Articles | Volume 19, issue 3
https://doi.org/10.5194/nhess-19-571-2019
https://doi.org/10.5194/nhess-19-571-2019
Research article
 | 
19 Mar 2019
Research article |  | 19 Mar 2019

Assessment of geodetic velocities using GPS campaign measurements over long baseline lengths

Huseyin Duman and Dogan Ugur Sanli

Related authors

Accuracy of velocities from repeated GPS measurements
V. Akarsu, D. U. Sanli, and E. Arslan
Nat. Hazards Earth Syst. Sci., 15, 875–884, https://doi.org/10.5194/nhess-15-875-2015,https://doi.org/10.5194/nhess-15-875-2015, 2015
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023,https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023,https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023,https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023,https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Comparison of machine learning techniques for reservoir outflow forecasting
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022,https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary

Cited articles

Akarsu, V., Sanli, D. U., and Arslan, E.: Accuracy of velocities from repeated GPS measurements, Nat. Hazards Earth Syst. Sci., 15, 875–884, https://doi.org/10.5194/nhess-15-875-2015, 2015. a, b, c, d, e, f, g, h
Aktuğ, B., Kiliçoğlu, A., Lenk, O., and Gürdal, M. A.: Establishment of regional reference frames for quantifying active deformation areas in Anatolia, Stud. Geophys. Geod., 53, 169–183, https://doi.org/10.1007/s11200-009-0011-0, 2009. a
Aktuğ, B., Meherremov, E., Kurt, M., Özdemir, S., Esedov, N., and Lenk, O.: GPS constraints on the deformation of Azerbaijan and surrounding regions, J. Geodyn., 67, 40–45, https://doi.org/10.1016/j.jog.2012.05.007, 2013. a
Aktuğ, B., Doğru, A., Özener, H., and Peyret, M.: Slip rates and locking depth variation along central and easternmost segments of North Anatolian Fault, Geophys. J. Int., 202, 2133–2149, https://doi.org/10.1093/gji/ggv274, 2015. a
Altamimi, Z., Métivier, L., and Collilieux, X.: ITRF2008 plate motion model, J. Geophys. Res.-Sol. Ea., 117, B07402, https://doi.org/10.1029/2011JB008930, 2012. a, b
Download
Short summary
Research has been done to assess the performance of relative positioning over long baseline lengths in determining the accuracy of site velocities from GPS campaign measurements. GPS campaign measurements were generated from the IGS data, and the results were compared with PPP-derived findings. A major outcome of this study is that relative positioning over long baseline lengths produces similar accuracies to PPP. A newly proposed refinement method also improves the available PPP accuracy.
Altmetrics
Final-revised paper
Preprint