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Abstract. Fragility curves (FCs) are key tools for seis-
mic probabilistic safety assessments that are performed at
the level of the nuclear power plant (NPP). These statisti-
cal methods relate the probabilistic seismic hazard loading
at the given site to the required performance of the NPP
safety functions. In the present study, we investigate how
the tools of non-stationary extreme value analysis can be
used to model in a flexible manner the tail behaviour of the
engineering demand parameter as a function of the consid-
ered intensity measure. We focus the analysis on the dy-
namic response of an anchored steam line and of a support-
ing structure under seismic solicitations. The failure crite-
rion is linked to the exceedance of the maximum equivalent
stress at a given location of the steam line. A series of three-
component ground-motion records (∼ 300) were applied at
the base of the model to perform non-linear time history anal-
yses. The set of numerical results was then used to derive
a FC, which relates the failure probability to the variation
in peak ground acceleration (PGA). The probabilistic model
of the FC is selected via information criteria completed by
diagnostics on the residuals, which support the choice of
the generalised extreme value (GEV) distribution (instead of
the widely used log-normal model). The GEV distribution is
here non-stationary, and the relationships of the GEV param-
eters (location, scale and shape) are established with respect
to PGA using smooth non-linear models. The procedure is
data-driven, which avoids the introduction of any a priori
assumption on the shape or form of these relationships. To
account for the uncertainties in the mechanical and geomet-
rical parameters of the structures (elastic stiffness, damping,
pipeline thicknesses, etc.), the FC is further constructed by
integrating these uncertain parameters. A penalisation proce-

dure is proposed to set to zero the variables of little influence
in the smooth non-linear models. This enables us to outline
which of these parametric uncertainties have negligible influ-
ence on the failure probability as well as the nature of the in-
fluence (linear, non-linear, decreasing, increasing, etc.) with
respect to each of the GEV parameters.

1 Introduction

A crucial step of any seismic probability risk assess-
ment (PRA) is the vulnerability analysis of structures, sys-
tems and components (SSCs) with respect to the exter-
nal loading induced by earthquakes. To this end, fragility
curves (FCs), which relate the probability of an SSC to ex-
ceed a predefined damage state as a function of an inten-
sity measure (IM) representing the hazard loading, are com-
mon tools. Formally, FC expresses the conditional proba-
bility with respect to the IM value (denoted “im”) and to
the EDP (engineering demand parameter) obtained from the
structural analysis (force, displacement, drift ratio, etc.) as
follows:

Pf(im)= P(EDP≥ th|IM= im), (1)

where “th” is an acceptable demand threshold.
FCs are applied to a large variety of different structures,

like residential buildings (e.g. Gehl et al., 2013), nuclear
power plants (Zentner et al., 2017), wind turbines (Quilligan
et al., 2012), underground structures (Argyroudis and Piti-
lakis, 2012), etc. Their probabilistic nature makes them well
suited for PRA applications, at the interface between proba-
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bilistic hazard assessments and event tree analyses, in order
to estimate the occurrence rate of undesirable top events.

Different procedures exist to derive FCs (see e.g. an
overview by Zentner et al., 2017). In the present study, we
focus on the analytical approach, which aims at deriving a
parametric cumulative distribution function (CDF) from data
collected from numerical structural analyses. A common as-
sumption in the literature is that the logarithm of “im” is nor-
mally distributed (e.g. Ellingwood, 2001) as follows:

Pf(im)=8
(

log(im)− log(α)
β

)
, (2)

where8 is the standard normal cumulative distribution func-
tion, α is the median and β is lognormal standard deviation.
The parameters of the normal distribution are commonly es-
timated either by maximum likelihood estimation (see e.g.
Shinozuka et al., 2000) or by fitting a linear probabilistic
seismic demand model on the log scale (e.g. Banerjee and
Shinozuka, 2008).

This procedure faces, however, limits in practice.

– Limit (1). The assumption of normality may not al-
ways be valid in all situations, as discussed by Mai et
al. (2017) and Zentner et al. (2017). This widely used
assumption is especially difficult to justify when the
considered EDP corresponds to the maximum value of
the variable of interest (for instance maximum transient
stress value), i.e. when the FC serves to model extreme
values.

– Limit (2). A second commonly used assumption is the
homoscedasticity of the underlying probabilistic model,
i.e. the variance term β is generally assumed to be con-
stant over the domain of the IM.

– Limit (3). The assumption of linearity regarding the re-
lation between the median and IM may not always hold
valid, as shown for instance by Wang et al. (2018) using
artificial neural networks.

– Limit (4). A large number of factors may affect the es-
timate of Pf in addition to IM; for instance epistemic
uncertainties due to the identification and characterisa-
tion of some mechanical (elastic stiffness, damping ra-
tio, etc.) and geometrical parameters of the considered
structure.

The current study aims at going a step forward in the de-
velopment of seismic FCs by improving the procedure re-
garding the aforementioned limits. To deal with limit (1),
we propose relying on the tools of extreme value statistics
(Coles, 2001) and more specifically on the generalised ex-
treme value (GEV) distribution, which can model different
extremes’ behaviour.

Note that the focus is on the extremes related to EDP, not
on the forcing, i.e. the analysis does not model the extremes

of IM as is done for current practices of probabilistic seismic
hazard analysis (see e.g. Dutfoy, 2019). This means that no
preliminary screening is applied, which implies that the FC
derivation is conducted by considering both large and inter-
mediate earthquakes, i.e. IM values that are small–moderate
to large.

The use of GEV is examined using criteria for model se-
lection like Akaike or Bayesian information criteria (Akaike,
1998; Schwarz, 1978). Limits (2) and (3) are addressed using
tools for distributional regression (e.g. Koenker et al., 2013)
within the general framework of the Generalized Additive
Model for Location, Scale and Shape (GAMLSS) parame-
ter (e.g. Rigby and Stasinopoulos, 2005). GAMLSS is very
flexible in the sense that the mathematical relation of the me-
dian and variance in Eq. (1) can be learnt from the data via
non-linear smooth functions. GAMLSS can be applied to any
parametric probabilistic model and here to the GEV model
as a particular case. This enables us to fit a non-stationary
GEV model, i.e. a GEV model for which the parameters
vary as a function of some covariates (here corresponding
to IM andU ). The use of data-driven non-linear smooth func-
tions avoids introducing a priori a parametric model (linear
or polynomial) as many authors do (see an example by for
sea level extremes by Wong, 2018, and for temperature by
Cheng et al., 2014).

