Articles | Volume 16, issue 3
https://doi.org/10.5194/nhess-16-801-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-16-801-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of European drought events: insights from an international database of text-based reports
Kerstin Stahl
CORRESPONDING AUTHOR
Hydrology Department, University of Freiburg, Freiburg, Germany
Irene Kohn
Hydrology Department, University of Freiburg, Freiburg, Germany
Veit Blauhut
Hydrology Department, University of Freiburg, Freiburg, Germany
Julia Urquijo
Geodynamics Department, Complutense University of Madrid, Madrid, Spain
Lucia De Stefano
Geodynamics Department, Complutense University of Madrid, Madrid, Spain
Vanda Acácio
Centre for Applied Ecology “Prof. Baeta Neves”, School of Agriculture, University of Lisbon, Lisbon, Portugal
Susana Dias
Centre for Applied Ecology “Prof. Baeta Neves”, School of Agriculture, University of Lisbon, Lisbon, Portugal
James H. Stagge
Dept. of Geosciences, University of Oslo, Oslo, Norway
Lena M. Tallaksen
Dept. of Geosciences, University of Oslo, Oslo, Norway
Eleni Kampragou
School of Chemical Engineering, National Technical University of Athens, Athens, Greece
Anne F. Van Loon
Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, the Netherlands
now at: School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
Lucy J. Barker
Centre for Ecology and Hydrology, Wallingford, UK
Lieke A. Melsen
Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, the Netherlands
Carlo Bifulco
Centre for Applied Ecology “Prof. Baeta Neves”, School of Agriculture, University of Lisbon, Lisbon, Portugal
Dario Musolino
Center for Research on Regional Economics, Transport and Tourism, Bocconi University, Milan, Italy
Alessandro de Carli
Center for Research on Regional Economics, Transport and Tourism, Bocconi University, Milan, Italy
Antonio Massarutto
Center for Research on Regional Economics, Transport and Tourism, Bocconi University, Milan, Italy
Department of Economics and Statistics, University of Udine, Udine, Italy
Dionysis Assimacopoulos
School of Chemical Engineering, National Technical University of Athens, Athens, Greece
Henny A. J. Van Lanen
Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, the Netherlands
Related authors
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Judith Meyer, Irene Kohn, Kerstin Stahl, Kirsti Hakala, Jan Seibert, and Alex J. Cannon
Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, https://doi.org/10.5194/hess-23-1339-2019, 2019
Short summary
Short summary
Several multivariate bias correction methods have been developed recently, but only a few studies have tested the effect of multivariate bias correction on hydrological impact projections. This study shows that incorporating or ignoring inter-variable relations between air temperature and precipitation can have a notable effect on the projected snowfall fraction. The effect translated to considerable consequences for the glacio-hydrological responses and streamflow components of the catchments.
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary
Short summary
Due to the lack of long-term observations, insights into changes of groundwater resources are obscured. In this paper we assess past and potential future changes in groundwater drought in headwater catchments using a baseflow approach. There are a few past trends which are highly dependent on the period of analysis. Catchments with short response times are found to have a higher sensitivity to projected seasonal precipitation shifts, urging for a local management based on response times.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Erik Tijdeman, Jamie Hannaford, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 1051–1064, https://doi.org/10.5194/hess-22-1051-2018, https://doi.org/10.5194/hess-22-1051-2018, 2018
Short summary
Short summary
In this study, a screening approach was applied on a set of streamflow records for which various human influences are indicated to identify streamflow records that have drought characteristics that deviate from those expected under pristine conditions. Prolonged streamflow drought duration, a weaker correlation between streamflow and precipitation, and changes in streamflow drought occurrence over time were related to human influences such as groundwater abstractions or reservoir operations.
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Sophie Bachmair, Cecilia Svensson, Ilaria Prosdocimi, Jamie Hannaford, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017, https://doi.org/10.5194/nhess-17-1947-2017, 2017
Short summary
Short summary
This study tests the potential for developing empirical
drought impact functionsbased on hydro-meteorological drought indicators as predictors and text-based reports on drought impacts as a surrogate variable for drought damage. We showcase three data-driven modeling approaches and assess the effect of impact report quantification method.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Erik Tijdeman, Sophie Bachmair, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 20, 4043–4059, https://doi.org/10.5194/hess-20-4043-2016, https://doi.org/10.5194/hess-20-4043-2016, 2016
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Veit Blauhut, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt
Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, https://doi.org/10.5194/hess-20-2779-2016, 2016
S. Bachmair, C. Svensson, J. Hannaford, L. J. Barker, and K. Stahl
Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, https://doi.org/10.5194/hess-20-2589-2016, 2016
Short summary
Short summary
To date, there is little empirical evidence as to which indicator best represents drought impact occurrence for any given region and/or sector. We therefore exploited text-based data from the European Drought Impact report Inventory (EDII) to evaluate drought indicators, empirically determine indicator thresholds, and model drought impacts. A quantitative analysis using Germany and the UK as a testbed proved to be a useful tool for objectively appraising drought indicators.
