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Abstract. Snow avalanches generate seismic signals as many
other mass movements. Detection of avalanches by seis-
mic monitoring is highly relevant to assess avalanche dan-
ger. In contrast to other seismic events, signals generated
by avalanches do not have a characteristic first arrival nor
is it possible to detect different wave phases. In addition,
the moving source character of avalanches increases the in-
tricacy of the signals. Although it is possible to visually
detect seismic signals produced by avalanches, reliable au-
tomatic detection methods for all types of avalanches do
not exist yet. We therefore evaluate whether hidden Markov
models (HMMs) are suitable for the automatic detection of
avalanches in continuous seismic data. We analyzed data
recorded during the winter season 2010 by a seismic ar-
ray deployed in an avalanche starting zone above Davos,
Switzerland. We re-evaluated a reference catalogue contain-
ing 385 events by grouping the events in seven probability
classes. Since most of the data consist of noise, we first ap-
plied a simple amplitude threshold to reduce the amount of
data. As first classification results were unsatisfying, we an-
alyzed the temporal behavior of the seismic signals for the
whole data set and found that there is a high variability in the
seismic signals. We therefore applied further post-processing
steps to reduce the number of false alarms by defining a min-
imal duration for the detected event, implementing a voting-
based approach and analyzing the coherence of the detected
events. We obtained the best classification results for events
detected by at least five sensors and with a minimal duration
of 12s. These processing steps allowed identifying two pe-
riods of high avalanche activity, suggesting that HMMs are
suitable for the automatic detection of avalanches in seismic
data. However, our results also showed that more sensitive

sensors and more appropriate sensor locations are needed to
improve the signal-to-noise ratio of the signals and therefore
the classification.

1 Introduction

During the winter season, snow avalanches may threaten
people and infrastructure in mountainous regions through-
out the world. Avalanche forecasting services therefore reg-
ularly issue avalanche bulletins to inform the public about
the avalanche conditions. Such an avalanche forecast re-
quires meteorological data, information about the snow-
pack and avalanche activity data. The latter are mostly ob-
tained through visual observations requiring good visibility.
Avalanche activity data are therefore often lacking during
periods of intense snowfall, which are typically the periods
when they are most important for forecasting. A possible al-
ternative approach to determine the avalanche activity is to
use a seismic monitoring system (e.g., van Herwijnen and
Schweizer, 2011a).

Seismic monitoring systems are well suited to detect mass
movements such as rockfalls, pyroclastic flows and snow
and ice avalanches (Faillettaz et al., 2015; Podolskiy and
Walter, 2016; Caplan-Auerbach and Huggel, 2007; Suriñach
et al., 2005; Zobin et al., 2009). The ability to detect snow
avalanches through seismic methods was first demonstrated
in the 1970s. (St. Lawrence and Williams, 1976) and (Har-
rison, 1976) deployed geophones near avalanche paths and
manually identified signals generated by avalanches in the
seismogram. They showed that the seismic signature of
avalanches differs from other seismic events such as earth-
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quakes or nearby blasts. A more in-depth analysis of seis-
mic signals generated by avalanches was performed 20 years
later, identifying typical characteristics in both the time and
time–frequency domain (Kishimura and Izumi, 1997; Sabot
et al., 1998). Using automatic cameras to film avalanches,
(Sabot et al., 1998) showed that specific features in the seis-
mic signals were related directly to changes in the flow of the
avalanche; these findings were confirmed by (Suriñach et al.,
2000) and (Suriñach et al., 2001). Since then, seismic signal
characteristics were used to estimate specific properties of
single avalanches such as the flow velocity (Vilajosana et al.,
2007a), the total energy of the avalanche (Vilajosana et al.,
2007b) or the runout distance (Pérez-Guillén et al., 2016; van
Herwijnen et al., 2013).

While many studies focused on using seismic signals to
better understand the properties of single avalanches, con-
tinuous monitoring of avalanche starting zones to obtain
more accurate avalanche activity data is of particular interest
for avalanche forecasting (e.g., van Herwijnen et al., 2016).
(Leprettre et al., 1996) deployed three-component seismic
sensors at two different field sites and compared seismic sig-
nal characteristics to a database including avalanches, heli-
copters, thunder rolls and earthquakes. (Lacroix et al., 2012)
improved the seismic monitoring system used by (Leprettre
et al., 1996) by deploying a seismic array between two known
avalanche paths. The array consisted of six vertical compo-
nent geophones arranged in a circle around a three compo-
nent geophone in the center. Using array techniques, (Lacroix
et al., 2012) determined the release area and the path of man-
ually identified avalanches and estimated their speed. These
studies mainly monitored medium and large avalanches. Van
Herwijnen and Schweizer (2011) however, deployed seis-
mic sensors near an avalanche starting zone above Davos in
the eastern Swiss Alps to also detect small avalanches. They
manually identified several hundred avalanche events in the
continuous seismic data during 4 winter months.

While these studies have highlighted the usefulness of
seismic monitoring to obtain more accurate and complete
avalanche activity data, using machine learning algorithms to
automatically detect snow avalanches has thus far remained
relatively unsuccessful. Nevertheless, the interest in these
techniques has been evident for several decades (Leprettre
et al., 1998; Bessason et al., 2007; Rubin et al., 2012). The
first attempt to automatically detect avalanches focused on
using fuzzy logic rules and credibility factors derived from
features of the seismic signal in the time and time–frequency
domain (Leprettre et al., 1996, 1998). In a first step, the fea-
tures of unambiguously identified seismic events were an-
alyzed including avalanches, blast and teleseismic events.
They then formulated several fuzzy logic rules for each type
of event to train a classifier used to identify the type of a new
unknown seismic event. While the probability of detection
(POD), i.e., the number of detected avalanches divided by
the total number of observed avalanches, was high (≈ 90%),
one of the main drawbacks of this method is the subjective

expert knowledge used to derive the fuzzy logic rules and the
need to adapt these rules to each individual field site.