Finally, accounting for the epistemic uncertainties in the
FC derivation (limit (4)) can be conducted in different man-
ners. A first option can rely on the incremental dynamic anal-
ysis (IDA), where the uncertain mechanical and geometrical
parameters result in uncertain capacities (i.e. related to the
threshold “th” in Eq. 1). The FC is then derived through con-
volution with the probabilistic distribution of the demand pa-
rameter; see Vamvatsikos and Cornell (2002). Depending on
the complexity of the system (here for NPP), the adaptation
of IDA to non-linear dynamic structural numerical simula-
tions can be tedious (this is further discussed in Sect. 3.1). In
the present study, we preferably opt for a second approach by
viewing Pf as conditional on the vector of uncertain mechan-
ical and geometrical factors U (in addition to IM), namely

Pf(im,u)= P(EDP≥ th|IM= im,U = u). (3)

Dealing with Eq. (3) then raises the question of integrating
a potentially large number of variables, which might hamper
the stability and quality of the procedure for FC construc-
tion. This is handled with a penalisation procedure (Marra
and Wood, 2011), which enables the analyst to screen the
uncertainties of negligible influence.

The paper is organised as follows. Section 2 describes the
statistical methods to derive non-stationary GEV-based seis-
mic fragility curves. Then, in Sect. 3, we describe a test case
related to the seismic fragility assessment for a steam line
of a nuclear power plant. For this case, the derivation of FC
is performed by considering the widely used IM in the do-
main of seismic engineering, namely peak ground acceler-
ation (PGA). Finally, the proposed procedure is applied in
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Sect. 4 to two cases, without and with epistemic uncertain-
ties, and the results are discussed in Sect. 5.

2 Statistical methods

In this section, we first describe the main steps of the pro-
posed procedure for deriving the FC (Sect. 2.1). The subse-
quent sections provide technical details on the GEV proba-
bility model (Sect. 2.2), its non-stationary formulation and
implementation (Sect. 2.3) within the GAMLSS framework,
and its combination with variable selection (Sect. 2.4).

2.1 Overall procedure

To derive the seismic FC, the following overall procedure is
proposed.

– Step 1 consists of analysing the validity of using the
GEV distribution with respect to alternative probabilis-
tic models (like the normal distribution of Eq. 2 in par-
ticular).

– Depending on the results of step 1, step 2 aims at fit-
ting the non-stationary GEV model using the double-
penalisation formulation described in Sect. 2.2 and 2.3.

– Step 3 aims at producing some diagnostic informa-
tion about the fitting procedure and results. The first
diagnostic test uses the Q–Q plot of the model de-
viance residuals (conditional on the fitted model coef-
ficients and scale parameter) formulated by Augustin et
al. (2012). If the model distributional assumptions are
met, then the Q–Q plot should be close to a straight
line. The second diagnostic test relies on a transforma-
tion of the data to a Gumbel distributed random variable
(e.g. Beirlant et al., 2004) and on an analysis of the cor-
responding Gumbel Q–Q and P–P plot.

– Step 4 aims at analysing the partial effect of each input
variable (i.e. the smooth non-linear term; see Eq. 4 in
Sect. 2.3) to assess the influence of the different GEV
parameters.

– Step 5 aims at deriving the seismic FC by evaluating
the failure probability Pf(im,u)= P(EDP≥ th|IM=
im,U = u). The following procedure is conducted to
account for the epistemic uncertainties:

– Step 5.1 – the considered IM is fixed at a given
value,

– Step 5.2 – for the considered IM value, a large num-
ber (here chosen at n= 1000) ofU samples are ran-
domly generated,

– Step 5.3 – for each of the randomly generated
U samples, the failure probability is estimated for
the considered IM value,

– Step 5.4 – return to step 5.1.

The result of the procedure corresponds to a set of n FCs
from which we can derive the median FC as well as the un-
certainty bands based on the pointwise confidence intervals
at different levels. These uncertainty bands thus reflect the
impact of the epistemic uncertainty related to the mechani-
cal and geometrical parameters. Due to the limited number
of observations, the derived FC is associated to the uncer-
tainty on the fitting of the probabilistic model (e.g. GEV or
Gaussian) as well. To integrate this fitting uncertainty in the
analysis, step 5 can be extended by randomly generating pa-
rameters of the considered probabilistic model at step 5.2 (by
assuming that they follow a multivariate Gaussian distribu-
tion).

2.2 Model selection

Selecting the most appropriate probabilistic models is
achieved by means of information criteria, as recommended
in the domain of non-stationary extreme value analysis (e.g.
Kim et al., 2017; Salas and Obeysekera, 2014) and more par-
ticularly recommended for choosing among various fragility
models (e.g. Lallemant et al., 2015); see also an application
of these criteria in the domain of nuclear safety by Zent-
ner (2017). We focus on two information criteria, namely
Akaike and Bayesian information criteria (Akaike, 1998;
Schwarz, 1978), respectively denoted AIC and BIC, whose
formulation holds as follows:

AIC= 2log(l)+ 2k,

BIC= 2log(l)+ k log(n), (4)

where l(.) is the log likelihood of the considered probability
model, k is the number of parameters and n is the size of the
dataset used to fit the probabilistic model.

Though both criteria share similarities in their formula-
tion, they provide different perspectives on model selection.

– AIC-based model selection considers a model to be a
probabilistic attempt to approach the “infinitely com-
plex data-generating truth – but only approaching not
representing” (Höge et al., 2018: Table 2). This means
that AIC-based analysis aims at addressing which
model will predict the best the next sample; i.e. it pro-
vides a measure of the predictive accuracy of the con-
sidered model (Aho et al., 2014: Table 2).

– The purpose of BIC-based analysis considers each
model to be a “probabilistic attempt to truly represent
the infinitely complex data-generating truth” (Höge et
al., 2018: Table 2), assuming that the true model exists
and is among the candidate models. This perspective is
different from the one of AIC and focuses on an ap-
proximation of the marginal probability of the data (here
lEDP – log-transformed EDP) given the model (Aho et
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al., 2014: Table 2) and gives insights on which model
generated the data; i.e. it measures goodness of fit.

The advantage of testing both criteria is to account for both
perspectives on model selection, predictive accuracy and
goodness of fit while enabling the penalisation of models that
are too complex; the BIC generally penalises more strongly
than the AIC. Since the constructed models use penalisa-
tion for the smoothness, we use the formulation provided by
Wood et al. (2016: Sect. 5) to account for the smoothing pa-
rameter uncertainty.

However, selecting the most appropriate model may not be
straightforward in all situations when two model candidates
present close AIC and BIC values. For instance, Burnham
and Anderson (2004) suggest an AIC difference (relative to
the minimum value) of at least 10 to support the ranking be-
tween model candidates with confidence. If this criterion is
not met, we propose complementing the analysis by the like-
lihood ratio test (LRT; e.g. Panagoulia et al., 2014: Sect. 2),
which compares two hierarchically nested GEV formulations
using L=−2(l0− l1), where l0 is the maximised log likeli-
hood of the simpler model M0 and l1 is the one of the more
complex model M1 (that presents q additional parameters
compared to M0 and contains M0 as a particular case). The
criterion L follows a χ2 distribution with q degrees of free-
dom, which allows deriving a p value of the test.

