Articles | Volume 20, issue 8
https://doi.org/10.5194/nhess-20-2255-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2255-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D
Andrea Franco
CORRESPONDING AUTHOR
Unit of Hydraulic Engineering, University of Innsbruck,
Technikerstraße 13, 6020 Innsbruck, Austria
Jasper Moernaut
Institute of Geology, University of Innsbruck, Innrain 52f, 6020
Innsbruck, Austria
Barbara Schneider-Muntau
Unit of Geotechnical and Tunnel Engineering, University of Innsbruck,
Technikerstraße 13, 6020 Innsbruck, Austria
Michael Strasser
Institute of Geology, University of Innsbruck, Innrain 52f, 6020
Innsbruck, Austria
Bernhard Gems
Unit of Hydraulic Engineering, University of Innsbruck,
Technikerstraße 13, 6020 Innsbruck, Austria
Related authors
No articles found.
Patrick Oswald, Michael Strasser, Jens Skapski, and Jasper Moernaut
Nat. Hazards Earth Syst. Sci., 22, 2057–2079, https://doi.org/10.5194/nhess-22-2057-2022, https://doi.org/10.5194/nhess-22-2057-2022, 2022
Short summary
Short summary
This study provides the first regional earthquake catalogue of the eastern Alps spanning 16 000 years by using three lake paleoseismic records. Recurrence statistics reveal that earthquakes recur every 1000–2000 years in an aperiodic pattern. The magnitudes of paleo-earthquakes exceed the historically documented values. This study estimates magnitude and source areas for severe paleo-earthquakes, and their shaking effects are explored in the broader study area.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020, https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary
Short summary
Hipercorig is a new modular lake sediment coring instrument based on a barge and a hydraulic corer system driven by a down-the-hole hammer. Hipercorig's performance was tested on the two periglacial lakes, namely Mondsee and Constance, located on the northern edge of the Alpine chain. Up to 63 m of Holocene lake sediments and older meltwater deposits from the last deglaciation were recovered for the first time.
Thomas Zieher, Martin Rutzinger, Barbara Schneider-Muntau, Frank Perzl, David Leidinger, Herbert Formayer, and Clemens Geitner
Nat. Hazards Earth Syst. Sci., 17, 971–992, https://doi.org/10.5194/nhess-17-971-2017, https://doi.org/10.5194/nhess-17-971-2017, 2017
Short summary
Short summary
At catchment scale, it is challenging to provide the required input parameters for physically based slope stability models. In the present study, the parameterization of such a model is optimized against observed shallow landslides during two triggering rainfall events. With the resulting set of parameters the model reproduces the location and the triggering timing of most observed landslides. Based on that, potential effects of increasing precipitation intensity on slope stability are assessed.
Bernhard Gems, Bruno Mazzorana, Thomas Hofer, Michael Sturm, Roman Gabl, and Markus Aufleger
Nat. Hazards Earth Syst. Sci., 16, 1351–1368, https://doi.org/10.5194/nhess-16-1351-2016, https://doi.org/10.5194/nhess-16-1351-2016, 2016
Short summary
Short summary
The presented study deals with numerical modelling of floods and their interactions with buildings. By means of a case study application, a commercial software is applied to simulate flooding within a test site situated in South Tyrol (Italy). A single-family house is thereby considered and exposed to specific flood discharges. The study shows possibilities and limits of numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.
R. Gabl, J. Seibl, B. Gems, and M. Aufleger
Nat. Hazards Earth Syst. Sci., 15, 2617–2630, https://doi.org/10.5194/nhess-15-2617-2015, https://doi.org/10.5194/nhess-15-2617-2015, 2015
Short summary
Short summary
The paper focuses on a new and practical way to model an avalanche for a 3D-numerical simulation with the software FLOW-3D. The main goal is to simulate the induced impulse wave in a reservoir in order to quantify the amount of overtopping water. A generalised geometry is used to validate the concept with the help of existing simplified formulas for this paper.
J. D. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori, and S. Saito
Sci. Dril., 19, 27–32, https://doi.org/10.5194/sd-19-27-2015, https://doi.org/10.5194/sd-19-27-2015, 2015
Short summary
Short summary
We summarize the findings of the IODP Workshop Tracking the Tsunamigenic slips Across and Along the Japan Trench (JTRACK) held in Tokyo, May 2014. The workshop recommended a program of drilling to investigate the physical and chemical controls on coseismic slip in the 2011 Tohoku-oki earthquake and to develop new methods for determining the recurrence interval of tsunamigenic earthquakes in the sediment record. One full- and one pre-proposal with these goals were recently submitted to IODP.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
B. Mazzorana, S. Simoni, C. Scherer, B. Gems, S. Fuchs, and M. Keiler
Hydrol. Earth Syst. Sci., 18, 3817–3836, https://doi.org/10.5194/hess-18-3817-2014, https://doi.org/10.5194/hess-18-3817-2014, 2014
B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger
Nat. Hazards Earth Syst. Sci., 14, 175–187, https://doi.org/10.5194/nhess-14-175-2014, https://doi.org/10.5194/nhess-14-175-2014, 2014
G. F. Moore, K. Kanagawa, M. Strasser, B. Dugan, L. Maeda, S. Toczko, and the IODP Expedition 338 Scientific Party
Sci. Dril., 17, 1–12, https://doi.org/10.5194/sd-17-1-2014, https://doi.org/10.5194/sd-17-1-2014, 2014
Related subject area
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
A data-driven model for Fennoscandian wildfire danger
Equivalent hazard magnitude scale
Statistical modelling of air quality impacts from individual forest fires in New South Wales, Australia
Drivers of extreme burnt area in Portugal: fire weather and vegetation
Coupling wildfire spread simulations and connectivity analysis for hazard assessment: a case study in Serra da Cabreira, Portugal
Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin
Reduced order digital twin and latent data assimilation for global wildfire prediction
What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia?
Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
The 2017 Split wildfire in Croatia: evolution and the role of meteorological conditions
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Global assessment and mapping of ecological vulnerability to wildfires
The impact of terrain model source and resolution on snow avalanche modeling
A user perspective on the avalanche danger scale – Insights from North America
Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful, and how it can be improved for users
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Automated avalanche hazard indication mapping on a statewide scale
Forecasting the regional fire radiative power for regularly ignited vegetation fires
Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019
Detrainment and braking of snow avalanches interacting with forests
Past and future trends in fire weather for the UK
Methodological and conceptual challenges in rare and severe event forecast verification
Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers
Wildfire–atmosphere interaction index for extreme-fire behaviour
How is avalanche danger described in textual descriptions in avalanche forecasts in Switzerland? Consistency between forecasters and avalanche danger
Data-based wildfire risk model for Mediterranean ecosystems – case study of the Concepción metropolitan area in central Chile
The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): a contribution to risk assessment
Impact of information presentation on interpretability of spatial hazard information: lessons from a study in avalanche safety
ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Formation, evolution, and drainage of short-lived glacial lakes in permafrost environments of the northern Teskey Range, Central Asia
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Assessing the effect of lithological setting, block characteristics and slope topography on the runout length of rockfalls in the Alps and on the island of La Réunion
Evolution of surface deformation related to salt-extraction-caused sinkholes in Solotvyno (Ukraine) revealed by Sentinel-1 radar interferometry
Attribution of the Australian bushfire risk to anthropogenic climate change
Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States
A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
A classification scheme to determine wildfires from the satellite record in the cool grasslands of southern Canada: considerations for fire occurrence modelling and warning criteria
Assessments of land subsidence along the Rizhao–Lankao high-speed railway at Heze, China, between 2015 and 2019 with Sentinel-1 data
Tailings-flow runout analysis: examining the applicability of a semi-physical area–volume relationship using a novel database
Experimental assessment of the relationship between rainfall intensity and sinkholes caused by damaged sewer pipes
Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards
Sensitivity of modeled snow stability data to meteorological input uncertainty
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023, https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Short summary
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a projected increase in wildfire risk. We propose a new method to identify wildfire rate of spread from satellites because it is important to know periods of elevated fire risk for suppression methods and land management. Results indicate that there is a peak in the area burned and rate of spread in the months of March and April, and there are significant differences for forest-type land covers.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022, https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
Michael A. Storey and Owen F. Price
Nat. Hazards Earth Syst. Sci., 22, 4039–4062, https://doi.org/10.5194/nhess-22-4039-2022, https://doi.org/10.5194/nhess-22-4039-2022, 2022
Short summary
Short summary
Models are needed to understand and predict pollutant output from forest fires so fire agencies can reduce smoke-related risks to human health. We modelled air quality (PM2.5) based on fire area and weather variables. We found fire area and boundary layer height were influential on predictions, with distance, temperature, wind speed and relative humidity also important. The models predicted reasonably accurately in comparison to other existing methods but would benefit from further development.
Tomás Calheiros, Akli Benali, Mário Pereira, João Silva, and João Nunes
Nat. Hazards Earth Syst. Sci., 22, 4019–4037, https://doi.org/10.5194/nhess-22-4019-2022, https://doi.org/10.5194/nhess-22-4019-2022, 2022
Short summary
Short summary
Fire weather indices are used to assess the effect of weather on wildfires. Fire weather risk was computed and combined with large wildfires in Portugal. Results revealed the influence of vegetation cover: municipalities with a prevalence of shrublands, located in eastern parts, burnt under less extreme conditions than those with higher forested areas, situated in coastal regions. These findings are a novelty for fire science in Portugal and should be considered for fire management.