(Bessason et al., 2007) deployed seismic sensors in sev-
eral known avalanche paths along an exposed road in Iceland.
They used a nearest-neighbor method to automatically iden-
tify avalanche events. The method consists of comparing new
events with those in a database. Although a 10-year database
was used, the identification performed rather poorly. Seismic
signals generated by rockfalls and debris flows were wrongly
classified as avalanches and vice versa, resulting in a POD of
about 65 %.

In an attempt to improve the automatic detection of
avalanches, (Rubin et al., 2012) used a seismic avalanche cat-
alogue presented by (van Herwijnen and Schweizer, 2011b)
and compared the performance of 12 different machine learn-
ing algorithms. The PODs of all classifiers were high (be-
tween 84 and 93 %). However, the main drawback were the
high false alarm rates, much too high for operational tasks.

The methods described above are generally difficult to ap-
ply at new sites since they require time to build a training data
set and/or expert knowledge to define thresholds and rules.
To overcome these drawbacks, we investigate using a hid-
den Markov model (HMM). A HMM is a statistical pattern
recognition tool commonly used for speech recognition (Ra-
biner, 1989) and was first introduced for the classification
of seismic traces by Ohrnberger (2001). The advantage of
HMMs compared to other classification algorithms is that the
time dependency of the data is explicitly taken into account.
First studies using HMMs for the classification of seismic
data relied on large training data sets (Ohrnberger, 2001). Us-
ing this approach, Beyreuther et al. (2012) created an earth-
quake detector.

More recently, Hammer et al. (2012) developed a new
approach which only requires one training event. This ap-
proach was applied for a volcano fast response system
(Hammer et al., 2012) and the detection of rockfalls, earth-
quakes and quarry blasts on seismic broadband stations of
the Swiss Seismological Service (SED; Hammer et al., 2013;
Dammeier et al., 2016. Furthermore, Hammer et al. (2017)
also detected snow avalanches using data from a seismic
broadband station of the SED. During a period with high
avalanche activity in February 1999, 43 very large confirmed
avalanches were detected over a 5-day period with only four
presumable false alarms. While these detection rates are very
encouraging, the investigated avalanche period was excep-
tional. Furthermore, due to the location of the broadband sta-
tion at valley bottom, they could not detect small or medium-
sized avalanches.

For avalanche forecasting information on smaller
avalanches is also required. To resolve this issue, we
investigate a method to obtain local (i.e., scale of a small
valley) avalanche activity data using a seismic monitoring
system (van Herwijnen and Schweizer, 2011a). We therefore
implement the approach outlined by Hammer et al. (2017)
to detect avalanches in the continuous seismic data obtained
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with the sensors deployed near avalanche starting zones (van
Herwijnen and Schweizer, 2011b).

Based on the duration of the seismic signals, the majority
of these avalanches were likely rather small (van Herwijnen
et al., 2016). We therefore used this avalanche catalogue to
train and evaluate the performance of a HMM model and dis-
cuss limitations and possible improvements.

2 Field site and instrumentation

We analyzed data obtained from a seismic array deployed
above Davos, Switzerland. The field site is located at
2500 m a.s.l. and is surrounded by several avalanche starting
zones. The site is easily accessible during the entire year and
is also equipped with various automatic weather stations and
automatic cameras observing the adjacent slopes.

The array consisted of seven vertical geophones with an
eigenfrequency of 14 Hz. The maximum distance between
the sensors was 12 m. Six of the geophones were inserted in
a styrofoam housing and placed within the snow, whereas the
seventh geophone (Sensor 7) was inserted in the ground with
a spike (see Figs. 3 and 4 in van Herwijnen and Schweizer,
2011a). Sensors 1 and 4 are the ones nearest to the ridge
and most deeply covered (see Fig. 2 in van Herwijnen and
Schweizer, 2011b). The seismic sensors were deployed at the
field site from early December until the snow had melted.

The instrumentation was originally designed to record
higher frequency signals in order to detect precursor sig-
nals of avalanche release (van Herwijnen and Schweizer,
2011b). A 24 bit data acquisition system (Seismic Instru-
ments) was used to continuously acquire data from the sen-
sors at a sampling rate of 500 Hz. The data were stored lo-
cally on a low power computer and manually retrieved ap-
proximately every 10 days. A more detailed description of
the field site and the instrumentation can be found in van
Herwijnen and Schweizer (2011a) and van Herwijnen and
Schweizer (2011b).

3 Data

Continuous seismic data were recorded from 12 January to
30 April 2010. These data were previously used by van
Herwijnen and Schweizer (2011b), Rubin et al. (2012) and
van Herwijnen et al. (2016). The recorded seismic data con-
tain various types of events (van Herwijnen and Schweizer,
2011a), including aeroplanes, helicopters and of course
avalanches (Fig. 1).

3.1 Pre-processing of the seismic data

While during the 107-day period several hundred avalanches
were identified, the vast majority of the data consist of noise
or seismic events produced by other sources. To reduce the
amount of data to process, we applied a simple threshold-

Figure 1. (a) Spectrogram of an unfiltered 30 min time series.
(b) Corresponding time series. An airplane and an avalanche are
visible. Furthermore, noise produced by a snowcat can be seen in
the second half of the time series.

Figure 2. Example of the pre-processing: (a) the mean energy val-
ues of each window shown as the blue line and the threshold value
indicated by the red line; (b) the remaining data cut by the pre-
processing step.

based event detection method. It consisted of dividing the
continuous seismic data stream in non-overlapping windows
of 1024 samples. For each window, a mean absolute ampli-
tude Ai was determined. When Ai ≥ 5A, with A the daily
mean amplitude, the data were used. Furthermore, a data sec-
tion of 1t = 60s before and after each event was also in-
cluded to ensure that the onset and coda of each event were
incorporated. The amount of data to process was thus re-
duced by 80 % (Fig. 2).