2.3 Non-stationary GEV distribution

The CDF of the GEV probability model holds as follows:

P(EDP≤ edp)= exp

(
−

(
1+ ξ

(
edp−µ
σ

))−1/ξ
)
, (5)

where “edp” is the variable of interest, and µ, σ and ξ are the
GEV location, scale and shape parameters, respectively. De-
pending on the value of the shape parameter, the GEV distri-
bution presents an asymptotic horizontal behaviour for ξ < 0
(i.e. the asymptotically bounded distribution, which corre-
sponds to the Weibull distribution), unbounded behaviour
when ξ > 0 (i.e. high probability of occurrence of great val-
ues can be reached, which corresponds to the Fréchet dis-
tribution) and intermediate behaviour in the case of ξ = 0
(Gumbel distribution).

Figure 1a illustrates the behaviour of the GEV density dis-
tribution for µ= 12.5, σ = 0.25 and different ξ values: the
higher ξ , the heavier the tail. Figure 1b and c further illus-
trate how changes in the other parameters (the location and
the scale, respectively) affect the density distribution. The
location primarily translates the whole density distribution,
while the scale affects the tail and, to a lesser extent (for the
considered case), the mode.

The GEV distribution is assumed to be non-stationary in
the sense that the GEV parameters θ = (µ, σ , ξ) vary as a
function of x the vector of input variables, which include IM

and the uncertain input variablesU (as described in the Intro-
duction). The fitting is performed within the general frame-
work of the GAMLSS parameter (e.g. Rigby and Stasinopou-
los, 2005). Since the scale parameter satisfies σ > 0, we
preferably work with its log transformation, which is de-
noted lσ . In the following, we assume that θ follows a semi-
parametric additive formulation as follows:

ηθ (x)=

J∑
j=1

fj
(
xj
)
, (6)

where J is the number of functional terms that is gener-
ally inferior to the number of input variables (see Sect. 2.3).
fj (.) corresponds to a univariate smooth non-linear model,
described as follows:

fj (x)=
∑
b

βjbbb(x), (7)

with bb(.) being the thin-plate spline basis function (Wood,
2003) and βj the regression coefficients for the considered
smooth function.

These functional terms (called partial effect) hold the in-
formation of each parameter’s individual effect on the con-
sidered GEV parameter. The interest is to model the rela-
tionship between each GEV parameter and the input vari-
ables’ flexibly. Alternative approaches would assume a priori
functional relationships (like linear or of a polynomial form),
which may not be valid.

The model estimation consists of evaluating the regression
coefficients β (associated to the GEV parameters θ ) by max-
imising the log likelihood l(.) of the GEV distribution. To
avoid overfitting, the estimation is based on the penalised
version of l(.) to control the roughness of the smooth func-
tional terms (hence their complexity) as follows:

argmax
β

(
l(β)−

1
2

∑
j

λjβ
T Sjβ

)
, (8)

where λj controls the extent of the penalisation (i.e. the
trade-off between goodness of fit and smoothness), and Sj is
a matrix of known coefficients (such that the terms in the
summation measure the roughness of the smooth functions).
Computational methods and implementation details are de-
tailed in Wood et al. (2016) and references therein. In partic-
ular, the penalisation parameter is selected through minimi-
sation of the generalised cross-validation score.

2.4 Variable selection

The introduction of the penalisation coefficients in Eq. (8)
has two effects: they can penalise how “wiggly” a given term
is (i.e. it has a smoothing effect), and they can penalise the
absolute size of the function (i.e. it has a shrinkage effect).
The second effect is of high interest to screen out input vari-
ables of negligible influence. However, the penalty can only
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Figure 1. Behaviour of the GEV density distributions depending on the changes in the parameter value: (a) ξ (with µ fixed at 12.5 and
σ fixed at 0.25), (b) µ (with ξ fixed at 0.5 and σ fixed at 0.25) and (c) σ (with µ fixed at 12.5 and ξ fixed at 0.5).

affect the components that have derivatives, i.e. the set of
smooth non-linear functions called the “range space”. Com-
pletely smooth functions (including constant or linear func-
tions), which belong to the “null space” are, however, not in-
fluenced by Eq. (8). For instance, for one-dimensional thin-
plate regression splines, a linear term might be left in the
model, even when the penalty value is very large (λ→∞);
this means that the aforementioned procedure does not en-
sure that an input variable of negligible influence will com-
pletely be filtered out of the analysis (with corresponding
regression coefficient shrunk to zero). The consequence is
that Eq. (8) does not usually remove a smooth term from
the model altogether (Marra and Wood, 2011). To overcome
this problem, a double-penalty procedure was proposed by
Marra and Wood (2011) based on the idea that the space of
a spline basis can be decomposed into the sum of two com-
ponents, one associated with the functions in the null space
and the other with the range space. See Appendix A for fur-
ther implementation details. This double-penalty procedure
is adopted in the following.

To exemplify how the procedure works, we apply it to the
following synthetic case. Consider a non-stationary GEV dis-
tribution whose parameters are related to two covariates x1
and x2 (see Eq. 9) as follows:

fµ(x)=x
3
1 + 2 · x2

2 + 1,

flσ (x)= x
2
1 ,

fξ (x)=−0.1. (9)

A total of 200 random samples are generated by drawing x1
and x2 from a uniform distribution on [0; 4] and [0; 2], re-
spectively. Figure 2a provides the partial effects for the syn-
thetic test case using the single-penalisation approach. The
non-linear relationships are clearly identified for µ (Fig. 2a –
i, ii) and for lσ (Fig. 2a – ii). However, the single-penalisation
approach fails to identify properly the absence of influ-
ence of x2 on lσ and of both covariates on ξ (Fig. 2a –

iv, v, vi), since the resulting partial effects still present a
linear trend (though with small amplitude and large uncer-
tainty bands). Figure 2b provides the partial effects using the
double-penalisation approach. Clearly, this type of penalisa-
tion achieves a more satisfactory identification of the negligi-
ble influence of x2 on lσ and of both covariates on ξ (Fig. 2b
– iv, v, vi) as well the non-linear partial effects for µ (Fig. 2b
– i, ii) and for lσ (Fig. 2b – ii).