A. K. Fleig, L. M. Tallaksen, P. James, H. Hisdal, and K. Stahl
Hydrol. Earth Syst. Sci., 19, 3093–3107, https://doi.org/10.5194/hess-19-3093-2015, https://doi.org/10.5194/hess-19-3093-2015, 2015
S. Bachmair, I. Kohn, and K. Stahl
Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, https://doi.org/10.5194/nhess-15-1381-2015, 2015
Short summary
Short summary
There is little knowledge on the meaning of different hydro-meteorologic drought indicators for drought impact occurrence on the ground. This study investigates the link between commonly used drought indicators and text-based information on drought impacts through data visualization, extraction of indicator values concurrent with impact onset, and correlation analysis for the case study area Germany. The results demonstrate the feasibility of evaluating drought indicators with impacts.
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
J. Hannaford, G. Buys, K. Stahl, and L. M. Tallaksen
Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, https://doi.org/10.5194/hess-17-2717-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-293, https://doi.org/10.5194/hess-2024-293, 2024
Preprint under review for HESS
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK, based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence towards a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Ileen N. Streefkerk, Jeroen C. J. H. Aerts, Jens de Bruijn, Khalid Hassaballah, Rhoda Odongo, Teun Schrieks, Oliver Wasonga, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2382, https://doi.org/10.5194/egusphere-2024-2382, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
In East Africa are conflict over water and vegetation prominent. On top of that, water abstraction of commercial farms are increasing the competition of water. Therefore, this study has developed a model which can investigate what the influence is of these farming activities on the water balance of the region and people's livelihood activities in times of dry periods. We do that by ‘replacing’ the farms in the model, and see what the effect would be if there were communities or forests instead.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2715, https://doi.org/10.5194/egusphere-2024-2715, 2024
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5,000 catchments worldwide found that hydrological and soil moisture droughts decrease river flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short, intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726, https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In Northeast Brazil, we assess official data against local experiences, finding data mismatches and blindspots. Mismatches occur due to the data's broad scope missing finer details. Blindspots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-252, https://doi.org/10.5194/hess-2022-252, 2022
Preprint withdrawn
Short summary
Short summary
Drought impacts on crops can be assessed in terms of crop yield (CY) variation. The hypothesis is that the spatiotemporal change of drought area is a good input to predict CY. A step-by-step approach for predicting CY is built based on two types of machine learning models. Drought area was found suitable for predicting CY. Since it is currently possible to calculate drought areas within drought monitoring systems, the prediction of drought impacts can be integrated directly into them.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-600, https://doi.org/10.5194/hess-2021-600, 2021
Preprint withdrawn
Short summary
Short summary
Drought effects on crops are usually evaluated through crop yield (CY). The hypothesis is that the drought spatial extent is a good input to predict CY. A machine learning approach to predict crop yield is introduced. The use of drought area was found suitable. Since it is currently possible to calculate drought areas within drought monitoring systems, the direct application to predict drought effects can be integrated into them by following approaches such as the one presented or similar.
Gil Mahé, Gamal Abdo, Ernest Amoussou, Telesphore Brou, Stephan Dietrich, Ahmed El Tayeb, Henny van Lanen, Mohamed Meddi, Anil Mishra, Didier Orange, Thi Phuong Quynh Le, Raphael Tshimanga, Patrick Valimba, Santiago Yepez, Andrew Ogilvie, and Oula Amrouni
Proc. IAHS, 384, 5–18, https://doi.org/10.5194/piahs-384-5-2021, https://doi.org/10.5194/piahs-384-5-2021, 2021
Short summary
Short summary
The FRIEND-Water program (FWP) is the oldest and the most transverse program within the UNESCO IHP. It allows large communities of hydrologists to collaborate across borders on common shared data and scientific topics, addressed through 8 large world regions. Research priorities evolve according to the projections given by the member States during the IHP councils. FWP further activities follow the IHP IX program with the support of the Montpellier UNESCO Category II Center ICIREWAD.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Short summary
This paper provides a comprehensive overview of the differences within streamflow droughts derived using different identification approaches, namely the variable threshold, fixed threshold, and the Standardized Streamflow Index, including an analysis of both historical drought and implications for forecasting. Our results clearly show that streamflow droughts derived from different approaches deviate from each other in terms of drought occurrence, timing, duration, and deficit volume.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021, https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary
Short summary
Certain hydrological processes become more or less relevant when the climate changes. This should also be visible in the models that are used for long-term predictions of river flow as a consequence of climate change. We investigated this using three different models. The change in relevance should be reflected in how the parameters of the models are determined. In the different models, different processes become more relevant in the future: they disagree with each other.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Anne F. Van Loon, Imogen Lester-Moseley, Melanie Rohse, Phil Jones, and Rosie Day
Geosci. Commun., 3, 453–474, https://doi.org/10.5194/gc-3-453-2020, https://doi.org/10.5194/gc-3-453-2020, 2020
Short summary
Short summary
The Global South is vulnerable to natural hazards like floods and droughts, but creativity could support community preparedness. We mapped 267 papers that use a variety of art forms. They aim to raise the public's awareness or instigate adaptation by participants. In our pilot in South Africa, community members developed stories about preparing for future drought. This led to an imagination of future events, conversations about adaptation, intergenerational exchange, and increased awareness.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020, https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Short summary
Vegetation is a principal component in the Earth system models that are used for weather, climate and other environmental predictions. Water is one of the main drivers of vegetation; however, the global distribution of how water influences vegetation is not well understood. This study looks at spatial patterns of photosynthesis and water sources (rain and groundwater) to obtain a first understanding of water access and limitations for the growth of global forests (proxy for natural vegetation).
