Articles | Volume 18, issue 1
https://doi.org/10.5194/nhess-18-185-2018
https://doi.org/10.5194/nhess-18-185-2018
Research article
 | 
16 Jan 2018
Research article |  | 16 Jan 2018

Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

Jack G. Williams, Nick J. Rosser, Mark E. Kincey, Jessica Benjamin, Katie J. Oven, Alexander L. Densmore, David G. Milledge, Tom R. Robinson, Colm A. Jordan, and Tom A. Dijkstra

Related authors

Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021,https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency
Jack G. Williams, Nick J. Rosser, Richard J. Hardy, Matthew J. Brain, and Ashraf A. Afana
Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018,https://doi.org/10.5194/esurf-6-101-2018, 2018
Short summary
Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support
Tom R. Robinson, Nicholas J. Rosser, Alexander L. Densmore, Jack G. Williams, Mark E. Kincey, Jessica Benjamin, and Heather J. A. Bell
Nat. Hazards Earth Syst. Sci., 17, 1521–1540, https://doi.org/10.5194/nhess-17-1521-2017,https://doi.org/10.5194/nhess-17-1521-2017, 2017
Short summary

Related subject area

Landslides and Debris Flows Hazards
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025,https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025,https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary
Topographic controls on landslide mobility: modeling hurricane-induced landslide runout and debris-flow inundation in Puerto Rico
Dianne L. Brien, Mark E. Reid, Collin Cronkite-Ratcliff, and Jonathan P. Perkins
Nat. Hazards Earth Syst. Sci., 25, 1229–1253, https://doi.org/10.5194/nhess-25-1229-2025,https://doi.org/10.5194/nhess-25-1229-2025, 2025
Short summary
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Jonathan Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
Nat. Hazards Earth Syst. Sci., 25, 1037–1056, https://doi.org/10.5194/nhess-25-1037-2025,https://doi.org/10.5194/nhess-25-1037-2025, 2025
Short summary
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
Nat. Hazards Earth Syst. Sci., 25, 949–973, https://doi.org/10.5194/nhess-25-949-2025,https://doi.org/10.5194/nhess-25-949-2025, 2025
Short summary

Cited articles

Avouac, J.-P., Meng, L., Wei, S., Wang, T., and Ampuero, J.-P.: Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nat. Geosci., 8, 708–711, https://doi.org/10.1038/ngeo2518, 2015.
Barrington, L., Ghosh, S., Greene, M., Har-Noy, S., Berger, J., Gill, S., Lin, A., and Huyck, C.: Crowdsourcing earthquake damage assessment using remote sensing imagery, Ann. Geophys., 54, 6, https://doi.org/10.4401/ag-5324, 2012.
Bird, J. and Bommer, J.: Earthquake losses due to ground failure, Eng. Geol., 75, 147–179, https://doi.org/10.1016/j.enggeo.2004.05.006, 2004.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: Earthquake-and-landslide events are associated with more fatalities than earthquakes alone, Nat. Hazards, 72, 895–914, https://doi.org/10.1007/s11069-014-1044-4, 2014.
Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., Del Conte, S., Friedl, B., Schneiderbauer, S., Iasio, C., Vlcko, J, Greif, V., Proske, H., Granica, K., Falco, S., Lozzi, S., Mora, O., Arnaud, A., Novali, F., and Bianchi, M.: Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER, P-Soc. Photo-Soc. Env., 4, 92–108, https://doi.org/10.1016/j.rsase.2016.07.001, 2016.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
There is currently no protocol for rapid humanitarian-facing landslide assessment and no published recognition of what is possible and useful to compile immediately after a triggering event. Drawing on the 2015 Gorkha earthquake (Nepal), we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated.
Share
Altmetrics
Final-revised paper
Preprint