3 Application case

This section provides details on the test case on which
the proposed statistical methods (Sect. 2) for the derivation
of FCs are demonstrated. The numerical model of the main
steam line of a nuclear reactor is described in Sect. 3.1. A
set of ground-motion records (Sect. 3.2) is applied to assess
the seismic fragility of this essential component of a nuclear
power plant.

3.1 Structural model

The 3-D model of a steam line and its supporting structure
(i.e. the containment building; see schematic overview in
Fig. 3a), previously assembled by Rahni et al. (2017) in the
Cast3M finite-element software (Combescure et al., 1982),
are introduced here as an application of the seismic fragility
analysis of a complex engineered object. The containment
building consists of a double-wall structure: the inner wall
(reinforced pre-stressed concrete) and the outer wall (rein-
forced concrete) are modelled with multi-degree-of-freedom
stick elements (see Fig. 3b). The steel steam line is modelled
by means of beam elements, representing pipe segments and
elbows, as well as several valves, supporting devices and
stops at different elevations of the supporting structure.

The objective of the fragility analysis is to check the in-
tegrity of the steam line: one of the failure criteria identi-
fied by Rahni et al. (2017) is the effort calculated at the lo-
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Figure 2. Partial effect for the synthetic test case using the single-penalisation approach (a) and the double-penalisation approach (b).

Figure 3. (a) Schematic overview of a nuclear power plant (adapted from https://www.iaea.org/resources/nucleus-information-resources,
last access: 2 December 2019). The red rectangles indicate the main components represented in the structural model. (b) Stick model of the
containment building. (c) Steam line beam model, originally built by Rahni et al. (2017). The red circle indicates the location of the vertical
stop.

cation corresponding to a vertical stop along the steam line
(Fig. 3c). Failure is assumed when the maximum transient
effort exceeds the stop’s design effort, i.e. EDP≥ 775 kN
(i.e. 13.56 on log scale). The model also accounts for epis-
temic uncertainties due to the identification of some mechan-
ical and geometrical parameters, namely Young’s modulus
of the inner containment, the damping ratio of the structural
walls and of the steam line, and the thickness of the steam
line along various segments of the assembly. The variation

range of the 10 selected parameters, constituting the vectorU
of uncertain factors (see Eq. 3), is detailed in Table 1. A uni-
form distribution is assumed for these parameters following
the values provided by Rahni et al. (2017).

3.2 Dynamic structural analyses

A series of non-linear time history analyses are performed on
the 3-D model by applying ground-motion records (i.e. accel-
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Table 1. Input parameters of the numerical model, according to Rahni et al. (2017).

Variable Description Uniform distribution
interval

EIC Young’s modulus – inner containment 27 700–45 556 MPa
ξRPC Damping ratio – reinforced pre-stressed concrete 4–6 %
ξRC Damping ratio – reinforced concrete 6–8 %
e1 Pipe thickness – segment no. 1 29.8–38.3 mm
e2 Pipe thickness – segment no. 2 33.3–42.8 mm
e3 Pipe thickness – segment no. 3 34.1–43.9 mm
e4 Pipe thickness – segment no. 4 33.3–42.8 mm
e5 Pipe thickness – segment no. 5 53.4–68.6 mm
e6 Pipe thickness – segment no. 6 34.1–43.9 mm
ξSL Damping ratio – steam line 1–4 %

eration time histories) at the base of the containment build-
ing in the form of a three-component loading. In the Cast3M
software, the response of the building is first computed, and
the resulting displacement time history along the structure is
then applied to the steam line model in order to record the ef-
fort demands during the seismic loading. The non-linear dy-
namic analyses are performed on a high-performance com-
puting cluster, enabling the launch of the multiple runs in
parallel (e.g. a ground motion of a duration of 20 s is pro-
cessed in around 3 or 4 h). Here, the main limit with respect
to the number of ground-motion records is not necessarily
related to the computation time cost but more related to the
availability of natural ground motions that are able to fit the
conditional spectra at the desired return periods (as detailed
below). Another option would be the generation of synthetic
ground motions, using for instance the stochastic simulation
method by Boore (2003) or the non-stationary stochastic pro-
cedure by Pousse et al. (2006). It has been decided, however,
to use only natural records in the present application in or-
der to accurately represent the inherent variability in other
ground-motion parameters such as duration.

Natural ground-motion records are selected and scaled us-
ing the conditional spectrum method described by Lin et
al. (2013). Thanks to the consideration of reference earth-
quake scenarios at various return periods, the scaling of a set
of natural records is carried out to some extent while pre-
serving the consistency of the associated response spectra.
The steps of this procedure hold as follows.

– Choice of a conditioning period. The spectral accel-
eration (SA) at T ∗ = 0.38 s (fundamental mode of the
structure) is selected as the ground-motion parameter
upon which the records are conditioned and scaled.

– Definition of seismic hazard levels. Six hazard levels
are arbitrarily defined, and the associated annual prob-
abilities of exceedance are quantified with the Open-

Quake engine1, using the SHARE seismic source cat-
alogue (Woessner et al., 2013), for an arbitrary site in
southern Europe. The ground-motion prediction equa-
tion (GMPE) from Boore et al. (2014) is used to gen-
erate the ground motions, assuming soil conditions cor-
responding to Vs,30 = 800 m s−1 at the considered site.
Data associated with the mean hazard curve are sum-
marised in Table 2.

– Disaggregation of the seismic sources and identifica-
tion of the reference earthquakes. The OpenQuake en-
gine is used to perform a hazard disaggregation for each
scaling level. A reference earthquake scenario may then
be characterised through the variables [Mw; Rjb; ε]
(i.e. magnitude, Joyner–Boore distance, error term of
the ground-motion prediction equation), which are av-
eraged from the disaggregation results (Bazzurro and
Cornell, 1999). This disaggregation leads to the defi-
nition of a mean reference earthquake (MRE) for each
scaling level.

– Construction of the conditional spectra. For each scal-
ing level, the conditional mean spectrum is built by ap-
plying the GMPE to the identified MRE. For each pe-
riod Ti , it is defined as follows (Lin et al., 2013):

µlnSA(Ti )| lnSA(T ∗) = µlnSA
(
Mw,Rjb,Ti

)
+ρTi ,T ∗ · ε

(
T ∗
)
· σlnSA (Mw,Ti), (10)

where µlnSA(Mw, Rjb, Ti) is the mean output of the
GMPE for the MRE considered, ρTi ,T ∗ is the cross-
correlation coefficient between SA(Ti) and SA(T ∗)
(Baker and Jayaram, 2008), ε(T ∗) is the error term
value at the target period T ∗ = 0.38 s, and σlnSA(Mw,
Ti) is the standard deviation of the logarithm of SA(Ti),
as provided by the GMPE. The associated standard de-
viation is also evaluated, thanks to the following equa-
tion:

1https://www.globalquakemodel.org/ (last access: 2 Decem-
ber 2019).
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Table 2. Estimation of the seismic hazard distribution for the appli-
cation site.

