Articles | Volume 18, issue 1
https://doi.org/10.5194/nhess-18-383-2018
https://doi.org/10.5194/nhess-18-383-2018
Research article
 | 
25 Jan 2018
Research article |  | 25 Jan 2018

Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

Matthias Heck, Conny Hammer, Alec van Herwijnen, Jürg Schweizer, and Donat Fäh

Related authors

Automatic detection of avalanches combining array classification and localization
Matthias Heck, Alec van Herwijnen, Conny Hammer, Manuel Hobiger, Jürg Schweizer, and Donat Fäh
Earth Surf. Dynam., 7, 491–503, https://doi.org/10.5194/esurf-7-491-2019,https://doi.org/10.5194/esurf-7-491-2019, 2019
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628,https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary

Cited articles

Bessason, B., Eiriksson, G., Thorarinsson, O., Thorarinsson, A., and Einarsson, S.: Automatic detection of avalanches and debris flows by seismic methods, J. Glaciol., 53, 461–472, 2007. a, b, c, d, e
Beyreuther, M., Hammer, C., Wassermann, J., and Ohrnberger, M.: Constructing a Hidden Markov Model based earthquake detector: application to induced seismicity, Geophys. J. Int., 189, 602–610, 2012. a, b
Caplan-Auerbach, J. and Huggel, C.: Precursory seismicity associated with frequent, large ice avalanches on Iliamna volcano, Alaska, USA, J. Glaciol., 53, 128–140, https://doi.org/10.3189/172756507781833866, 2007. a
Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., and Loew, S.: Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models, J. Geophys. Res.-Earth, 121, 351–371, 2016. a
Faillettaz, J., Funk, M., and Vincent, C.: Avalanching glacier instabilities: Review on processes and early warning perspectives, Rev. Geophys., 53, 203–224, https://doi.org/10.1002/2014RG000466, 2015. a
Download
Short summary
In this study we use hidden Markov models, a machine learning algorithm to automatically identify avalanche events in a continuous seismic data set recorded during the winter 2010. With additional post processing steps, we detected around 70 avalanche events. Although not every detection could be confirmed as an avalanche, we clearly identified the two main avalanche periods of the winter season 2010 in our classification results.
Altmetrics
Final-revised paper
Preprint