Samuel Jonson Sutanto and Henny A. J. Van Lanen
Proc. IAHS, 383, 281–290, https://doi.org/10.5194/piahs-383-281-2020, https://doi.org/10.5194/piahs-383-281-2020, 2020
Short summary
Short summary
This paper aims to analyze hydrological drought characteristics in the pan-European region based on past drought events from 1990 to 2017. Our study shows that the most severe droughts during our study period were observed from 1992 to 1997, where on average Europe experienced drought events, which lasted up to 4 months. Slow responding variables, such as groundwater, are better in showing extreme drought compared to fast responding variables such as runoff.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Lucy J. Barker, Jamie Hannaford, and Miaomiao Ma
Proc. IAHS, 383, 273–279, https://doi.org/10.5194/piahs-383-273-2020, https://doi.org/10.5194/piahs-383-273-2020, 2020
Short summary
Short summary
Drought monitoring and early warning are critical aspects of drought preparedness and can help mitigate impacts on society and the environment. We reviewed academic literature in England and Chinese on the topic of drought monitoring and early warning in China. The number of papers on this topic has increased substantially but the most recent advances have not been operationalised. We identify the methods that can be translated from the experimental to national, operational systems.
Miaomiao Ma, Juan Lv, Zhicheng Su, Jamie Hannaford, Hongquan Sun, Yanping Qu, Zikang Xing, Lucy Barker, and Yaxu Wang
Proc. IAHS, 383, 267–272, https://doi.org/10.5194/piahs-383-267-2020, https://doi.org/10.5194/piahs-383-267-2020, 2020
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Zhongbo Yu, Chunhui Lu, Jianyuan Cai, Dazheng Yu, Gil Mahe, Anil Mishra, Christophe Cudennec, Henny A. J. Van Lanen, Didier Orange, and Abou Amani
Proc. IAHS, 383, 3–4, https://doi.org/10.5194/piahs-383-3-2020, https://doi.org/10.5194/piahs-383-3-2020, 2020
Short summary
Short summary
The 8th Global FRIEND conference highlighted the advance in hydrological science and innovation in water management. 52 accepted papers cover study areas in precipitation and climate impact; observation, analysis and simulations of hydrologic processes; floods in the changing environments; drought monitoring and analysis; water resources and environmental impacts. The outcome of the conference presented in the proceedings will be shared and discussed widely among UNESCO IHP networks.
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020, https://doi.org/10.5194/hess-24-3951-2020, 2020
Short summary
Short summary
Streamflow seasonality is changing and expected to further change under the influence of climate change. We here assess how annual streamflow hydrographs will change in future by using a newly developed classification scheme. Our comparison of future with current annual hydrograph classes shows that robust changes are expected only for currently melt-influenced regions in the Rocky Mountains. These upstream changes may require the adaptation of management strategies in downstream regions.
Samuel J. Sutanto, Melati van der Weert, Veit Blauhut, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 20, 1595–1608, https://doi.org/10.5194/nhess-20-1595-2020, https://doi.org/10.5194/nhess-20-1595-2020, 2020
Short summary
Short summary
Present-day drought early warning systems only provide information on drought hazard forecasts. Here, we have developed drought impact functions to forecast drought impacts up to 7 months ahead using machine learning techniques, logistic regression, and random forest. Our results show that random forest produces a higher-impact forecasting skill than logistic regression. For German county levels, drought impacts can be forecasted up to 4 months ahead using random forest.
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Short summary
We review the scientific literature on natural hazard risk assessments at the global scale. In doing so, we examine similarities and differences between the approaches taken across the different hazards and identify potential ways in which different hazard communities can learn from each other. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales.
Yaxu Wang, Juan Lv, Jamie Hannaford, Yicheng Wang, Hongquan Sun, Lucy J. Barker, Miaomiao Ma, Zhicheng Su, and Michael Eastman
Nat. Hazards Earth Syst. Sci., 20, 889–906, https://doi.org/10.5194/nhess-20-889-2020, https://doi.org/10.5194/nhess-20-889-2020, 2020
Short summary
Short summary
Due to the specific applicability of drought impact indicators, this study identifies which drought indicators are suitable for characterising drought impacts and the contribution of vulnerability factors. The results show that the relationship varies across different drought impacts and cities; some factors have a strong positive correlation with drought vulnerability. This study can support drought planning work and provide background for the indices used in drought monitoring applications.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Katie A. Smith, Lucy J. Barker, Maliko Tanguy, Simon Parry, Shaun Harrigan, Tim P. Legg, Christel Prudhomme, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, https://doi.org/10.5194/hess-23-3247-2019, 2019
Short summary
Short summary
This paper describes the multi-objective calibration approach used to create a consistent dataset of reconstructed daily river flow data for 303 catchments in the UK over 1891–2015. The modelled data perform well when compared to observations, including in the timing and the classification of drought events. This method and data will allow for long-term studies of flow trends and past extreme events that have not been previously possible, enabling water managers to better plan for the future.