Finally, before we used the data for the detection, we ap-
plied a bandpass filter. Previous studies showed that seis-
mic signals generated by avalanches typically have a fre-
quency below 50 Hz (e.g., Harrison, 1976; Schaerer and Sal-
way, 1980). We therefore applied a fourth-order Butterworth
bandpass filter to our data between 1 and 50 Hz.
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3.2 Reference avalanche catalogue

Van Herwijnen and Schweizer (2011) visually analyzed the
unprocessed seismic time series and the corresponding spec-
trogram of one sensor and identifiedN = 385 avalanches be-
tween 12 January and 30 April 2010. They thus obtained an
avalanche catalogue consisting of the release time ti and du-
ration Ti for each avalanche. The onset was defined as the
first appearance of energetic low frequency signals (i.e., be-
tween 15 and 25Hz), while the end of the signal was de-
fined as the time when low frequency signals reverted back
to background levels. However, only 25 of these avalanches
were confirmed by visual observations, i.e., on images ob-
tained from automatic cameras. Hence there remains sub-
stantial uncertainty about the nature of the identified events.

To reduce the uncertainty, three of the authors therefore
independently re-evaluated this avalanche catalogue. From
the 385 avalanches in the original avalanche catalogue only
Npre = 283 remained after pre-processing (see Sect. 3.1);
none of the 25 confirmed avalanches were dismissed. By vi-
sually inspecting the seismic time series of the seven sen-
sors and the stacked spectrogram for each event, they then
assigned a subjective probability pe to each of these possi-
ble avalanche events. Three probabilities were assigned: 1
when it was certain that the observed event was an avalanche,
0 when it was certain that the observed event was not an
avalanche and 0.5 when it was uncertain whether the event
was an avalanche or not. The probabilities were then com-
bined into seven probability classes depending on the mean
probability of each event:

Pava =
1
3

3∑
e=1

pe, (1)

with pe the subjective probability that each assigned to a
specific event. In Table 1 the number of events in each
probability class is listed. In the reclassified data set, only
20 avalanches were considered as certain avalanche by all
three evaluators and 58 events were marked as certainly not
an avalanche. Furthermore 18 of the 25 visually confirmed
avalanches were within the two highest probability classes.

The avalanche activity of the season 2010 is shown in
Fig. 3.

Overall, most avalanches were detected in the second half
of the investigated period, with two distinct peaks in the
avalanche activity around 22 March and 24 April.

The distribution of the event duration changed as the prob-
ability class increased (Fig. 4). All events in the lowest proba-
bility class had a duration< 6s. More than 90% of the events
had durations ≥ 12 s for the three highest probability classes.

Figure 3. Avalanche activity for the winter season of 2010. The
different colors above the zero line indicate the different probability
classes derived from the manual detection. The red bars below the
zero line indicate the visually confirmed events.

Figure 4. Event duration distribution per probability class.

4 Methods

4.1 Hidden Markov model

To automatically detect avalanches in our continuous seis-
mic data we used HMMs. This statistical classifier models
observations (i.e., the seismic time series or its features) by a
sequence of multivariate Gaussian probability distributions.
The characteristics of the distributions (i.e., mean and co-
variance) are derived from training sets of known events,
so-called pre-labeled training sets. Several classes describ-
ing different types of events can be implemented in the clas-
sifier but each class needs its own training set to determine
its unique distribution characteristics. Therefore, the actual
classifier consists of several HMMs, one for each class. This
classical approach, as used for the classification of seismic
time series by, e.g., Ohrnberger (2001) and Beyreuther et al.
(2012), relies on well-known pre-labeled training sets. In our
case, however, avalanches are rare events and it is nearly im-
possible or too time consuming to obtain an adequate training
set. To circumvent the problem of obtaining sufficiently large
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Table 1. Number of events per probability class Pava after re-evaluation and the corresponding number of confirmed events for each class.
The first row shows the possible combinations of subjective probability (pe): when pe = 1 it was certain that the event was an avalanche;
when pe = 0.5 it was uncertain; and when pe = 0 it was certain that the event was not an avalanche.

pe combinations 0, 0, 0 0.5, 0, 0 1, 0, 0 0.5, 0.5, 0.5 1, 1, 0 1, 1, 0.5 1, 1, 1
0.5, 0.5, 0 1, 0.5, 0 1, 0.5, 0.5

Pava 0 % 16.6 % 33.3 % 50 % 66.6 % 83.3 % 100 %
Number of events 58 66 48 34 30 27 20
Number of visually confirmed events 0 0 1 3 3 9 9

training sets, we used a new approach developed by Hammer
et al. (2012). This classification approach exploits the abun-
dance of data containing mainly background signals to ob-
tain general wave-field properties. Using these properties, a
widespread background model can be learned from the gen-
eral properties. A new event class is then implemented by
using the background model to adjust the event model de-
scription by using only one training event. The so-obtained
classifier therefore consists of the background model and one
model for each implemented event class. The classification
process itself calculates the likelihood that an unknown data
stream has been generated by a specific class for each indi-
vidual class HMM. More detailed information can be found
in Hammer et al. (2012); Hammer et al. (2013).

4.2 Feature calculation

Although it is possible to use the raw seismic data as input
for the hidden Markov model, we used a compressed form of
it, so-called features. Several features can be calculated rep-
resenting different aspects of the time series such as spectral,
temporal or polarization characteristics. The representation
of the seismic signals by features is more adequate to high-
light differences between diverse event types. Since we used
single component geophones, we only used spectral and tem-
poral features. Based on preliminary analysis, we used the
following features:

– central frequency

– dominant frequency

– instantaneous bandwidth

– instantaneous frequency

– cepstral coefficients

– half-octave bands.

A detailed list of the functions used to calculate these features
can be found in Hammer et al. (2012).