Scaling SA Annual Return
level (0.38 s) probability period

(g) of
exceedance

No. 1 0.185 4.87× 10−2 20 years
No. 2 0.617 4.99× 10−3 200 years
No. 3 0.836 2.50× 10−3 400 years
No. 4 1.492 5.00× 10−4 2000 years
No. 5 2.673 5.00× 10−5 20 000 years
No. 6 3.882 5.00× 10−6 200 000 years

µlnSA(Ti )| lnSA(T ∗) = µlnSA
(
Mw,Rjb,Ti

)
+ρTi ,T ∗ · ε

(
T ∗
)
· σlnSA (Mw,Ti) . (11)

The conditional mean spectrum and its associated stan-
dard deviation are finally assembled in order to con-
struct the conditional spectrum at each scaling level.
The conditional mean spectra may be compared with the
uniform hazard spectra (UHS) that are estimated from
the hazard curves at various periods. As stated in Lin
et al. (2013), the SA value at the conditioning period
corresponds to the UHS, which acts as an upper-bound
envelope for the conditional mean spectrum.

– Selection and scaling of the ground-motion records.
Ground-motion records that are compatible with the tar-
get conditional response spectrum are selected, using
the algorithm by Jayaram et al. (2011): the distribution
of the selected ground-motion spectra, once scaled with
respect to the conditioning period, has to fit the median
and standard deviation of the conditional spectrum that
is built from Eqs. (10) and (11). The final selection from
the PEER database (PEER, 2013) consists of 30 records
for each of the six scaling levels (i.e. 180 ground-motion
records in total).

Two distinct cases are considered for the derivation of FCs,
depending on whether parametric uncertainties are included
in the statistical model or not.

– Case no. 1 (without epistemic uncertainties). A first se-
ries of numerical simulations are performed by keep-
ing the mechanical and geometrical parameters fixed at
their best estimate values, i.e. the midpoint of the dis-
tribution intervals detailed in Table 1. The 180 ground-
motion records are applied to the deterministic struc-
tural model, resulting in a database of 180 (IM, EDP)
pairs, with PGA chosen as the IM.

– Case no. 2 (with epistemic uncertainties). A second se-
ries of numerical simulations are performed by account-

ing for parametric uncertainties. This is achieved by ran-
domly varying the values of the mechanical and geo-
metrical input parameters of the numerical model (Ta-
ble 1) using the Latin hypercube sampling technique
(McKay et al., 1979). A total number of 360 numerical
simulations are performed (using 180 ground-motion
records).

Therefore, multiple ground motions are scaled at the same
IM value, and statistics on the exceedance rate of a given
EDP value may be extracted at each IM step, in a similar
way to what is carried out in multiple-stripe analyses or in-
cremental dynamic analyses (Baker, 2015; Vamvatsikos and
Cornell, 2002) for the derivation of FC. In the present study,
the conditional spectrum method leads to the selection and
scaling of ground motions with respect to SA (0.38 s), which
corresponds to the fundamental modal of the structure. For il-
lustration purposes, Fig. 4 displays the damage probabilities
at the six selected return periods, which may be associated to
unique values of SA (0.38 s).

From Fig. 4, two main observations can be made: (i) the
multiple-stripe analysis does not emphasise any difference
between the models with and without parametric uncertainty,
and (ii) the FC directly derived from the six probabilities
does not provide a satisfying fit. However, the fragility analy-
sis is here focused on the pipeline component (located along
the structure), which appears to be more susceptible to PGA:
therefore, PGA is chosen as IM in the present fragility anal-
ysis.

Figure 5 provides the evolution of lEDP versus lPGA (log-
transformed PGA) for both cases. We can note that only a few
simulation runs (five for Case no. 1 and eight for Case no. 2)
lead to the exceedance of the acceptable demand threshold.
As shown in Fig. 4, there is a variability around the six scal-
ing levels: for this reason, it is not feasible to represent prob-
abilities at six levels of PGA. In this case, conventional ap-
proaches for FC derivation are the “regression on the IM-
EDP cloud” (i.e. least-squares regression, as demonstrated
by Cornell et al., 2002) or the use of generalised linear model
regression or maximum likelihood estimation (Shinozuka et
al., 2000).

4 Applications

In this section, we apply the proposed procedure to both
cases described in Sect. 3.2. Section 4.1 and 4.2 describes
the application for deriving the FCs without (Case no. 1)
and with epistemic uncertainty (Case no. 2), respectively. For
each case, we first select the most appropriate probabilistic
model, then analyse the partial effects and, finally, compare
the derived FC with the one based on the commonly used as-
sumption of normality. The analysis is here focused on the
lPGA to derive the FC.
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Figure 4. (a) Damage probabilities directly extracted from the six scaling levels (or return periods). (b) Damage probabilities with respect to
the six SA(T ∗) levels, and fitted lognormal cumulative distribution function.

Figure 5. Evolution of lEDP (log-transformed EDP) as a function of lPGA (log-transformed PGA) for Case no. 1 (a) without parametric
uncertainty and for Case no. 2 (b) with parametric uncertainty. The horizontal dashed line indicates the acceptable demand threshold.

4.1 Case no. 1: derivation of seismic FC without
epistemic uncertainties

4.1.1 Model selection and checking

A series of different probabilistic models (Table 3) were
fitted to the database of (IM, EDP) points described in
Sect. 3.2 (Fig. 5a). Three different probabilistic models (nor-
mal, Tweedie, GEV) and two types of effects on the proba-
bilistic model’s parameters were tested (linear or non-linear).
Note that the Tweedie distribution corresponds to a family
of exponential distributions which takes as special cases the
Poisson distribution and the gamma distribution (Tweedie,
1984).

The analysis of the AIC and BIC differences (relative to
the minimum value; Fig. 6) here suggests that both models,
GEVsmo3 and GEVsmo2, are valid (as indicated by the AIC
and BIC differences close to zero). The differences between

the criteria value are less than 10, and to help the ranking,
we complement the analysis by evaluating the LRT p value,
which reaches ∼ 18 %, hence suggesting that GEVsmo2
should be preferred (for illustration, the LRT p value for
a stationary GEV model and the non-stationary GEVsmot2
model is here far less than 1 %). In addition, we also anal-
yse the regression coefficients of GEVsmo3, which shows
that the penalisation procedure imposes all coefficients of the
shape parameters to be zero, which indicates that lPGA only
acts on the location and scale parameters.