Ana C. L. Sá, Bruno Aparicio, Akli Benali, Chiara Bruni, Michele Salis, Fábio Silva, Martinho Marta-Almeida, Susana Pereira, Alfredo Rocha, and José Pereira
Nat. Hazards Earth Syst. Sci., 22, 3917–3938, https://doi.org/10.5194/nhess-22-3917-2022, https://doi.org/10.5194/nhess-22-3917-2022, 2022
Short summary
Short summary
Assessing landscape wildfire connectivity supported by wildfire spread simulations can improve fire hazard assessment and fuel management plans. Weather severity determines the degree of fuel patch connectivity and thus the potential to spread large and intense wildfires. Mapping highly connected patches in the landscape highlights patch candidates for prior fuel treatments, which ultimately will contribute to creating fire-resilient Mediterranean landscapes.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Caili Zhang, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
EGUsphere, https://doi.org/10.5194/egusphere-2022-1167, https://doi.org/10.5194/egusphere-2022-1167, 2022
Short summary
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Markéta Součková, Roman Juras, Kryštof Dytrt, Vojtěch Moravec, Johanna Ruth Blöcher, and Martin Hanel
Nat. Hazards Earth Syst. Sci., 22, 3501–3525, https://doi.org/10.5194/nhess-22-3501-2022, https://doi.org/10.5194/nhess-22-3501-2022, 2022
Short summary
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Annalie Dorph, Erica Marshall, Kate A. Parkins, and Trent D. Penman
Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, https://doi.org/10.5194/nhess-22-3487-2022, 2022
Short summary
Short summary
Wildfire spatial patterns are determined by fire ignition sources and vegetation fuel moisture. Fire ignitions can be mediated by humans (owing to proximity to human infrastructure) or caused by lightning (owing to fuel moisture, average annual rainfall and local weather). When moisture in dead vegetation is below 20 % the probability of a wildfire increases. The results of this research enable accurate spatial mapping of ignition probability to aid fire suppression efforts and future research.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Ivana Čavlina Tomašević, Kevin K. W. Cheung, Višnjica Vučetić, Paul Fox-Hughes, Kristian Horvath, Maja Telišman Prtenjak, Paul J. Beggs, Barbara Malečić, and Velimir Milić
Nat. Hazards Earth Syst. Sci., 22, 3143–3165, https://doi.org/10.5194/nhess-22-3143-2022, https://doi.org/10.5194/nhess-22-3143-2022, 2022
Short summary
Short summary
One of the most severe and impactful urban wildfire events in Croatian history has been reconstructed and analyzed. The study identified some important meteorological influences related to the event: the synoptic conditions of the Azores anticyclone, cold front, and upper-level shortwave trough all led to the highest fire weather index in 2017. A low-level jet, locally known as bura wind that can be explained by hydraulic jump theory, was the dynamic trigger of the event.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Abby Morgan, Pascal Haegeli, Henry Finn, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2022-764, https://doi.org/10.5194/egusphere-2022-764, 2022
Short summary
Short summary
The avalanche danger scale is a critical component for communicating the severity of avalanche hazard conditions to the public. We examine how backcountry recreationists in North America understand and use the danger scale for planning trips into the backcountry. Our results provide an important user perspective on the strengths and weaknesses of the existing scale and highlight opportunities for future improvements.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 22, 1973–2000, https://doi.org/10.5194/nhess-22-1973-2022, https://doi.org/10.5194/nhess-22-1973-2022, 2022
Short summary
Short summary
Avalanche bulletins include travel and terrain statements to provide recreationists with tangible guidance about how to apply the hazard information. We examined which bulletin users pay attention to these statements, what determines their usefulness, and how they could be improved. Our study shows that reducing jargon and adding simple explanations can significantly improve the usefulness of the statements for users with lower levels of avalanche awareness education who depend on this advice.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Tero M. Partanen and Mikhail Sofiev
Nat. Hazards Earth Syst. Sci., 22, 1335–1346, https://doi.org/10.5194/nhess-22-1335-2022, https://doi.org/10.5194/nhess-22-1335-2022, 2022
Short summary
Short summary
The presented method aims to forecast regional wildfire-emitted radiative power in a time-dependent manner several days in advance. The temporal fire radiative power can be converted to an emission production rate, which can be implemented in air quality forecasting simulations. It is shown that in areas with a high incidence of wildfires, the fire radiative power is quite predictable, but otherwise it is not.
Christos Bountzouklis, Dennis M. Fox, and Elena Di Bernardino
Nat. Hazards Earth Syst. Sci., 22, 1181–1200, https://doi.org/10.5194/nhess-22-1181-2022, https://doi.org/10.5194/nhess-22-1181-2022, 2022
Short summary
Short summary
The study addresses the evolution of burned areas in southeastern France from 1970 to 2019 through the scope of a firefighting policy shift in 1994 that resulted in a significant decrease in the burned area. Regions with large fires were particularly impacted, whereas, in other areas, the fires remained frequent and occurred closer to built-up zones. Environmental characteristics such as south-facing slopes and low vegetation (bushes) are increasingly associated with burned areas.