To calculate the features, we used a sliding window with
width,w of 1024 samples. The sliding window is then moved
forward with a step of 0.05s or 25 samples, resulting in an
overlap of 97%.

For the half-octave bands we used a central frequency
of fc = 1.3Hz for the first band and a total number of
nine bands. Since the geophones have an eigenfrequency of
14 Hz, only signals with a higher frequency are recorded
without any loss of information. However, preliminary re-
sults showed that half-octave bands with a central frequency
higher than fmin = 5Hz are adequate.

4.3 Post-processing

The HMM classification resulted in several hundred events
in the avalanche class. Many of these events were, however,
of very short duration or only identified at one sensor and did
not necessarily coincide with avalanches in the reference cat-
alogue; i.e., these events were likely false alarms. We there-
fore investigated three post-processing methods to reduce the
number of false alarms, namely

1. applying a duration threshold for the detected events;

2. analyzing the results of all sensors by introducing a
voting-based classification;

3. analyzing the coherence between all sensors for each
detected event.

First, we used an event duration threshold. The duration
Tj of any automatically detected event j was determined by
the HMM. Based on the analysis of van Herwijnen et al.
(2013) and van Herwijnen et al. (2016), we can assume that
event duration correlates with avalanche size. The first post-
processing method therefore consisted of using a minimal
duration Tmin for the events as described below in Sect. 5.3.1.
Any automatically detected event j with Tj ≤ Tmin was thus
removed. Similarly, any avalanche i in the reference cata-
logue with a duration Ti ≤ Tmin was also removed.

Second, we used a voting-based threshold by tallying the
classified events of each sensor. (Rubin et al., 2012) used
a similar approach and found that with increasing votes the
false alarm rate decreased. The overall idea is that although
an avalanche event might not be recorded by one sensor, for
instance due to poor coupling of the sensor, it is unlikely
that an avalanche is missed by all sensors, especially larger
avalanches (Faillettaz et al., 2016). Any automatically de-
tected event with Vj ≤ Vmin with V the number of votes was
removed.
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Third, we used a threshold based on the cross-correlation
coefficient between the seven sensors. Wave fields gener-
ated by avalanches should be relatively coherent, while wave
fields generated by noise (e.g., wind) are expected to be
incoherent. We therefore divided the seismic data in non-
overlapping windows of 1024 samples and for each window
we defined a mean normalized correlation coefficient as

R(twin)=
1

Npairs

Npairs∑
k=1

rkl(twin), (2)

with Npairs = 21 the number of sensor pairs, rkl(twin) the
maximum in the normalized cross correlation between sensor
k and l and twin the time of the sliding window. The normal-
ized cross correlation is defined as

φkl(t)=
φkl(t)

√
φkk(0)φll(0)

, (3)

with φkk(0) and φll(0) the zero lag autocorrelation of each
sensor, which is equal to the energy of each single time win-
dow. The maximum of the normalized correlation is picked
for a maximum lag of tmax = 0.05s, which is the time a
sonic wave field at a speed of 330 m s−1 needs to travel the
maximum distance between the most distant receiver pair
(≈ 15m):

rkl(twin)=maxφkl(t), |t | ≤ 0.05s. (4)

The normalized cross correlation only yields values between
−1 (perfectly anticorrelated) and 1 (perfectly correlated). A
value of 0 means that the signals are completely uncorrelated.
Finally, the coherence of each automatically detected event
was defined as

Cj =maxR(twin),0≤ twin ≤ Tj . (5)

Any automatically detected event with Cj ≤ Cmin was re-
moved.

4.4 Model performance evaluation

To evaluate the performance of the HMM classification, we
compared the automatic picks with the reference data set
described in Sect. 3.2. To assign an event classified by the
HMM as a positive detection we defined a tolerance interval
d: the time tHMM

j of an event had to be within the interval
ti − d ≤ t

HMM
j ≤ ti + d , with ti the release time of the ith

avalanche in the reference data set and d = 60s. The toler-
ance interval d was necessary, since the release times ti of the
avalanches were picked manually and may contain some un-
certainties. In addition, the releases times tHMM

j do not nec-
essarily coincide with the reference data since the classifier
is not an onset picker.

To describe the performance of the classifier we used three
values: Nhit, Nunassigned and Nmiss. The first value Nhit de-
scribes the total number of avalanches which were correctly

detected by the classifier, i.e., events identified by the classi-
fier which corresponded to avalanches in the reference data
set. The second value Nunassigned describes the number of
events identified by the classifier which did not correspond
to an avalanche in the reference data set. We do not call these
events false alarms as during the manual detection some
avalanche events might have been missed that are therefore
not present in the reference data set. Avalanche events may
still be found in the unassigned detections. Finally, the third
value Nmiss describes the number of avalanches in the refer-
ence data that were not identified by the HMM classifier. The
three values were used to evaluate the overall model perfor-
mance in terms of POD and false alarm ratio (FAR), defined
as POD=Nhit/(Nhit+Nmiss) and FAR=Nunassigned/(Nhit+

Nunassigned) (Wilks, 2011).
To determine the best threshold values for the post-

processing steps (Sect. 4.3), we plotted POD against FAR
values for all probability classes and for different values of
Tmin, vmin and Cmin. One curve therefore illustrates the POD
and FAR with respect to the probability classes for a fixed
threshold value. Ideally, when only considering the 100 %
probability class, the POD value should be 1 while the FAR
value should also be relatively high since all detections of
the lower classes are counted as false alarms. By taking more
probability classes into account, the FAR will decrease while
the POD value should stay close to 1. A perfect model should
therefore result in constant POD values of 1 whereas the
FAR values should decrease to 0. For realistic models, how-
ever, POD and FAR values are expected to decrease when
accounting for more probability classes. By plotting POD
against FAR values for different threshold values, the opti-
mal threshold value can be found by searching for the largest
area under the curve (AUC). A perfect model would result in
an AUC value of 1, while an AUC value of 0.5 corresponds
to a model with a 50–50 chance. Threshold values obtained
for models with an AUC value lower than 0.5 are therefore
not reliable and any random threshold value can be chosen.
In our case, the POD–FAR curves did not span from 0 to 1
on the x axis. To determine the AUC value we therefore cal-
culated the ratio between the area under the POD–FAR curve
and the area under the bisector with the same x-axis limits:

AUC=
AUCHMM

AUCbisector
· 0.5. (6)

5 Results

5.1 Temporal feature distribution

To investigate changes in feature distribution over time, for
instance due to diurnal changes in environmental noise levels
or seasonal changes in snow cover properties, we calculated
hourly and daily mean values for all features (see Fig. 5 for
the central frequency and dominant frequency). Throughout
the season there were large variations in the feature distri-
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Figure 5. (a) Temporal variations in the central frequency hourly
average (yellow) and daily average (blue). (b) Temporal variations
in the dominant frequency.

bution at various timescales. First, there were strong diurnal
variations (yellow lines in Fig. 5). These were observed in all
features (not shown). Second, there were also large variations
at longer timescales (blue lines in Fig. 5). While for some
features there were significant seasonal trends, for instance
for the dominant frequency (Pearson r =−0.56, p < 0.001;
Fig. 5b), for others there were no clear trends, for instance for
the central frequency (Pearson r = 0.23, p = 0.02; Fig. 5a).
Building a single background model to classify the entire
season would therefore likely not result in a reliable classifi-
cation. The background model thus has to be regularly recal-
culated. We therefore decided to recalculate the background
model each day to classify the events within the same day.

5.2 Training event

While building a representative background model is im-
portant, choosing an appropriate training event is of utmost
importance for the classifier. As outlined in (van Herwij-
nen et al., 2016), the avalanche catalogue consists of var-
ious avalanches of different size and type. At the begin-
ning of the season the avalanches are most likely dry-snow
avalanches, while at the end of the season there a mostly
wet-snow avalanches. Our avalanche catalogue only consists
of the release time and little information is available on the

Figure 6. (a) Central frequency with normalized time for four dif-
ferent avalanche events (colors) from 4 different months. For com-
parison, the time was normalized by the event duration, with 0 indi-
cating the start of the avalanche and 1 the end of the event. (b) Sec-
ond cepstral coefficient.

type of the avalanches. We therefore compared the feature
distribution of four different avalanche events, on 21 Jan-
uary, 27 February, 22 March and 24 April 2010, to investigate
whether substantial differences related to avalanche type ex-
isted (Fig. 6).

While there were some subtle differences in the fea-
ture distribution for the four avalanches (e.g., between the
avalanches on 21 January and 22 March 2010 in Fig. 6a),
overall the four avalanches exhibited very similar behavior.
Thus, when viewing avalanches in the feature space, wet- and
dry-snow avalanches appear to be very similar. We therefore
used one single avalanche class for the HMM classifier and
used one training event to learn the model. Specifically, we
used an avalanche with Pava = 100% recorded on 22 March
2010 (Fig. 7) with a duration of 30s. However, as seen in
Fig. 6, the most rapid changes in feature values occurred at
the beginning of the events. In the coda changes in feature
values were rather slow, providing limited relevant informa-
tion for the classifier. We therefore only used the first 8 s of
the training event (marked by the red rectangle in Fig. 7).

5.3 Automatic avalanche classification

5.3.1 Single sensor classification

We used the entire reference data set containing 283
avalanche events to evaluate model performance as function
of probability class. The first model was built for each in-
dividual sensor and without any post-processing. For each
sensor a separate model was built containing only the data
of the specific sensor. In Table 2 the number of detections
for each probability class is listed. For the highest probabil-
ity class the POD values were relatively high, ranging from
70 to 95 % and the values generally decreased with decreas-
ing probability class. For the confirmed avalanches, the POD
ranged between 80 and 92 %. Nevertheless, even for the low-
est probability class events were still detected. Furthermore,
numerous events, between 124 and 2091 events, were de-
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Figure 7. The event used for training the HMM. (a) Stacked spec-
trogram of all seven sensors. (b) Seismic waveform for each indi-
vidual sensor (colors). The red area highlights the part of the signal
used as the training event for the HMM.

Figure 8. (a) POD–FAR curves for sensor 1 for different minimum
event durations Tmin (colors). (b) Area under the POD–FAR curve
with Tmin for all sensors (colors). The stars show the Tmin value
with the largest area under the curve for each sensor.

tected for each sensor which were not listed in the reference
data set. Clearly without any post-processing the number of
unassigned events was high.

To reduce the number of unassigned events we applied a
minimum duration Tmin to remove events. To obtain a rea-
sonable threshold value, we determined the area under the
POD–FAR curve for different Tmin values (Fig. 8).

Due to the large number of unassigned events (see Table 2)
AUC values were generally below 0.5 and using a minimum
duration threshold did not result in much improvement. How-
ever, for sensors 1 and 6 the number of unassigned events
was much lower and there was an optimum Tmin threshold
value around 12s (Fig. 8 b). In the following, we therefore
used the same minimal duration Tmin = 12s for all sensors.
While with this Tmin threshold the POD values for the high-
est probability class somewhat decreased, they still remained
high (between 68 and 84 %; Table 3). Furthermore, the POD
for the confirmed avalanches also remained relatively high,

Figure 9. Classification results using a minimal event duration
length of 12s for (a) sensor 1 and (b) sensor 7. Grey bars show the
number of matching detections (hit), blue bars show the unassigned
events and the red bars show the events that were not detected as
an avalanche (missed). The hatched bars indicate the number of hits
(grey) or misses (red) for the confirmed events.

ranging from 60 to 84 %. Note that the duration threshold
was also applied to remove events from the reference data
set. For a threshold value of Tmin = 12s, the number of events
in the reference data set reduced from 283 to 170 while the
number of confirmed avalanches was not affected.