These results provide support in favour of GEVsmo2, i.e. a
GEV distribution with a non-linear smooth term for the lo-
cation and scale parameters only. The estimated shape pa-
rameter reaches here a constant value of 0.07 (±0.05), hence
indicating a behaviour close to the Gumbel domain. This il-
lustrates the flexibility of the proposed approach based on the
GEV, which encompasses the Gumbel distribution as a par-
ticular case. We also note that the analysis of the AIC and
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Figure 6. Model selection criteria (AIC – a – and BIC – b – differences relative to the minimum value) for the different models described in
Table 3 considering the derivation of a FC without epistemic uncertainty.

BIC values would have favoured the selection of NOsmo2 if
the GEV model had not been taken into account, i.e. a het-
eroscedastic log-normal FC.

The examination of the diagnostic plots (Fig. 7a) of the
model deviance residuals (conditional on the fitted model
coefficients and scale parameter) shows a clear improve-
ment of the fitting, in particular for large theoretical quantiles
above 1.5 (the dots better aligned along the first bisector in
Fig. 7b). The Gumbel Q–Q and P–P plots (Fig. 7c and d) also
indicate a satisfactory fitting of the GEV model.

4.1.2 Partial effects

Figure 8a and b provides the evolution of the partial effects
(as formally described in Sect. 2.3: Eqs. 6 and 7) with respect
to the location and to the log-transformed scale parameter,
respectively. We note that the assumption of the relationship
between EDP and lPGA is non-linear (contrary to the widely
used assumption). An increase in lPGA both induces an in-
crease in µ and of lσ , hence resulting in a shift of the den-
sity (as illustrated in Fig. 1b), and an impact on the tail (as
illustrated in Fig. 1c). We note that the fitting uncertainty (in-
dicated by the ± 2 standard errors above and below the best
estimate) remains small, and the aforementioned conclusions
can be considered with confidence.

4.1.3 FC derivation

Using the Monte Carlo-based procedure described in
Sect. 2.1, we evaluate the failure probability Pf (Eq. 1) to
derive the corresponding GEV-based FC (Fig. 9a) with ac-
counts for fitting uncertainties. The resulting FC is com-

Figure 7. Diagnostic plots to check the validity of the considered
model: (a) Q–Q plot for the deviance residuals for the NOsmo2
model, (b) Q–Q plot for the deviance residuals for the GEVsmo2
model without parametric uncertainty, (c) Q–Q plot on Gumbel
scale and (d) P–P plot on Gumbel scale.
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Table 3. Description of the probabilistic model used to derive the FCs.

Model Probability Type of relationship
name model

NOsta Normal Stationary (without covariate effect)

NOlin1 Normal Linear effect on the mean

NOlin2 Normal Linear effect on the mean and log-transformed
standard deviation (with link function log(σ + b),
where b = 0.01)

NOsmo1 Normal Non-linear smooth effect on the mean

NOsmo2 Normal Non-linear smooth effect on the mean and
log-transformed standard deviation (with
link function log(σ + b), where b = 0.01)

GEVsta GEV Stationary (without covariate effect)

GEVlin1 GEV Linear effect on the location

GEVlin2 GEV Linear effect on the location and scale
(log-transformed)

GEVlin3 GEV Linear effect on the location, scale
(log-transformed) and shape

GEVsmo1 GEV Non-linear smooth effect on the location

GEVsmo2 GEV Non-linear smooth effect on the location
and scale (log-transformed)

GEVsmo3 GEV Non-linear smooth effect on the location, scale
(log-transformed) and shape

TWElin1 Tweedie Linear effect on the log-transformed location

TWEsmo1 Tweedie Non-linear smooth effect on the log-transformed
location

Figure 8. Partial effect of (a) PGA on the GEV location parameter and (b) PGA on the log-transformed GEV scale parameter. The red-
coloured bands are defined by 2 SE (standard errors) above and below the estimate.
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Figure 9. Fragility curve (relating the failure probability Pf to PGA)
based on (a) the non-stationary model GEVsmo2 and (b) the Gaus-
sian NOsmo2 model. The coloured bands reflect the uncertainty in
the fitting.

pared to the one based on the normal assumption (Fig. 9b).
This shows that Pf would have been underestimated for
moderate-to-large PGA from 10 to ∼ 25 m2 s−1 if the selec-
tion of the probability model had not been applied (i.e. if the
widespread assumption of normality had been used); for in-
stance at PGA= 20 m2 s−1, Pf is underestimated by ∼ 5 %.
This is particularly noticeable for the range of PGA from
10 to 15 m2 s−1, where the GEV-based FC clearly indicates
a non-zero probability value, whereas the Gaussian model
indicates negligible probability values below 1 %. For very
high PGA, both FC models approximately provide almost the
same Pf value. These conclusions should, however, be anal-
ysed with respect to the fitting uncertainty, which has here
a clear impact; for instance at PGA= 20 m2 s−1, the 90 %
confidence interval has a width of 10 % (Fig. 9a), i.e. of the
same order of magnitude than a PGA variation from 10 to
20 m2 s−1. We note also that the fitting uncertainty reaches
the same magnitude between both models. This suggests that
additional numerical simulation results are necessary to de-
crease this uncertainty source for both models.

4.2 Case no. 2: derivation of seismic FC with epistemic
uncertainties

4.2.1 Model selection and checking

In this case, the FCs were derived by accounting not only for
lPGA but also for 10 additional uncertain parameters (Ta-
ble 1).

The AIC and BIC differences (relative to the minimum
value; Fig. 10) for the different probabilistic models (de-

scribed in Table 2) show that GEVsmo2 model should
preferably be selected. Contrary to Case no. 1, the AIC
and BIC differences are large enough to rank with confi-
dence GEVsmo2 as the most appropriate model. This indi-
cates that the location and scale parameters are non-linear
smooth functions of IM and of the uncertain parameters.
The estimated shape parameter reaches here a constant value
of −0.24 (±0.06), hence indicating a Weibull tail behaviour.
Similarly to the analysis without parametric uncertainties
(Sect. 4.1), we note that the AIC and BIC values would have
favoured the selection of NOsmo2 if the GEV model had not
been taken into account.

The examination of the Q–Q plots (Fig. 11) of the model
deviance residuals (conditional on the fitted model coeffi-
cients and scale parameter) shows an improvement of the
fitting, in particular for large theoretical quantiles above 1.0
(the dots better aligned along the first bisector in Fig. 11b).
The Gumbel Q–Q and P–P plot (Fig. 11c and d) also indicate
a very satisfactory fitting of the GEV model.

4.2.2 Partial effects

Figure 12 provides the evolution of the partial effects with
respect to the location parameter. Several observations can
be made.

– Figure 12a shows quasi-similar partial effect for lPGA
in Case no. 1 (Fig. 8a).