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022, https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
Matthew C. Perry, Emilie Vanvyve, Richard A. Betts, and Erika J. Palin
Nat. Hazards Earth Syst. Sci., 22, 559–575, https://doi.org/10.5194/nhess-22-559-2022, https://doi.org/10.5194/nhess-22-559-2022, 2022
Short summary
Short summary
In the past, wildfires in the UK have occurred mainly in spring, with occasional events during hot, dry summers. Climate models predict a large future increase in hazardous fire weather conditions in summer. Wildfire can be considered an
emergent riskfor the UK, as past events have not had widespread major impacts, but this could change. The large increase in risk between the 2 °C and 4 °C levels of global warming highlights the importance of global efforts to keep warming below 2 °C.
Philip A. Ebert and Peter Milne
Nat. Hazards Earth Syst. Sci., 22, 539–557, https://doi.org/10.5194/nhess-22-539-2022, https://doi.org/10.5194/nhess-22-539-2022, 2022
Short summary
Short summary
There is no consensus about how to assess the quality of binary (yes or no) rare and severe event forecasts, i.e. forecasts involving natural hazards like tornadoes or avalanches. We offer a comprehensive overview of the challenges we face when making such an assessment and provide a critical review of existing solutions. We argue against all but one existing solution to assess the quality of such forecasts and present practical consequences to improve forecasting services.
Jacques Mourey, Pascal Lacroix, Pierre-Allain Duvillard, Guilhem Marsy, Marco Marcer, Emmanuel Malet, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 22, 445–460, https://doi.org/10.5194/nhess-22-445-2022, https://doi.org/10.5194/nhess-22-445-2022, 2022
Short summary
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
Tomàs Artés, Marc Castellnou, Tracy Houston Durrant, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 22, 509–522, https://doi.org/10.5194/nhess-22-509-2022, https://doi.org/10.5194/nhess-22-509-2022, 2022
Short summary
Short summary
During the last 20 years extreme wildfires have challenged firefighting capabilities. Several fire danger indices are routinely used by firefighting services but are not suited to forecast convective extreme wildfire behaviour at the global scale. This article proposes a new fire danger index for deep moist convection, the extreme-fire behaviour index (EFBI), based on the analysis of the vertical profiles of the atmosphere above wildfires to use along with traditional fire danger indices.
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Short summary
How is avalanche danger described in public avalanche forecasts? We analyzed 6000 textual descriptions of avalanche danger in Switzerland, taking the perspective of the forecaster. Avalanche danger was described rather consistently, although the results highlight the difficulty of communicating conditions that are neither rare nor frequent, neither small nor large. The study may help to refine the ways in which avalanche danger could be communicated to the public.
Edilia Jaque Castillo, Alfonso Fernández, Rodrigo Fuentes Robles, and Carolina G. Ojeda
Nat. Hazards Earth Syst. Sci., 21, 3663–3678, https://doi.org/10.5194/nhess-21-3663-2021, https://doi.org/10.5194/nhess-21-3663-2021, 2021
Short summary
Short summary
Wildfires pose risks to lives and livelihoods in many regions of the world. Particularly in Chile's central-south region, climate change, widespread land use change, and urban growth tend to increase the likelihood of fire occurrence. Our work focused on the Concepción metropolitan area, where we developed a model using machine learning in order to map wildfire risks. We found that the interface between urban areas and forestry plantations presents the highest risks.
Alessandro Gattuso, Francesco Italiano, Giorgio Capasso, Antonino D'Alessandro, Fausto Grassa, Antonino Fabio Pisciotta, and Davide Romano
Nat. Hazards Earth Syst. Sci., 21, 3407–3419, https://doi.org/10.5194/nhess-21-3407-2021, https://doi.org/10.5194/nhess-21-3407-2021, 2021
Short summary
Short summary
Santa Barbara and Aragona are affected by mud volcanism with episodic hazardous paroxysm events. Two potentially hazardous paroxysm exposed surfaces of 0.12 and 0.20 km2 were elaborated with DSMs and with historical information on the paroxysms that occurred in the past. This paper, in the end, could be a useful tool for civil protection authorities in order to take appropriate risk mitigation measurements for exposed people and for monitoring activities.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 21, 3219–3242, https://doi.org/10.5194/nhess-21-3219-2021, https://doi.org/10.5194/nhess-21-3219-2021, 2021
Short summary
Short summary
Avalanche warning services publish condition reports to help backcountry recreationists make informed decisions about when and where to travel in avalanche terrain. We tested how different graphic representations of terrain information can affect users’ ability to interpret and apply the provided information. Our study shows that a combined presentation of aspect and elevation information is the most effective. These results can be used to improve avalanche risk communication products.
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021, https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297, https://doi.org/10.5194/nhess-21-2285-2021, https://doi.org/10.5194/nhess-21-2285-2021, 2021
Short summary
Short summary
We mapped the subsidence of Wuhan using Sentinel-1 synthetic aperture radar (SAR) images acquired during 2015–2019. Overall subsidence coincides with the distribution of engineered geological regions with soft soils, while the subsidence centers shifted with urban construction activities. Correlation between karst subsidence and concentrated rainfall was identified in Qingling–Jiangdi. Results indicate that interferometric SAR can be employed to routinely monitor and identify geohazards.