Helene Birkelund Erlandsen, Lena Merete Tallaksen, and Jørn Kristiansen
Earth Syst. Sci. Data, 11, 797–821, https://doi.org/10.5194/essd-11-797-2019, https://doi.org/10.5194/essd-11-797-2019, 2019
Short summary
Short summary
Robust estimates of runoff, snow, and evaporation rely on high-quality estimates of incoming solar and thermal radiation at the surface and near surface humidity. Taking advantage of the physical soundness of a numerical weather reanalysis and the preciseness and spatial resolution of a national gridded temperature data set, new estimates of these variables are presented for Norway. Further, existing data sets and observations are compared, emphasizing daily correlation, trends, and gradients.
Anne F. Van Loon, Sally Rangecroft, Gemma Coxon, José Agustín Breña Naranjo, Floris Van Ogtrop, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 23, 1725–1739, https://doi.org/10.5194/hess-23-1725-2019, https://doi.org/10.5194/hess-23-1725-2019, 2019
Short summary
Short summary
We explore the use of the classic
paired-catchmentapproach to quantify human influence on hydrological droughts. In this approach two similar catchments are compared and differences are attributed to the human activity present in one. In two case studies in UK and Australia, we found that groundwater abstraction aggravated streamflow drought by > 200 % and water transfer alleviated droughts with 25–80 %. Understanding the human influence on droughts can support water management decisions.
Judith Meyer, Irene Kohn, Kerstin Stahl, Kirsti Hakala, Jan Seibert, and Alex J. Cannon
Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, https://doi.org/10.5194/hess-23-1339-2019, 2019
Short summary
Short summary
Several multivariate bias correction methods have been developed recently, but only a few studies have tested the effect of multivariate bias correction on hydrological impact projections. This study shows that incorporating or ignoring inter-variable relations between air temperature and precipitation can have a notable effect on the projected snowfall fraction. The effect translated to considerable consequences for the glacio-hydrological responses and streamflow components of the catchments.
Trine J. Hegdahl, Kolbjørn Engeland, Ingelin Steinsland, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 23, 723–739, https://doi.org/10.5194/hess-23-723-2019, https://doi.org/10.5194/hess-23-723-2019, 2019
Short summary
Short summary
Flood forecasting relies on high-quality meteorological data. This study shows how improved temperature forecasts improve streamflow forecasts in most cases, with the degree of improvement depending on season and region. To improve temperature forecasts further, catchment-specific methods should be developed to account for these seasonal and regional differences. In short, for climates with a seasonal snow cover, higher-quality temperature forecasts clearly improve flood forecasts.
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary
Short summary
Due to the lack of long-term observations, insights into changes of groundwater resources are obscured. In this paper we assess past and potential future changes in groundwater drought in headwater catchments using a baseflow approach. There are a few past trends which are highly dependent on the period of analysis. Catchments with short response times are found to have a higher sensitivity to projected seasonal precipitation shifts, urging for a local management based on response times.
Elham Kakaei, Hamid Reza Moradi, Ali Reza Moghaddam Nia, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-124, https://doi.org/10.5194/hess-2018-124, 2018
Preprint withdrawn
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Erik Tijdeman, Jamie Hannaford, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 1051–1064, https://doi.org/10.5194/hess-22-1051-2018, https://doi.org/10.5194/hess-22-1051-2018, 2018
Short summary
Short summary
In this study, a screening approach was applied on a set of streamflow records for which various human influences are indicated to identify streamflow records that have drought characteristics that deviate from those expected under pristine conditions. Prolonged streamflow drought duration, a weaker correlation between streamflow and precipitation, and changes in streamflow drought occurrence over time were related to human influences such as groundwater abstractions or reservoir operations.
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Sophie Bachmair, Cecilia Svensson, Ilaria Prosdocimi, Jamie Hannaford, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017, https://doi.org/10.5194/nhess-17-1947-2017, 2017
Short summary
Short summary
This study tests the potential for developing empirical
drought impact functionsbased on hydro-meteorological drought indicators as predictors and text-based reports on drought impacts as a surrogate variable for drought damage. We showcase three data-driven modeling approaches and assess the effect of impact report quantification method.