– Three out of the ten uncertain parameters were filtered
out by the procedure of Sect. 2.4, namely two mechan-
ical parameters (the damping ratio of reinforced pre-
stressed concrete ξRPC and the damping ratio of the
steam line ξSL) and one geometrical parameter (the pipe
thickness of segment no. 2). As an illustration, Fig. 12e
depicts the partial effect of a parameter, which was iden-
tified as of negligible influence: here, the partial effect
of e2 is shrunk to zero.

– Three thickness parameters (e1, e4, e5) present an in-
creasing linear effect on µ (Fig. 12d, g and h).

– Two parameters (Young’s modulus of the inner contain-
ment EIC and the thickness e3) present a decreasing lin-
ear effect on µ (Fig. 12b and f).

– The damping ratio of the reinforced concrete
ξRC presents a non-linear effect, with a minimum
value at around 0.0725 (Fig. 12c).

– The thickness e6 presents a non-linear effect, with a
maximum value at around 0.04 (Fig. 12i).

Figure 13 provides the evolution of the partial effects with
respect to the (log-transformed) scale parameter. We show
here that a larger number of input parameters were filtered
out by the selection procedure; i.e. only the thickness e5 is
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Figure 10. Model selection criteria (AIC – a – and BIC – b – differences relative to the minimum value) for the different models described
in Table 3 considering the derivation of a FC with epistemic uncertainty.

Figure 11. Diagnostic plots to check the validity of the considered
model: (a) Q–Q plot for the deviance residuals for the NOsmo2
model, (b) Q–Q plot for the deviance residuals for the GEVsmo2
model with epistemic uncertainty, (c) Q–Q plot on Gumbel scale
and (d) P–P plot on Gumbel scale.

selected as well as the damping ratios of the concrete struc-
tures ξRPC and ξRC (related to the containment building). The
partial effects are all non-linear, but with larger uncertainty
than for the location parameter (compare the widths of the
red-coloured uncertain bands in Figs. 12 and 13). In particu-
lar, the strong non-linear influence of ξRPC and ξRC may be
due to the simplified coupling assumption between structural
dynamic response and anchored steam line (i.e. the displace-
ment time history at various points of the building is directly
used as input for the response of the steam line). Identifying
this problem is possible thanks to the analysis of the partial
effects, though it should be recognised that this behaviour re-
mains difficult to interpret and further investigations are here
necessary. We also note that the partial effect for lPGA is
quasi-similar to Fig. 8b in Case no. 1.

Table 4 summarises the different types of influence iden-
tified in Figs. 12 and 13, i.e. linear, non-linear or absence of
influence as well as the type of monotony when applicable.

4.2.3 FC derivation

Based on the results of Figs. 12 and 13, the FC is derived
by accounting for the epistemic uncertainties by following
the Monte Carlo procedure (step 5 described in Sect. 2.1)
by including (or not) fitting uncertainty (Fig. 14a and b, re-
spectively). We show that the GEV-based FC is less steep
than the one for Case no. 1 (Fig. 9): this is mainly related
to the value of the shape parameter (close to Gumbel regime
for Case no. 1 without epistemic uncertainty and to Weibull
regime for Case no. 2 with epistemic uncertainty). Figure 14a
also outlines that the uncertainty related to the mechani-
cal and geometrical parameters has a non-negligible influ-
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Figure 12. Partial effect on the GEV location parameter. The red-coloured bands are defined by 2 SE (standard errors) above and below the
estimate.

Figure 13. Partial effect on the log-transformed GEV scale param-
eter. The red-coloured bands are defined by 2 SE (standard errors)
above and below the estimate.

Table 4. Influence of the geometrical and mechanical parameters on
the GEV parameters, µ and lσ , of the GEVsmo2 model.

Variable Influence on µ Influence on lσ

EIC Linear (decreasing) –
ξRPC – Non-linear (non-monotone)
ξRC Non-linear (non-monotone) Non-linear (decreasing)
e1 Linear (increasing) –
e2 – –
e3 Linear (decreasing) –
e4 Linear (increasing) –
e5 Linear (increasing) Non-linear (non-monotone)
e6 Non-linear (non-monotone) –
ξSL – –

ence, as shown by the width of the uncertainty bands: for
PGA= 30 m2 s−1, the 90 % confidence interval has a width
of ∼ 20 %. In addition, the inclusion of the fitting uncer-
tainty (Fig. 14b) increases the width of the confidence in-
terval, but it appears to mainly impact the 90 % confidence
interval (compare the dark- and the light-coloured envelope
in Fig. 14); for instance, compared to Fig. 14a, this uncer-
tainty implies a +5 % (respectively −5 %) shift of the upper
bound (respectively lower bound) of the 90 % confidence in-
terval at PGA= 30 m2 s−1.
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Figure 14. Fragility curve (relating the failure probability Pf to PGA) considering epistemic uncertainties only (a, c) and fitting uncertainty
as well (b, d). (a, b) GEV-based FC; (c, d) FC based on the normal assumption. The coloured bands are defined based on the pointwise
confidence intervals derived from the set of FCs (see text for details).

Compared to the widely used assumption of normality,
Fig. 14c and d show that the failure probability reached
with this model is larger than with the GEV-based FC; at
PGA= 30 m2 s−1, the difference reaches ∼ 5 %. In practice,
this means that a design based on the Gaussian model would
have here been too conservative. Regarding the impact of
the different sources of uncertainty, the epistemic uncertainty
appears to influence the Gaussian model less than the GEV
one. The impact of the fitting uncertainty is, however, quasi-
equivalent for both models.

The interest of incorporating the mechanical and geomet-
rical parameters directly into the equation of the FC is the
ability to study how the FC in Fig. 14 evolves as a function of
the parametric uncertainties, hence identifying regions of the
parameters’ values leading to large failure probability. This
is illustrated in Fig. 15, where the FC is modified depend-
ing on the value of the thickness e4, from−12.5 % (0.033 m)
to +12.5 % (∼ 0.043 m), with respect to the median value of
0.038 m. Here larger e4 induces a steeper FC. This appears to
be in agreement with the increasing effect of e4 as shown in
Fig. 12g. Figure 15 also shows that the effect of e4 on Pf only
becomes significant when the e4 variation is of a least ±5 %,
compared to the fitting uncertainty (of the order of magnitude
of ±2.5 %).