Mirlan Daiyrov and Chiyuki Narama
Nat. Hazards Earth Syst. Sci., 21, 2245–2256, https://doi.org/10.5194/nhess-21-2245-2021, https://doi.org/10.5194/nhess-21-2245-2021, 2021
Short summary
Short summary
In the Teskey Range of the Tien Shan (Kyrgyz Republic), four outburst flood disasters from short-lived glacial lakes in 2006, 2008, 2013, and 2014 caused severe damages in the downstream part. Short-lived glacial lakes grow rapidly and drain within a few months, due to closure and opening of an outlet ice tunnel in an ice-cored moraine complex at the glacier front. We investigated how short-lived glacial lakes store and drain water over short periods based on field survey and satellite data.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Eszter Szűcs, Sándor Gönczy, István Bozsó, László Bányai, Alexandru Szakacs, Csilla Szárnya, and Viktor Wesztergom
Nat. Hazards Earth Syst. Sci., 21, 977–993, https://doi.org/10.5194/nhess-21-977-2021, https://doi.org/10.5194/nhess-21-977-2021, 2021
Short summary
Short summary
Sinkhole formation and post-collapse deformation in the Solotvyno salt mining area was studied where the salt dissolution due to water intrusion poses a significant risk. Based on a Sentinel-1 data set, remarkable surface deformation with a maximum rate of 5 cm/yr was revealed, and it was demonstrated that the deformation process has a linear characteristic although the mining activity was ended more than 10 years ago.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Andrew R. Schauer, Jordy Hendrikx, Karl W. Birkeland, and Cary J. Mock
Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021, https://doi.org/10.5194/nhess-21-757-2021, 2021
Short summary
Short summary
Our research links upper atmospheric circulation patterns to a destructive and difficult-to-predict type of snow avalanche in the western United States. At each of our study sites, we find unique circulation patterns that tend to occur at the beginning of the winter season during years with major avalanche activity. We also find specific patterns that occur frequently in the days leading to major avalanche events. This work will enable practitioners to better anticipate these challenging events.
Erich Peitzsch, Jordy Hendrikx, Daniel Stahle, Gregory Pederson, Karl Birkeland, and Daniel Fagre
Nat. Hazards Earth Syst. Sci., 21, 533–557, https://doi.org/10.5194/nhess-21-533-2021, https://doi.org/10.5194/nhess-21-533-2021, 2021
Short summary
Short summary
We sampled 647 trees from 12 avalanche paths to investigate large snow avalanches over the past 400 years in the northern Rocky Mountains, USA. Sizable avalanches occur approximately every 3 years across the region. Our results emphasize the importance of sample size, scale, and spatial extent when reconstructing avalanche occurrence across a region. This work can be used for infrastructure planning and avalanche forecasting operations.
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020, https://doi.org/10.5194/nhess-20-3551-2020, 2020
Short summary
Short summary
We investigate patterns in how avalanche forecasters characterize snow avalanche hazard with avalanche problem types. Decision tree analysis was used to investigate both physical influences based on weather and on snowpack variables and operational practices. The results highlight challenges with developing decision aids based on previous hazard assessments.
Dan K. Thompson and Kimberly Morrison
Nat. Hazards Earth Syst. Sci., 20, 3439–3454, https://doi.org/10.5194/nhess-20-3439-2020, https://doi.org/10.5194/nhess-20-3439-2020, 2020
Short summary
Short summary
We describe critically low relative humidity and high wind speeds above which only documented wildfires were seen to occur and where no agricultural fires were documented in southern Canada. We then applied these thresholds to the much larger satellite record from 2002–2018 to quantify regional differences in both the rate of observed burning and the number of days with critical weather conditions to sustain a wildfire in this grassland and agricultural region.
Chuanguang Zhu, Wenhao Wu, Mahdi Motagh, Liya Zhang, Zongli Jiang, and Sichun Long
Nat. Hazards Earth Syst. Sci., 20, 3399–3411, https://doi.org/10.5194/nhess-20-3399-2020, https://doi.org/10.5194/nhess-20-3399-2020, 2020
Short summary
Short summary
We investigate the contemporary ground deformation along the RLHR-HZ using Sentinel-1 data and find that the RLHR-HZ runs through two main subsidence areas. A total length of 35 km of the RLSR-HZ is affected by the two subsidence basins. Considering the previous investigation coupled with information on human activities, we conclude that the subsidence is mainly caused by extraction of groundwater and underground mining.
Negar Ghahramani, Andrew Mitchell, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 20, 3425–3438, https://doi.org/10.5194/nhess-20-3425-2020, https://doi.org/10.5194/nhess-20-3425-2020, 2020
Short summary
Short summary
Tailings flows result from the breach of tailings dams. These flows contain waste products of the mineral processing operations and can travel substantial distances, causing significant loss of life, environmental damage, and economic costs. This paper establishes a new tailings-flow runout classification system, describes a new database of events that have been mapped in detail using the new system, and examines the applicability of a semi-physical area–volume relationship using the new data.