Johanne H. Rydsaa, Frode Stordal, Anders Bryn, and Lena M. Tallaksen
Biogeosciences, 14, 4209–4227, https://doi.org/10.5194/bg-14-4209-2017, https://doi.org/10.5194/bg-14-4209-2017, 2017
Short summary
Short summary
We investigate the atmospheric sensitivity to an expansion in shrub and tree cover in the northern Fennoscandia region. We applied a regional weather and climate model in evaluating biophysical effects of increased shrub cover at a fine resolution. We find that shrub cover increase causes a warming that is sensitive to the shrub and tree heights. Cooling effects include increased snow cover, cloud cover, and precipitation. We show that the net warming will likely increase in the future.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Niko Wanders, Anne F. Van Loon, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-512, https://doi.org/10.5194/hess-2017-512, 2017
Revised manuscript has not been submitted
Short summary
Short summary
This paper investigates the similarities between frequently used drought indicators and how they should be used for global drought monitoring. We find that drought indicators that should monitor drought in the same hydrological domain show high discrepancy in their anomalies and thus drought detection. This shows that the current ways of monitoring drought events is not sufficient to fully capture the complexity of drought events and monitor the socio-economic impact of these large-scale events.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Anne F. Van Loon, Rohini Kumar, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, https://doi.org/10.5194/hess-21-1947-2017, 2017
Short summary
Short summary
Summer 2015 was extremely dry in Europe, hampering groundwater supply to irrigation and drinking water. For effective management, the groundwater situation should be monitored in real time, but data are not available. We tested two methods to estimate groundwater in near-real time, based on satellite data and using the relationship between rainfall and historic groundwater levels. The second method gave a good spatially variable representation of the 2015 groundwater drought in Europe.
Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger
Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, https://doi.org/10.5194/hess-21-1397-2017, 2017
Short summary
Short summary
This paper analyses the European summer drought of 2015 from a climatological perspective, including its origin and spatial and temporal development, and how it compares with the 2003 event. It discusses the main contributing factors controlling the occurrence and persistence of the event: temperature and precipitation anomalies, blocking episodes and sea surface temperatures. The results represent the outcome of a collaborative initiative of members of UNESCO’s FRIEND-Water program.
Sally Rangecroft, Anne F. Van Loon, Héctor Maureira, Koen Verbist, and David M. Hannah
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-57, https://doi.org/10.5194/esd-2016-57, 2016
Preprint withdrawn
Short summary
Short summary
This paper on anthropogenic droughts looks at the interactions of human activity and "natural" processes. Using a case study of the introduction of a reservoir in a Chilean river basin and a new methodology, we established the most effective way forward for quantifying human activities on hydrological drought: the "threshold level" method with an "undisturbed" time period as the threshold. This will increase our understanding on how human activities are impacting the hydrological system.
Erik Tijdeman, Sophie Bachmair, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 20, 4043–4059, https://doi.org/10.5194/hess-20-4043-2016, https://doi.org/10.5194/hess-20-4043-2016, 2016
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Veit Blauhut, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt
Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, https://doi.org/10.5194/hess-20-2779-2016, 2016
S. Bachmair, C. Svensson, J. Hannaford, L. J. Barker, and K. Stahl
Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, https://doi.org/10.5194/hess-20-2589-2016, 2016
Short summary
Short summary
To date, there is little empirical evidence as to which indicator best represents drought impact occurrence for any given region and/or sector. We therefore exploited text-based data from the European Drought Impact report Inventory (EDII) to evaluate drought indicators, empirically determine indicator thresholds, and model drought impacts. A quantitative analysis using Germany and the UK as a testbed proved to be a useful tool for objectively appraising drought indicators.
Lucy J. Barker, Jamie Hannaford, Andrew Chiverton, and Cecilia Svensson
Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, https://doi.org/10.5194/hess-20-2483-2016, 2016
Short summary
Short summary
Standardised meteorological indicators are widely used in drought monitoring, but applications to hydrological drought are less extensive. Here we assess the utility of standardised indicators for characterising drought duration, severity and propagation in a diverse set of 121 UK catchments. Spatial variations in streamflow drought characteristics reflect differences in drought propagation behaviour that are themselves largely driven by heterogeneity in catchment properties around the UK.
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
Short summary
In this study we investigated the sensitivity of a large-domain hydrological model for spatial and temporal resolution. We evaluated the results on a mesoscale catchment in Switzerland. Our results show that the model was hardly sensitive for the spatial resolution, which implies that spatial variability is likely underestimated. Our results provide a motivation to improve the representation of spatial variability in hydrological models in order to increase their credibility on a smaller scale.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
Lieke A. Melsen, Adriaan J. Teuling, Paul J. J. F. Torfs, Remko Uijlenhoet, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 20, 1069–1079, https://doi.org/10.5194/hess-20-1069-2016, https://doi.org/10.5194/hess-20-1069-2016, 2016
Short summary
Short summary
A meta-analysis on 192 peer-reviewed articles reporting applications of a land surface model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution.