Overall the number of unassigned events substantially de-
creased (compare Tables 2 and 3), especially for sensors 1
and 6. For these two sensors the POD values also substan-
tially decreased for the lower probability classes but the two
main avalanche periods in March and April are clearly visi-
ble in the detections (see Fig. 9a for sensor 1). However, for
the other sensors, the POD values remained relatively high
for the lower probability classes and there were still many
unassigned events and the two main avalanche periods were
less evident (see Fig. 9b for sensor 7). Clearly, for some of
the sensors the number of unassigned events remained very
high.

5.3.2 Array-based classification

To further reduce the number of unassigned events (potential
false alarms), we applied two array-based post-processing
methods to eliminate events, namely a minimum number of
votes and coherence threshold (see Sect. 4.3). To define an
optimal number of votes or coherence threshold we used the
same procedure as for the determination of a minimal du-
ration threshold (Fig. 8). Since for these array-based meth-
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Table 2. Number of detections (Nhit) and probability of detection (POD) for each sensor and each probability class as well as the POD for
confirmed events Evtconf and number of events that were not in the reference data set (Nunassigned).

Probability class 0 % 16.6 % 33.3 % 50 % 66.6 % 83.3 % 100 % Evtconf Nunassigned

Sensor 1 POD
12
58

17
66

21
48

17
34

14
30

21
27

19
20

23
25 149

21 % 26 % 44 % 50 % 47 % 78 % 95 % 92 %

Sensor 2 POD
28
58

24
66

19
48

11
34

17
30

17
27

14
20

21
25 1432

48 % 36 % 40 % 32 % 57 % 63 % 70 % 84 %

Sensor 3 POD
21
58

25
66

21
48

12
34

16
30

17
27

15
20

21
25 1347

36 % 38 % 44 % 35 % 53 % 63 % 75 % 84 %

Sensor 4 POD
11
58

11
66

16
48

14
34

15
30

20
27

18
20

21
25 124

19 % 17 % 33 % 41 % 50 % 74 % 90 % 84 %

Sensor 5 POD
22
58

27
66

17
48

13
34

19
30

17
27

15
20

21
25 786

38 % 41 % 35 % 38 % 63 % 63 % 75 % 84 %

Sensor 6 POD
20
58

19
66

18
48

9
34

15
30

15
27

14
20

20
25 2091

35 % 29 % 38 % 27 % 50 % 56 % 70 % 80 %

Sensor 7 POD
29
58

26
66

23
48

16
34

19
30

17
27

14
20

21
25 2094

50 % 39 % 48 % 47 % 63 % 63 % 70 % 84 %

Table 3. Number of detections (Nhit) and probability of detection (POD) for each sensor and each probability class as well as the POD
for confirmed events Evtconf and number of events that were not in the reference data set (Nunassigned) using a minimal event duration of
Tmin = 12s.

Probability class 0 % 16.6 % 33.3 % 50 % 66.6 % 83.3 % 100 % Evtconf Nunassigned

Sensor 1 POD
0
0

4
39

6
36

11
23

10
26

15
27

16
19

20
25 22

0 % 10 % 17 % 48 % 39 % 56 % 84 % 80 %

Sensor 2 POD
0
0

17
39

12
36

7
23

14
26

17
27

14
19

21
25 408

0 % 44 % 33 % 30 % 54 % 63 % 74 % 84 %

Sensor 3 POD
0
0

14
39

13
36

9
23

13
26

16
27

14
19

20
25 340

0 % 36 % 36 % 39 % 50 % 59 % 74 % 80 %

Sensor 4 POD
0
0

3
38

5
35

6
22

8
26

12
26

15
19

15
25 15

0 % 8 % 14 % 27 % 31 % 46 % 79 % 60 %

Sensor 5 POD
0
0

16
39

11
36

9
23

15
26

14
27

13
19

21
25 157

0 % 41 % 31 % 39 % 58 % 52 % 68 % 84 %

Sensor 6 POD
0
0

7
39

13
36

5
23

10
26

14
27

13
19

18
25 597

0 % 18 % 36 % 22 % 39 % 52 % 69 % 72 %

Sensor 7 POD
0
0

17
39

14
36

10
23

15
26

17
27

14
19

21
25 653

0 % 43 % 39 % 44 % 58 % 63 % 74 % 84 %

ods the detections from all sensors were pooled, the number
of unassigned events was very high. This resulted in much
higher FAR values and thus poor model performance with
low AUC values, all below 0.5. Arbitrary values for vmin or
Cmin could therefore be chosen. However, the overall goal
of these post-processing steps was to reduce the number of
unassigned events, while still retaining a reasonable POD.

We therefore analyzed the effect of different threshold values
on FAR values as well as on POD values for the probability
classes.

Overall, for both processing steps the number of unas-
signed events decreased with increasing threshold values
(Figs. 10 and 11). By using a minimal number of five votes
the POD stayed relatively high with a low number of unas-
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Figure 10. (a) POD for each probability class depending on the
minimum number of votes (colors). (b) Number of unassigned
events for different number of votes (colors).

Figure 11. (a) POD for each probability class depending on the
minimal coherence (colors). (b) Number of unassigned events for
different coherence threshold values (colors).

signed events. Following the same procedure we selected a
coherence value of 0.6. Using this value, the POD was rel-
atively high and the number of unassigned events could be
reduced to less than 100 events.

In total, we thus have three different post-processing steps
which can be applied to the data: a minimal event dura-
tion Tmin = 12s, a minimum number of votes vmin = 5 and
a coherence threshold Cmin = 0.6. By combining these three
steps, six array-based post-processing workflows were im-
plemented:

– v : vj ≥ vmin

– c : Cj ≥ Cmin

– vc : vj ≥ vmin and Cj ≥ Cmin

– tv : Tj ≥ Tmin and vj ≥ vmin

– tc : Tj ≥ Tmin and Cj ≥ Cmin

– tvc : Tj ≥ Tmin, vj ≥ vmin and Cj ≥ Cmin.

