lituya Bay tsunami event is proposed. It is noted that the rockslide impact into the waterbody has a key role in the wave initiation and thus its propagation. The concept used in this work can be applied to prevent such phenomena in future.
Altmetrics
Final-revised paper
Preprint