Tae-Young Kwak, Sang-Inn Woo, Choong-Ki Chung, and Joonyoung Kim
Nat. Hazards Earth Syst. Sci., 20, 3343–3359, https://doi.org/10.5194/nhess-20-3343-2020, https://doi.org/10.5194/nhess-20-3343-2020, 2020
Short summary
Short summary
In this study, model tests were used to analyze the effects of rainfall intensity on the formation of the eroded zone and the occurrence of sinkholes due to groundwater infiltration through pipe defects. The model tests were conducted to simulate the actual site conditions considering the soil used around sewer pipe networks and the sewer pipe landfill standards. The groundwater level was applied to the model tests by setting three hydraulic heads based on heavy-rainfall characteristics.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, https://doi.org/10.5194/nhess-20-2961-2020, 2020
Short summary
Short summary
To minimize the risk of structure collapse due to extreme snow loads, structure standards rely on 50-year return levels of ground snow load (GSL), i.e. levels exceeded once every 50 years on average, that do not account for climate change. We study GSL data in the French Alps massifs from 1959 and 2019 and find that these 50-year return levels are decreasing with time between 900 and 4800 m of altitude, but they still exceed return levels of structure standards for half of the massifs at 1800 m.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Cited articles
Basu, D., Das, K., Green, S., Janetzke, R., and Stamatakos, J.: Numerical
simulation of surface waves generated by subaerial landslide at Lituya Bay
Alaska, J. Offshore Mech. Arct., 132, 041101, https://doi.org/10.1115/1.4001442,
2010.
Braathen, A., Blikra, L. H., Berg, S. S., and Karlsen, F.: Rock-slope failures in
Norway: type, geometry, deformation mechanisms and stability, Norsk Geol. Tidsskr., 84, 67–88, 2004.
Bridge, T.: When mountains fall into the sea: https://www.hakaimagazine.com/,
last access: September 2018.
Chuanqi, S., Yi, A., Qiang, W., Qingquan, L., and Zhixian, C.: Numerical
simulation of landslide-generated waves using a soil-water coupling smoothed
particle hydrodynamics model, Adv. Water Resour., 92, 130–141,
https://doi.org/10.1016/j.advwatres.2016.04.002, 2016.
Das, K., Janetzke, R., Basu, D., Green, S., and Stamatakos, J.: Numerical
Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides
Using RANS and SPH Models, 28th International Conference on Ocean, Offshore
and Arctic Engineering, Honolulu, USA, 5, 581–594,
https://doi.org/10.1115/OMAE2009-79596, 2009.
DGGS: DGGS Elevation portal – Alaska Division of Geological and Geophysical Surveys, https://elevation.alaska.gov/#65.14611:-155.74219:4, last access 24 March 2020.
Evers, F. M., Heller, V., Fuchs, H., Hager, W. H., and Boes, R. M.: Landslide
generated impulse waves in reservoirs – Basics and computation, VAW
Communications, Laboratory of Hydraulics, Hydrology and Glaciology
(VAW), ETH Zurich, Zurich, Switzerland, 254 pp., 2019.
Flow Science Inc.: Flow-3D®, Version 12.0, User's
Manual, https://www.flow3d.com (last access: 31 January 2020), Santa Fe, USA, 2018.
Franco, A.: Lituya Bay 1958 Tsunami – pre-event bathymetry reconstruction
and 3D-numerical modelling utilizing the CFD software Flow-3D,
Zenodo, https://doi.org/10.5281/zenodo.3831448, 2020.
Fritz, H. M., Hager, W. H., and Minor, H. E.: Lituya Bay case: Rockslide impact
and wave run-up, Sci. Tsunami Hazards, 19, 3–22, 2001.
Fritz, H. M., Mohammed, F., and Yoo, J.: Lituya Bay landslide impact
generated mega-tsunami 50th anniversary, Pure Appl. Geophys., 166, 153–175, https://doi.org/10.1007/s00024-008-0435-4, 2009.
Furseth, A.: Dommedagsfjellet - Tafjord 1934, Gyldendal Norsk Forlag A/S, Oslo, Norway, 1958.
Gauthier, D., Anderson, S. A., Fritz, H. M., and Giachetti, T.: Karrat Fjord
(Greenland) Tsunamigenic landslide of 17 June 2017: initial 3D observations,
Landslides, 15, 327–332, https://doi.org/10.1007/s10346-017-0926-4, 2017.
González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D.: The Lituya Bay landslide-generated mega-tsunami – numerical simulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369–388, https://doi.org/10.5194/nhess-19-369-2019, 2019.
Haeussler, P. J., Gulick, S. P. S., McCall, N., Walton, M., Reece, R., Larsen,
C., Shugar, D. H., Geertsema, M., Venditti, J. G., and Labay, K.: Submarine
deposition of a subaerial landslide in Taan Fjord, Alaska, J. Geophys.
Res.-Earth, 123, 2443–2463, https://doi.org/10.1029/2018JF004608, 2018.
Harbitz, C., Pedersen, G., and Gjevik, B.: Numerical simulations of large water
waves due to landslides, J. Hydraul. Eng. 119, 1325–1342, 1993.