The number of unassigned events decreased most with a
combined approach always including the number of votes
(vc, tv, or tvc in Fig. 12). When using only one array-based

Figure 12. (a) POD for each probability class for different post-
processing workflows (colors). v is minimal number of votes used,
t is minimal event duration and c is minimal coherence. (b) Number
of unassigned events remaining after the post-processing for each
workflow.

Figure 13. All events detected by at least five sensors. The different
colors indicate the number of votes. (a) The results without any lim-
itation of the duration of the events are plotted. (b) Only events with
a minimum duration as mentioned before are taken into account. On
the right the two main avalanche periods are more clearly visible.

post-processing step, the number of unassigned events re-
mained high (v and c in Fig. 12b). While the lowest number
of unassigned events was achieved when combining all three
post-processing steps, this model also resulted in low POD
values for all probability classes (tvc Fig. 12a). Overall, the
highest POD values and the steepest decrease for the lowest
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probability classes were obtained for the voting-based pro-
cessing with and without a minimal duration of the events
(v and tv in Fig. 12a). For both these post-processing work-
flows the two periods of high avalanche activity are visible
(Fig. 13). However, by also applying the duration threshold,
the total number of detections decreased and the two periods
in March and April became more clearly visible (Fig. 13b).

5.3.3 Unassigned events

We compared the automatic detections with the reference
avalanche catalogue and obtained a large number of unas-
signed events. It remains unclear whether the unassigned
events are all false alarms or partly correspond to avalanches
that were not identified in the reference data. We therefore
visually inspected the unassigned events. In order to keep
this reanalysis manageable, we only focused on the post-
processing steps which resulted in less than 50 unassigned
events. Thus, we individually investigated single sensor re-
sults from sensor 1 and 4 with Tmin = 12s and array-based
results for tv, vc and tvc. The visual inspection showed that
for the single sensor results between 36 and 47 % of the unas-
signed events were likely unidentified avalanches and less
than one-third were false alarms (Table 4). For the array-
based results, however, most of the unassigned events (be-
tween 45 and 79 %) were false alarms while fewer events
were likely associated with avalanches that were missed by
van Herwijnen and Schweizer (2011a).

6 Discussion and summary

We trained HMMs, a machine learning algorithm, to au-
tomatically detect avalanches in continuous seismic data
recorded near an avalanche starting zone above Davos,
Switzerland, for the winter season of 2010. To reduce the
amount of data to process, we pre-processed the continuous
data using an amplitude threshold (Fig. 2). We then imple-
mented single sensor and array-based post-processing steps
and the performance of the models was evaluated using a
previously published reference avalanche catalogue obtained
from the same seismic data (van Herwijnen and Schweizer,
2011a; van Herwijnen et al., 2016).

After pre-processing the data, the reference avalanche cat-
alogue contained 283 avalanches between 12 January and 30
April 2010, events that were identified by visual inspection of
the waveform and spectrogram of a single sensor (van Her-
wijnen and Schweizer, 2011a). Since only 25 of these events
were independently confirmed avalanches, considerable un-
certainty remained about the identified events. To reduce the
uncertainty in the reference catalogue, three of the authors
therefore re-evaluated the data. This allowed us to assign
seven subjective probability classes between 0 and 100 % to
each event. Overall, only 20 events were marked as certain
avalanche (Table 1) and hence the performance of the clas-

sifiers can only be evaluated for these particular events. For
the remaining events, there are still uncertainties and hence
the performance of the classifier can only be estimated. Fur-
thermore, this reanalysis highlighted the difficulty in obtain-
ing an objective and reliable reference avalanche catalogue.
It also showed that expert decisions are biased and there is a
need for a reliable automatic classifier to identify avalanches
in continuous seismic data.

Recent work by Hammer et al. (2017) showed very
promising results for applying a HMM to automatically de-
tect avalanches in continuous seismic data. While they only
focused on a 5-day period during an exceptional avalanche
cycle in 1999, our goal was to classify continuous seismic
data spanning more than 100 days. This prevented us from
building a single background model to classify the entire sea-
son since temporal variations in feature distributions at var-
ious timescales were present (Fig. 5). Indeed, when using a
single background model to classify the entire season for sen-
sor 1 only two-thirds of the events were detected by having
almost 6 times the number of unassigned events. One pos-
sible reason for these variations in feature distribution was
likely the setup of the sensor array. The geophones were
packed in a Styrofoam housing and inserted within the snow-
pack. As such, less snow covered the sensors than if they
had been inserted in the ground, making them more suscepti-
ble to environmental noise. Furthermore, it is also likely that
the snow cover introduced additional noise in spring due to
the rapid settlement and water infiltration. We therefore re-
calculated the background model for each day and for each
sensor to classify the data from the same day. However, for
the operational implementation this would be impractical,
since there would always be a 24 h delay in the detections.
Other strategies for regularly updating the background model
should therefore be investigated (e.g., Riggelsen and Ohrn-
berger, 2014).

We performed the automatic classification over the entire
season by recalculating the classifier for each day and for
each sensor. Overall, POD values decreased with decreasing
probability class and the highest POD values were associated
with the highest probability class for all sensors (Table 2).
Indeed, between 70 and 95 % of all avalanches in the high-
est probability class were detected, which is comparable to
the results presented by Bessason et al. (2007) and Lepret-
tre et al. (1996), who reported POD values of approximately
65 and 90 %. Nevertheless, without any post-processing, the
number of unassigned events was high, questioning the relia-
bility of the models as many of these events were likely false
alarms. Post-processing of the results was therefore required.
Applying a minimal signal duration drastically reduced the
number of unassigned events while still retaining reasonable
POD values, in particular for sensor 1 and sensor 4 (Table 3).
However, there were large differences in model performance
between the sensors (Figs. 8 and 9). The reason for these
performance differences is very likely the deployment of the
sensors. Indeed, sensors 1 and 4 were deployed at the top of
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Table 4. Results of the reanalysis of the detections not covered by the test data set. Left side of the table shows the results of the reanalysis
of two single sensors, while the right side shows the results of the array-based classification. For the single sensors a minimum duration for
the events of tmin = 12 s was taken into account. The voting-based processing steps analyzed are minimum number of votes (v), minimum
duration (t) and coherence (c).