5 Discussion and further work

The current study focused on the problem of seismic
FC derivation for nuclear power plant safety analysis. We
propose a procedure based on the non-stationary GEV distri-
bution to model, in a flexible manner, the tail behaviour of the
EDP as a function of the considered IM. The key ingredient
is the use of non-linear smooth functional EDP–IM relation-
ships (partial effects) that are learnt from the data (to over-
come limits (2) and (3) as highlighted in the Introduction).
This avoids the introduction of any a priori assumption to the
shape or form of these relationships. In particular, the benefit
is shown in Case no. 1 (without epistemic uncertainty), where
the non-linear relation is clearly outlined for both µ and lσ .
The interest of such data-driven non-parametric techniques
has also been shown using alternatives techniques (like neu-
ral network – Wang et al., 2018 – or kernel smoothing – Mai
et al., 2017). To bring these approaches to an operative level,
an extensive comparison or benchmark exercise on real cases
should be conducted in the future.

The second objective of the present study was to com-
pare the GEV-based FC with the one based on the Gaus-
sian assumption. We show that if a careful selection of the
most appropriate model is not performed (limit (1) described
in the Introduction), the failure probability would be either
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Figure 15. FC considering different thickness e4: (a)−12.5 %, (b)−5 %, (c)+5 % and (d)+12.5 % of the original value. Uncertainty bands
are provided by accounting for epistemic uncertainty only (dark blue) and by accounting for the fitting uncertainty as well (light blue).

under- or overestimated for Case no. 1 (without epistemic
uncertainty) and Case no. 2 (with epistemic uncertainty), re-
spectively. This result brings an additional element against
the uncritical use of the (log-)normal fragility curve (see dis-
cussions by Karamlou and Bocchini, 2015; Mai et al., 2017;
Zentner et al., 2017, among others).

The third objective was to propose an approach to in-
corporate the mechanical and geometrical parameters in the
FC derivation (using advanced penalisation procedures). The
main motivation was to allow studying the evolution of the
failure probability as a function of the considered covariate
(as illustrated in Fig. 15). As indicated in the Introduction, an
alternative approach would rely on the principles of the IDA
method, the advantage being to capture the variability of the
structural capacity and to get deeper insight into the struc-
tural behaviour. See an example for masonry buildings by
Rota et al. (2010). However, the adaptation of this technique
would impose additional developments to properly charac-
terise collapse through the numerical model (see discussion
by Zentner et al., 2017: Sect. 2.5). Section 3.1 also points out
the difficulty in applying this approach in our case. Combin-
ing the idea underlying IDA and our statistical procedure is
worth investigating in the future.

The benefit of the proposed approach is to provide infor-
mation on the sensitivity to the epistemic uncertainties by
both identifying the parameters of negligible influence (via
the double-penalisation method) and using the derived partial
effects. The latter hold information on the magnitude and na-
ture of the influence (linear, non-linear, decreasing, increas-
ing, etc.) for each GEV parameter (to overcome limit (4)).
Additional developments should, however, be performed to
derive the same levels of information for the FC (and not
only for the parameters of the probabilistic model). In this
view, Fig. 15 provides a first basis that can be improved by
(1) analysing the role of each covariate from a physical view-
point, as done for instance by Salas and Obeysekera (2014) to
investigate the evolution of hydrological extremes over time
(e.g. increasing, decreasing or abrupt shifts of hydrologic ex-
tremes), as some valuable lessons can also be drawn from
this domain of application to define and communicate an
evolving probability of failure (named return period in this

domain), and (2) deriving a global indicator of sensitivity
via variance-based global sensitivity analysis (see e.g. Bor-
gonovo et al., 2013). The latter approach introduces promis-
ing perspectives to ease the fitting process by filtering out
beforehand some negligible mechanical and geometrical pa-
rameters. It is also expected to improve the interpretability of
the procedure by clarifying the respective role of the differ-
ent sources of uncertainty, i.e. related to the mechanical and
geometrical parameters and also to the fitting process, which
appears to have a non-negligible impact in our study.

The treatment of this type of uncertainty can be improved
with respect to two aspects: (1) it is expected to decrease by
fitting the FC with a larger number of numerical simulation
results. To relieve the computational burden (each numerical
simulation has a computation time cost of several hours; see
Sect. 3.2), replacing the mechanical simulator by surrogate
models (like neural network – Wang et al., 2018 – or using
model order reduction strategy – Bamer et al., 2017) can be
envisaged, and (2) the modelling of such uncertainty can be
done in a more flexible and realistic manner (compared to the
Gaussian assumption made here) using Bayesian techniques
within the framework of GAMLSS (Umlauf et al., 2018).

Finally, from an earthquake engineering viewpoint, the
proposed procedure has focused on a single IM (here PGA),
but any other IMs could easily be incorporated, similarly
to for the mechanical and geometrical parameters, to derive
vector-based FC as done by Gehl et al. (2019) using the same
structure. The proposed penalisation approach can be seen as
a valuable option to solve a recurrent problem in this domain,
namely the identification of most important IMs (see discus-
sion by Gehl et al., 2013, and references therein).
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Appendix A: Double-penalisation procedure

This Appendix gives further details on the double-
penalisation procedure used to select variables in the non-
stationary GEV. Full details are described by Marra and
Wood (2011).

Consider the smoothing penalty matrix Sj in Eq. (6) (as-
sociated to the j th smooth function in the semi-parametric
additive formulation of Eq. 4). This matrix can be decom-
posed as

Uj3jUTj , (A1)

where Uj is the eigenvector matrix associated with the
j th smooth function, and 3j is the corresponding diagonal
eigenvalue matrix. As explained in Sect. 2.4, the penalty as
described in Eq. (6) can only affect the components that have
derivatives, i.e. the set of smooth non-linear functions called
the “range space”. Completely smooth functions (includ-
ing constant or linear functions), which belong to the “null
space”, are, however, not influenced. This problem implies
that 3j contains zero eigenvalues, which makes the vari-
able selection difficult for “nuisance” functions belonging to
the null space, i.e. functions with negligible influence on the
variable of interest. The idea of Marra and Wood (2011) is to
introduce an extra penalty term which penalises only func-
tions in the null space of the penalty to achieve a complete
removal of the smooth component. Considering the decom-
position (Eq. A1), an additional penalty can be defined as
S∗j = U∗jU∗Tj , where U∗j is the matrix of eigenvectors cor-
responding to the zero eigenvalues of 3j . In practice, the
penalty in Eq. (6) holds as follows:

λjβ
T Sjβ + λ∗jβ

T S∗jβ, (A2)

where two penalisation parameters (λj , λ∗j ) are estimated,
here by minimisation of the generalised cross-validation
score.
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Code and data availability. Code is available upon request to the
first author. Statistical analysis was performed using R package
“mgcv” (available at https://cran.r-project.org/web/packages/mgcv/
index.html (last access: 20 March 2020). See Wood (2017) for an
overview. Numerical simulations were performed with Cast3M sim-
ulator (Combescure et al., 1982).
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