A. K. Fleig, L. M. Tallaksen, P. James, H. Hisdal, and K. Stahl
Hydrol. Earth Syst. Sci., 19, 3093–3107, https://doi.org/10.5194/hess-19-3093-2015, https://doi.org/10.5194/hess-19-3093-2015, 2015
S. Bachmair, I. Kohn, and K. Stahl
Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, https://doi.org/10.5194/nhess-15-1381-2015, 2015
Short summary
Short summary
There is little knowledge on the meaning of different hydro-meteorologic drought indicators for drought impact occurrence on the ground. This study investigates the link between commonly used drought indicators and text-based information on drought impacts through data visualization, extraction of indicator values concurrent with impact onset, and correlation analysis for the case study area Germany. The results demonstrate the feasibility of evaluating drought indicators with impacts.
J. H. Rydsaa, F. Stordal, and L. M. Tallaksen
Biogeosciences, 12, 3071–3087, https://doi.org/10.5194/bg-12-3071-2015, https://doi.org/10.5194/bg-12-3071-2015, 2015
Short summary
Short summary
MODIS land surface data with WRF V3.5.1 and Noah LSM is used to investigate the sensitivity of the atmosphere to changes in structural vegetation in the boreal ecosystem. Results show that high north evergreen forest expansion leads to larger latent heat fluxes, while increased summer precipitation and reduced wind speed lead to lower sensible heat flux. Replacement of evergreen forest with mixed forest have largely opposite effects, moderating the regional effects on the atmosphere.
A. F. Van Loon, S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. A. J. Van Lanen
Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, https://doi.org/10.5194/hess-19-1993-2015, 2015
Short summary
Short summary
Hydrological drought types in cold climates have complex causing factors and impacts. In Austria and Norway, a lack of snowmelt is mainly related to below-normal winter precipitation, and a lack of glaciermelt is mainly related to below-normal summer temperature. These and other hydrological drought types impacted hydropower production, water supply, and agriculture in Europe and the US in the recent and far past. For selected drought events in Norway impacts could be coupled to causing factors.
N. Wanders and H. A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 15, 487–504, https://doi.org/10.5194/nhess-15-487-2015, https://doi.org/10.5194/nhess-15-487-2015, 2015
Short summary
Short summary
In this study a conceptual hydrological model was forced by three general circulation models for the SRES A2 emission scenario and compared to the WATCH Forcing data set. Hydrological drought characteristics (duration and severity) were calculated on a global scale. It was found that both drought duration and severity will increase in multiple regions, which will lead to a higher impact of drought events, which urges water resources managers to timely design pro-active measures.
R. P. Bartholomeus, J. H. Stagge, L. M. Tallaksen, and J. P. M. Witte
Hydrol. Earth Syst. Sci., 19, 997–1014, https://doi.org/10.5194/hess-19-997-2015, https://doi.org/10.5194/hess-19-997-2015, 2015
Short summary
Short summary
We used the past century’s time series of observed climate, containing non-stationary signals of atmospheric oscillations, global warming, and global dimming/brightening, to quantify possible systematic errors that may be introduced in estimates of potential evaporation and in hydrological modeling studies due to straightforward application of i) the common two-step approach for potential evaporation specifically, and ii) fixed instead of time-variant model parameters in general.
N. Wanders, Y. Wada, and H. A. J. Van Lanen
Earth Syst. Dynam., 6, 1–15, https://doi.org/10.5194/esd-6-1-2015, https://doi.org/10.5194/esd-6-1-2015, 2015
Short summary
Short summary
This study shows the impact of a changing climate on hydrological drought. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a substantial influence on the way in which drought impact is calculated. The obtained results show that an adaptive threshold approach is the way forward to study the impact of climate change on the identification and characterization of hydrological drought events.
B. S. Beyene, A. F. Van Loon, H. A. J. Van Lanen, and P. J. J. F. Torfs
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12765-2014, https://doi.org/10.5194/hessd-11-12765-2014, 2014
Manuscript not accepted for further review
Short summary
Short summary
This paper explores possible threshold level calculation methods for hydrological drought analysis. We proposed four threshold methods applied to time series of hydrometeorological variables and inter-compared the drought propagation patterns. Our results have shown that these methods can influence the magnitude and severity of droughts differently and even may introduce artefact drought events. Therefore, we suggest the use and checking of these threshold approaches for drought analysis.
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
J. Hannaford, G. Buys, K. Stahl, and L. M. Tallaksen
Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, https://doi.org/10.5194/hess-17-2717-2013, 2013
H. A. J. Van Lanen, N. Wanders, L. M. Tallaksen, and A. F. Van Loon
Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, https://doi.org/10.5194/hess-17-1715-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Review article: Physical vulnerability database for critical infrastructure hazard risk assessments – a systematic review and data collection
Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg
Dynamical changes in seismic properties prior to, during, and after the 2014–2015 Holuhraun eruption, Iceland
The World Wide Lightning Location Network (WWLLN) over Spain
AscDAMs: advanced SLAM-based channel detection and mapping system
Shoreline and land use–land cover changes along the 2004-tsunami-affected South Andaman coast: understanding changing hazard susceptibility
Satellite-based data for agricultural index insurance: a systematic quantitative literature review
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to Kathmandu Valley, Nepal
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
A neural network model for automated prediction of avalanche danger level
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Comparison of machine learning techniques for reservoir outflow forecasting
Development of black ice prediction model using GIS-based multi-sensor model validation
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
Gridded flood depth estimates from satellite-derived inundations
ProbFire: a probabilistic fire early warning system for Indonesia
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Brief communication: Monitoring a soft-rock coastal cliff using webcams and strain sensors
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds
Are sirens effective tools to alert the population in France?