Single sensors Array-based

Sensor 1 Sensor 4 tv vc tvc

Unassigned 22 15 33 40 6
Confirmed as avalanche 36 % (8) 47 % (7) 12 % (4) 28 % (11) 33 % (2)
Confirmed as false alarm 27 % (6) 27 % (4) 79 % (26) 45 % (18) 50 % (3)
Uncertain 36 % (8) 27 % (4) 9 % (3) 28 % (11) 17 % (1)

the slope closest to a cornice where the snow was the deepest
(van Herwijnen and Schweizer, 2011a). The other five sen-
sors were covered by less snow due to local inhomogeneities,
leaving these sensors more sensitive to environmental noise.
For future deployments it will thus be important to deploy the
sensors below a homogeneous snow cover and not within the
snow cover. This should reduce the amount of environmental
noise and consequently the number of false alarms.

To further reduce the number of false alarms, we im-
plemented two array-based post-processing steps, namely a
voting-based approach and a signal coherence threshold. In
combination with the minimal event duration, we thus inves-
tigated six array-based post-processing workflows. Results
showed that these array-based methods were effective in re-
ducing the number of unassigned events (Fig. 12). However,
the POD values generally also decreased, resulting in overall
fewer detections. Combined post-processing methods which
included the voting-based approach resulted in better model
performance, in line with results presented by Rubin et al.
(2012). The best model performance was obtained by com-
bining the event duration threshold for events with at least
five votes. The number of unassigned events reduced to about
30 and POD values were highest (∼ 55%) for the highest
probability class and decreased for the lower classes. De-
spite the large differences in model performance for the in-
dividual sensors, the model still performed marginally better
when pooling the data from the entire array. These results are
promising as with an improved sensor deployment strategy
array-based post-processing is likely to further improve.

Comparing our model performance to previously pub-
lished studies is not straightforward. We assigned subjec-
tive probability classes to our reference avalanche catalogue
rather than using a yes or no approach. Furthermore, we used
geophones deployed in an avalanche starting zone, while
Bessason et al. (2007), Leprettre et al. (1996) and Ham-
mer et al. (2017) used sensitive broadband seismometers de-
ployed at valley bottom. Therefore, it is very likely that there
was more environmental noise in our data and many of the
detected avalanches in our reference data set were rather
small (van Herwijnen et al., 2016). Given these differences
in instrumentation and deployment, our detection results are

encouraging and highlight the advantage of using HMMs for
the automatic identification of avalanches in continuous seis-
mic data.

The main advantages of the proposed approach is that only
one training event (Fig. 7) is needed to classify the entire sea-
son. As shown by Hammer et al. (2017), for large avalanches
it is possible to build a HMM with a high POD and very
low FAR with one training event. Even though we used less-
sensitive sensors in this work, we were also able to iden-
tify periods of high avalanche activity (compare Fig. 3 with
Figs. 9 and 13). Furthermore, when only considering the vi-
sually confirmed avalanches, the POD was typically around
80 % (see Tables 2 and 3). This suggests that HMMs can eas-
ily be implemented at new sites. In contrast, the model used
by Bessason et al. (2007) relied on a 10-year database, and
Leprettre et al. (1996) used a set of fuzzy logic rules derived
by the experts. Note that the post-processing steps we inves-
tigated are likely site dependent, in particular the event dura-
tion threshold. However, such a threshold value is intuitive,
has a linear influence on model outcome and is thus easily
tunable.

For operational use, the model should be able to automat-
ically detect avalanches in near real time. The main disad-
vantage of the proposed approach is its computational cost.
The feature calculation for 1 day takes ≈ 1h for the pre-
processed data and ≈ 7h for the unprocessed data. Replac-
ing the used features with computationally less expensive at-
tributes would decrease the processing time drastically and
encourage real-time applications.

In this work, we classified the data from each sensor in-
dividually, requiring a separate background model for each
sensor. The results from the different sensors were then
combined using post-processing rules either on a voting-
based approach or taking the coherence into account. Strictly
speaking, the coherence could have been added to the model
as an additional feature. However, calculating the coher-
ence for 21 receiver pairs, even after applying the amplitude
threshold during pre-processing, was still very time consum-
ing (≈ 200% real time).

Overall, our results suggest that HMMs may be well suited
for the automatic detection of avalanches in continuous seis-
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mic data. The variable model performance between the dif-
ferent sensors highlighted problems which can likely be over-
come by improving the sensor deployment strategy. Specif-
ically, we suggest that the sensors should be deployed 30
to 50 cm underground at a site with a homogeneous and
preferably thick snow cover and to increase the distance be-
tween the sensors to apply array processing techniques for
source localization (Lacroix et al., 2012). In addition, further
avalanche events may be used for training to improve model
performance. Finally, incorporating localization parameters
as new features in the HMM could open the door for further
model improvement, as is done for the automatic detection
of avalanches in continuous infrasound data (Marchetti et al.,
2015; Thüring et al., 2015). These features can then either be
implemented directly into the HMM or be used in additional
post-processing steps.

Data availability. Due to the huge amount of seismic raw data and
parameterized waveforms, we are not able to provide these data.
Instead we provide a data package containing the classification re-
sults, the reference data set, the start and end times of the pre-
processed seismic data and some Python scripts. The data are avail-
able under the following: https://doi.org/10.16904/envidat.29 (Heck
and van Herwijnen, 2018).
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