Articles | Volume 19, issue 7
https://doi.org/10.5194/nhess-19-1499-2019
https://doi.org/10.5194/nhess-19-1499-2019
Research article
 | 
24 Jul 2019
Research article |  | 24 Jul 2019

Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data

Hongyan Chen, Gengxing Zhao, Yuhuan Li, Danyang Wang, and Ying Ma

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024,https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
AscDAMs: Advanced SLAM-based channel detection and mapping system
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
EGUsphere, https://doi.org/10.48550/arXiv.2401.13877,https://doi.org/10.48550/arXiv.2401.13877, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149,https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024,https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary

Cited articles

Abbas, A., Khan, S., Hussain, N., Hanjra, M. A., and Akbar, S.: Characterizing Soil Salinity in Irrigated Agriculture using A Remote Sensing Approach, Phys. Chem. Earth Pt. A/B/C, 55–57, 43–52, https://doi.org/10.1016/j.pce.2010.12.004, 2013. 
Ahmed, Z. and Iqbal, J.: Evaluation of Landsat TM5 Multispectral Data for Automated Mapping of Surface Soil Texture and Organic Matter in GIS, Eur. J. Remote Sens., 47, 557–573, https://doi.org/10.5721/EuJRS20144731, 2014. 
Allbed, A. and Kumar, L.: Soil Salinity Mapping and Monitoring in Arid and Semi-arid Regions using Remote Sensing Technology: A Review, Adv. Remote Sens., 2, 373–385, https://doi.org/10.4236/ars.2013.24040, 2013. 
Allbed, A., Kumar, L., and Aldakheel, Y. Y.: Assessing Soil Salinity using Soil Salinity and Vegetation Indices derived from IKONOS High-spatial Resolution Imageries Applications in A Date Palm Dominated Region, Geoderma, 230–231, 1–8, https://doi.org/10.1016/j.geoderma.2014.03.025, 2014. 
Dehni, A. and Lounis, M.: Remote Sensing Techniques for Salt Affected Soil Mapping: Application to the Oran Region of Algeria, Proced. Eng., 33, 188–198, https://doi.org/10.1016/j.proeng.2012.01.1193, 2012. 
Download
Short summary
Using Landsat data, the inversion model of soil salt content (SSC) for different seasons was determined in the Kenli District in the Yellow River Delta region of China. The SSC exhibited a gradual increasing trend from the southwest to northeast. The SSC accumulated in spring, decreased in summer, increased in autumn and reached its peak at the the end of winter. The results can provide data for the control of soil salt hazards and utilization of saline–alkali soil.
Altmetrics
Final-revised paper
Preprint