Hall Jr., J. V. and Watts, G. M.: Laboratory investigation of the vertical
rise of solitary waves on impermeable slopes, U.S. Army Corps of Engineers,
Beach Erosion Board, 173–189, 1953.
Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time-Dependent
Viscous Incompressible Flow, Phys. Fluids, 8, 2182–2189,
https://doi.org/10.1063/1.1761178, 1965.
Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse
waves in reservoirs – Basics and computation, VAW Communications, 211,
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 211 pp., 2009.
Heller, V. and Hager, W. H.: Impulse product parameter in landslide generated
impulse waves, J. Waterw. Port Coast., 136, 145–155, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037, 2010.
Hinze, J. O.: Turbulence, McGraw-Hill, New York, USA, 1975.
Hirt, C.W. and Nichols, B. D.: Volume of Fluid (VOF) Method for the Dynamics
of Free Boundaries, J. Comput. Phys., 39, 201–225,
https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
Hirt, C.W. and Sicilian, J.M.: A Porosity Technique for the Definition of
Obstacles in Rectangular Cell Meshes, Proceedings of the Fourth
International Conference on Ship Hydrodynamics, National Academy of
Sciences, Washington, D.C., USA, 25–27 September 1985, 1–19, 1985.
Holmsen, G.: De siste bergskred i Tafjord og Loen, Norge, Svensk geografisk
Arbok 1936, Lunds Universitet, Geografiska Institutionen Meddelande, 124,
171–190, 1936.
Huber, A. and Hager, W. H.: Forecasting impulse waves in reservoirs,
Dix-neuvième Congrès des Grands Barrages C31, Florence, Italy, Commission
International des Grands Barrages, Paris, France, 993–1005, 1997.
Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides,
Coast. Eng., 35, 575–588, https://doi.org/10.9753/icce.v12.35, 1970.
Körner H. J.: Reichweite und Geschwindigkeit von Bergstürzen und
Fliessschneelawinen, Rock Mech., 8, 225–256, 1976.
Li, G., Chen, G., Li, P., and Jing, H.: Efficient and Accurate 3-D Numerical
Modelling of Landslide Tsunami, Water, 11, 2033, https://doi.org/10.3390/w11102033,
2019.
Mader, C. L.: Modelling the 1958 Lituya Bay mega-tsunami, Sci. Tsunami
Hazards, 17, 57–67, 2001.
Mader C. L and Gittings M. L.: Modelling the 1958 Lituya Bay mega-tsunami II,
Sci. Tsunami Hazards, 20, 241–250, 2002.
Mao J., Zhao L., Liu X., Cheng J., and Avital E.: A three-phases model for the
simulation of landslide-generated waves using the improved conservative
level set method, Comput. Fluids, 159, 243–253, ISSN: 0045-7930, https://doi.org/10.1016/j.compfluid.2017.10.007, 2017.
Miller, D.: Giant Waves in Lituya Bay, Alaska: A Timely Account of the
Nature and Possible Causes of Certain Giant Waves, with Eyewitness Reports
of Their Destructive Capacity, professional paper, US Government Printing
Office, Washington, D.C., USA, 49–85, 1960.
Noda, E.: Water waves generated by landslides, J. Waterway
Div-ASCE., 96, 835–855, 1970.
Pastor, M., Herreros, I., Fernndez Merodo, J. A., Mira, P., Haddad, B., Quecedo, M.,
González, E., Alvarez-Cedrón, C., and Drempetic, V.: Modelling of fast
catastrophic landslides and impulse waves induced by them in fjords, lakes
and reservoirs, Eng. Geol., 109, 124–134,
https://doi.org/10.1016/j.enggeo.2008.10.006, 2008.
Paronuzzi, P. and Bolla, A.: The prehistoric Vajont rockslide: an update
geological model, Geomorphology, 169–170, 165–191, https://doi.org/10.1016/j.geomorph.2012.04.021, 2012.
Pararas-Carayannis, G.: Analysis of mechanism of tsunami generation in
Lituya Bay, Sci. Tsunami Hazards, 17, 193–206, 1999.
Quecedo, M., Pastor, M., and Herreros, M.: Numerical modelling of impulse
wave generated by fast landslides, Int. J. Numer. Meth. Eng., 59, 1633–1656,
https://doi.org/10.1002/nme.934, 2004.
Rady, R. M. A. E.: 2D-3D Modeling of Flow Over Sharp-Crested Weirs, J.
Appl. Sci. Res., 7, 2495–2505, 2011.
Slingerland, R. L. and Voight, B.: Occurrences, properties, and predictive
models of landslide-generated water waves, Developments in Geotechnical
Engineering 14B, Rockslides and avalanches 2, Engineering Sites, Elsevier
Scientific Publishing, Amsterdam, the Netherlands, 317–397, 1979.
Schwaiger, H. F. and Higman, B.: Lagrangian hydrocode simulations of the
1958 Lituya Bay tsunamigenic rockslide, Geochem. Geophys. Geosyst., 8, Q07006,
https://doi.org/10.1029/2007GC001584, 2007.