UAV survey method to monitor and analyze geological hazards: the case study of the mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily)
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
CHILDA – Czech Historical Landslide Database
Review article: Detection of actionable tweets in crisis events
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Opportunities and risks of disaster data from social media: a systematic review of incident information
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Predicting power outages caused by extratropical storms
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. Van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 4341–4368, https://doi.org/10.5194/nhess-24-4341-2024, https://doi.org/10.5194/nhess-24-4341-2024, 2024
Short summary
Short summary
Critical infrastructures (CIs) are exposed to natural hazards, which may result in significant damage and burden society. Vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in the literature. Our study reviews over 1510 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can be directly used for hazard risk assessments, including floods, earthquakes, windstorms, and landslides.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024, https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites is also related to soil quality and not necessarily to anomalous yields.
Maria R. P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
Nat. Hazards Earth Syst. Sci., 24, 4075–4089, https://doi.org/10.5194/nhess-24-4075-2024, https://doi.org/10.5194/nhess-24-4075-2024, 2024
Short summary
Short summary
We assessed the performance of permutation entropy (PE), phase permutation entropy (PPE), and instantaneous frequency (IF), which are estimated from a single seismic station, to detect changes before, during, and after the 2014–2015 Holuhraun eruption in Iceland. We show that these three parameters are sensitive to the pre-eruptive and eruptive processes. Finally, we discuss their potential and limitations in eruption monitoring.
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
Nat. Hazards Earth Syst. Sci., 24, 3925–3943, https://doi.org/10.5194/nhess-24-3925-2024, https://doi.org/10.5194/nhess-24-3925-2024, 2024
Short summary
Short summary
The World Wide Lightning Location Network (WWLLN) operates a globally distributed network of stations that detect lightning signals at a planetary scale. A detection efficiency of 29 % with a location accuracy of between 2 and 3 km is obtained for the area of Spain by comparing WWLLN data with those of the Spanish State Meteorological Agency. The network's capability to resolve convective-storm cells generated in a cutoff low-pressure system is also demonstrated in the west Mediterranean Sea.
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
Nat. Hazards Earth Syst. Sci., 24, 3075–3094, https://doi.org/10.5194/nhess-24-3075-2024, https://doi.org/10.5194/nhess-24-3075-2024, 2024
Short summary
Short summary
Harsh environments limit the use of drone, satellite, and simultaneous localization and mapping technology to obtain precise channel morphology data. We propose AscDAMs, which includes a deviation correction algorithm to reduce errors, a point cloud smoothing algorithm to diminish noise, and a cross-section extraction algorithm to quantitatively assess the morphology data. AscDAMs solves the problems and provides researchers with more reliable channel morphology data for further analysis.
Vikas Ghadamode, Aruna Kumari Kondarathi, Anand K. Pandey, and Kirti Srivastava
Nat. Hazards Earth Syst. Sci., 24, 3013–3033, https://doi.org/10.5194/nhess-24-3013-2024, https://doi.org/10.5194/nhess-24-3013-2024, 2024
Short summary
Short summary
In 2004-tsunami-affected South Andaman, tsunami wave propagation, arrival times, and run-up heights at 13 locations are computed to analyse pre- and post-tsunami shoreline and land use–land cover changes to understand the evolving hazard scenario. The LULC changes and dynamic shoreline changes are observed in zones 3, 4, and 5 owing to dynamic population changes, infrastructural growth, and gross state domestic product growth. Economic losses would increase 5-fold for a similar tsunami.
Thuy T. Nguyen, Shahbaz Mushtaq, Jarrod Kath, Thong Nguyen-Huy, and Louis Reymondin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1527, https://doi.org/10.5194/egusphere-2024-1527, 2024
Short summary
Short summary
We reviewed the use of satellite-based data in designing agricultural index-based insurance (IBI) products, an effective tool for managing climate risk and promoting sustainable development. Despite the increasing number of studies since 2010 to present, the review revealed a gap in applying the approach to perennial crops in developing countries. We also highlighted the growing importance of satellite data for index insurance, employing high-resolution datasets to reduce basis risk.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101, https://doi.org/10.5194/nhess-2024-101, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We describe a methodology to systematically gather evidence of the breadth of single natural hazards and their multi-hazard interrelationships in data-scarce urban settings. We apply this methodology to Kathmandu Valley, Nepal, where we find evidence of 21 single hazard types, and 83 multi-hazard interrelationships. This evidence is supplemented with multi-hazard scenarios developed by practitioner stakeholders engaged in disaster risk reduction research and practice in Kathmandu Valley.
