Articles | Volume 20, issue 5
https://doi.org/10.5194/nhess-20-1267-2020
https://doi.org/10.5194/nhess-20-1267-2020
Research article
 | 
13 May 2020
Research article |  | 13 May 2020

Non-stationary extreme value analysis applied to seismic fragility assessment for nuclear safety analysis

Jeremy Rohmer, Pierre Gehl, Marine Marcilhac-Fradin, Yves Guigueno, Nadia Rahni, and Julien Clément

Related authors

Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
EGUsphere, https://doi.org/10.5194/egusphere-2024-323,https://doi.org/10.5194/egusphere-2024-323, 2024
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022,https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022,https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021,https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary

Related subject area

Earthquake Hazards
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024,https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024,https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024,https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024,https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary
The influence of aftershocks on seismic hazard analysis: a case study from Xichang and the surrounding areas
Qing Wu, Guijuan Lai, Jian Wu, and Jinmeng Bi
Nat. Hazards Earth Syst. Sci., 24, 1017–1033, https://doi.org/10.5194/nhess-24-1017-2024,https://doi.org/10.5194/nhess-24-1017-2024, 2024
Short summary

Cited articles

Aho, K., Derryberry, D., and Peterson, T.: Model selection for ecologists: the worldviews of AIC and BIC, Ecology, 95, 631–636, 2014. 
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Selected papers of hirotugu akaike, Springer, New York, NY, 199–213, 1998. 
Argyroudis, S. A. and Pitilakis, K. D.: Seismic fragility curves of shallow tunnels in alluvial deposits, Soil Dynam. Earthq. Eng., 35, 1–12, 2012. 
Augustin, N. H., Sauleau, E. A., and Wood, S. N.: On quantile quantile plots for generalized linear models, Comput. Stat. Data Anal., 56, 404–409, 2012. 
Baker, J. W.: Efficient analytical fragility function fitting using dynamic structural analysis, Earthq. Spectra, 31, 579–599, 2015. 
Download
Short summary
Fragility curves (FCs) are key tools for seismic probabilistic safety assessments that are performed at the level of the nuclear power plant (NPP). These statistical methods relate the probabilistic seismic hazard loading at the given site to the required performance of the NPP safety functions. In the present study, we investigate how the tools of non-stationary extreme value analysis can be used to model in a flexible manner the FCs for NPP.
Altmetrics
Final-revised paper
Preprint