Articles | Volume 18, issue 1
https://doi.org/10.5194/nhess-18-185-2018
https://doi.org/10.5194/nhess-18-185-2018
Research article
 | 
16 Jan 2018
Research article |  | 16 Jan 2018

Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

Jack G. Williams, Nick J. Rosser, Mark E. Kincey, Jessica Benjamin, Katie J. Oven, Alexander L. Densmore, David G. Milledge, Tom R. Robinson, Colm A. Jordan, and Tom A. Dijkstra

Related authors

Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021,https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency
Jack G. Williams, Nick J. Rosser, Richard J. Hardy, Matthew J. Brain, and Ashraf A. Afana
Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018,https://doi.org/10.5194/esurf-6-101-2018, 2018
Short summary
Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support
Tom R. Robinson, Nicholas J. Rosser, Alexander L. Densmore, Jack G. Williams, Mark E. Kincey, Jessica Benjamin, and Heather J. A. Bell
Nat. Hazards Earth Syst. Sci., 17, 1521–1540, https://doi.org/10.5194/nhess-17-1521-2017,https://doi.org/10.5194/nhess-17-1521-2017, 2017
Short summary

Related subject area

Landslides and Debris Flows Hazards
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary

Cited articles

Avouac, J.-P., Meng, L., Wei, S., Wang, T., and Ampuero, J.-P.: Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nat. Geosci., 8, 708–711, https://doi.org/10.1038/ngeo2518, 2015.
Barrington, L., Ghosh, S., Greene, M., Har-Noy, S., Berger, J., Gill, S., Lin, A., and Huyck, C.: Crowdsourcing earthquake damage assessment using remote sensing imagery, Ann. Geophys., 54, 6, https://doi.org/10.4401/ag-5324, 2012.
Bird, J. and Bommer, J.: Earthquake losses due to ground failure, Eng. Geol., 75, 147–179, https://doi.org/10.1016/j.enggeo.2004.05.006, 2004.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: Earthquake-and-landslide events are associated with more fatalities than earthquakes alone, Nat. Hazards, 72, 895–914, https://doi.org/10.1007/s11069-014-1044-4, 2014.
Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., Del Conte, S., Friedl, B., Schneiderbauer, S., Iasio, C., Vlcko, J, Greif, V., Proske, H., Granica, K., Falco, S., Lozzi, S., Mora, O., Arnaud, A., Novali, F., and Bianchi, M.: Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER, P-Soc. Photo-Soc. Env., 4, 92–108, https://doi.org/10.1016/j.rsase.2016.07.001, 2016.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
There is currently no protocol for rapid humanitarian-facing landslide assessment and no published recognition of what is possible and useful to compile immediately after a triggering event. Drawing on the 2015 Gorkha earthquake (Nepal), we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated.
Altmetrics
Final-revised paper
Preprint