Schwer L. E.: Is your mesh refined enough? Estimating Discretization Error
using GCI, in 7th German LS-DYNA Forum, Bamberg, Germany, 2008.
Sepúlveda, S. A., A. Serey, M. Lara, A. Pavez, and Sepúlveda, S. A.,
Serey, A., Lara, M., Pavez, A., Rebolledo, S.: Landslides induced by the
April 2007 Aysén Fjord earthquake, Chilean Patagonia, Landslides, 7,
483–492, https://doi.org/10.1007/s10346-010-0203-2, 2010.
Sharpe, C.: Landslides and Related Phenomena, Columbia Univ. Press, New
York, USA, 1938.
Synolakis, C.: The runup of solitary waves, J. Fluid. Mech., 185, 523–545,
https://doi.org/10.1017/S002211208700329X, 1987.
Tocher, D. and Miller D. J.: Field observations on effects of Alaska
earthquake of 10 July, 1958, Science, 129, 3346, 394–395,
https://doi.org/10.1126/science.129.3346.394, 1959.
Tognacca, C.: Beitrag zur Untersuchung der Entstehungsmechanismen von
Murgangen, VAW communications, 164, Laboratory of Hydraulics, Hydrology and
Glaciology, ETH Zurich, Zurich, Switzerland, 1999.
US Coast and Geodesic Survey: Survey id: H04608: NOS Hydrographic Survey,
1926-12-31, available at:
https://data.world/us-noaa-gov/f6786b28-ea06-4c9a-ac30-53cb5356650c (last access: 28 September 2018), 1926.
US Coast and Geodesic Survey: Survey id: H08492: NOS Hydrographic Survey,
Lituya Bay, Alaska, 1959-08-27, available at:
https://data.world/us-noaa-gov/9401821a-28f5-4846-88db-43e702a5b12b (last access: 28 September 2018), 1959.
U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1942.
U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1969.
U.S. Coast and Geodetic Survey: Chart 16762, Lituya Bay, Washington D.C., USA, 1990.
Vanneste, D.: Experimental and numerical study of wave-induced porous flow
in rubble-mound breakwaters, Ph.D. thesis, Gent University, Gent, Belgium,
2012.
Varnes, D.: Landslide type and Processes, In Landslides and Engineering
Practice, H R B Special Rep., 29, 22–47, National Research Council
(US), Washington D.C., USA, 1958.
Vasquez, J. A.: Modelling the generation and propagation of
landslide-generated landslide, CSCE SCGC, Leadership in Sustainable
Infrastructure, Annual Conference, May 31–June 3 2017, Vancouver, Canada, 2017.
Yakhot, V. and Smith, L. M.: The Renormalization Group, the e-Expansion and
Derivation of Turbulence Models, J. Sci. Comput., 7, 35–61, https://doi.org/10.1093/gji/ggv026, 1992.
Wang, J., Ward, S. N., and Xiao, L.: Numerical simulation of the December 4, 2007
landslide-generated tsunami in Chehalis Lake, Canada, Geophys. J. Int., 201,
372–376, https://doi.org/10.1093/gji/ggv026, 2015.
Ward, S. N. and Day, S.: The 1958 Lituya bay landslide and tsunami – A
tsunami ball approach, J. Earthq. Tsunami, 4, 285–319, https://doi.org/10.1142/S1793431110000893, 2010.
Weiss, R. and Wuennemann, K.: Understanding tsunami by landslides as the
next challenge for hazard, risk and mitigation: Insight from multi-material
hydrocode modeling, American Geophysical Union, Fall Meeting 2007, San Francisco, CA, USA, S51C-06, 2007.
Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the
mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett., 36,
L09602, https://doi.org/10.1029/2009GL037814, 2009.
Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J.: The MAC Method: A
Computing Technique for Solving Viscous, Incompressible, Transient Fluid
Flow Problems Involving Free-surfaces, Los Alamos Scientific Laboratory
report LA-3425, Los Alamos, NM, USA, 1966.
Wiegel, R. L.: Oceanographical Engineering, Prentice Hall, Englewood Cliffs, USA, 1964.
Xenakis, A. M., Lind, S. J., Stansby, P. K., and Rogers, B. D.: Landslides and
tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH)
with application to the 1958 Lituya Bay event and idealized experiment,
P. R. Soc. A, 473, 1–18, https://doi.org/10.1098/rspa.2016.0674, 2017.
Short summary
This study highlights the use of the software Flow-3D in reproducing landslide-generated impulse waves. Due to the available data and the possibility of comparing the results with other previous works, a numerical modelling investigation on the 1958 Lituya Bay tsunami event is proposed. It is noted that the rockslide impact into the waterbody has a key role in the wave initiation and thus its propagation. The concept used in this work can be applied to prevent such phenomena in future.
This study highlights the use of the software Flow-3D in reproducing landslide-generated impulse...
Altmetrics
Final-revised paper
Preprint