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024, https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Short summary
Early warning systems (EWSs) promise to decrease the vulnerability of self-constructed (informal) settlements. A living lab developed a partially functional prototype of an EWS for landslides in a Medellín neighborhood. The first findings indicate that technical aspects can be manageable, unlike social and political dynamics. A resilient EWS for informal settlements has to achieve sufficient social and technical redundancy to maintain basic functionality in a reduced-support scenario.
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024, https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Short summary
This study provided an opportunity to assess both the perception of the tsunami hazard and the knowledge of alerts in five municipalities located along the French Mediterranean coastlines. The age and location of the respondents explain several differences between the five municipalities surveyed – more so than gender or residence status. This study may help local authorities to develop future tsunami awareness actions and to identify more appropriate strategies to be applied in the short term.
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024, https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Short summary
Severe weather such as hail, lightning, and heavy rainfall can be hazardous to humans and property. Dual-polarization weather radars provide crucial information to forecast these events by detecting precipitation types. This study analyses the importance of dual-polarization data for predicting severe weather for 60 min using an existing deep learning model. The results indicate that including these variables improves the accuracy of predicting heavy rainfall and lightning.
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023, https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Short summary
Snow avalanches are a natural hazard that can cause danger to human lives. This threat can be reduced by accurate prediction of the danger levels. The development of mathematical models based on past data and present conditions can help to improve the accuracy of prediction. This research aims to develop a neural-network-based model for correlating complex relationships between the meteorological variables and the profile variables.
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023, https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Short summary
Landslides and ground deformation associated with the construction of a hydropower mega dam in the Santa Cruz River in Argentine Patagonia have been monitored using radar and optical satellite data, together with the analysis of technical reports. This allowed us to assess the integrity of the construction, providing a new and independent dataset. We have been able to identify ground deformation trends that put the construction works at risk.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023, https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Short summary
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of households. Information on locations and extent of past erosion can help anticipate where erosion might occur in the upcoming monsoon season and to take preventive measures. In our study, we show how time series of radar satellite imagery can be used to retrieve information on past erosion events shortly after the monsoon season using a novel interactive online tool based on the Google Earth Engine.
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023, https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Short summary
Human activities across China show a similar trend in response to rains. However, urban resilience varies significantly by region. The northwestern arid region and the central underdeveloped areas are very fragile, and even low-intensity rains can trigger significant human activity anomalies. By contrast, even high-intensity rains might not affect residents in the southeast.
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022, https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022, https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
Short summary
The devastating effects of recurring drought conditions are mostly felt by pastoralists that rely on grass and shrubs as fodder for their animals. Using historical information from precipitation, soil moisture, and vegetation health data, we developed a model that can forecast vegetation condition and the probability of drought occurrence up till a 10-week lead time with an accuracy of 74 %. Our model can be adopted by policymakers and relief agencies for drought early warning and early action.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022, https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Short summary
The impact of drought may vary in a given region depending on whether it is dominated by trees, grasslands, or croplands. The differences in impact can also be the agro-ecological zones within the region. This paper proposes a hierarchical Bayesian model (HBM) for forecasting vegetation condition in spatially diverse areas. Compared to a non-hierarchical model, the HBM proved to be a more natural method for forecasting drought in areas with different land covers and
agro-ecological zones.
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022, https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Short summary
Landslide dams are secondary disasters caused by landslides, which can cause great damage to mountains. We have proposed a procedure to calculate the key parameters of these dams that uses only a single remote-sensing image and a pre-landslide DEM combined with landslide theory. The core of this study is a modeling problem. We have found the bridge between the theory of landslide dams and the requirements of disaster relief.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022, https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Short summary
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the urbanising city of Quito, Ecuador, which experiences earthquake, volcano, landslide, and flood hazards. We use satellite data to evaluate the use of greenspaces as safe spaces following an earthquake. We find disparities regarding access to and availability of greenspaces. The availability of greenspaces that could contribute to community resilience is high; however, many require official designation.
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022, https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
Short summary
The advent of new satellite technologies improves our ability to study floods. While the depth of water at flooded buildings is generally the most important variable for flood researchers, extracting this accurately from satellite data is challenging. The software tool presented here accomplishes this, and tests show the tool is more accurate than competing tools. This achievement unlocks more detailed studies of past floods and improves our ability to plan for and mitigate disasters.
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022, https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Short summary
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative effects on human health in the region. In this study we show that such burning events can be predicted several months in advance in large parts of Indonesia using existing seasonal climate forecasts and forest cover change datasets. A reliable early fire warning system would enable local agencies to prepare and mitigate the worst of the effects.
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022, https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary
Short summary
Through a comprehensive analysis of the current remote sensing technology resources, this paper establishes the database to realize the unified management of heterogeneous sensor resources and proposes a capability evaluation method of remote sensing cooperative technology in geohazard emergencies, providing a decision-making basis for the establishment of remote sensing cooperative observations in geohazard emergencies.
Diego Guenzi, Danilo Godone, Paolo Allasia, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino
Nat. Hazards Earth Syst. Sci., 22, 207–212, https://doi.org/10.5194/nhess-22-207-2022, https://doi.org/10.5194/nhess-22-207-2022, 2022
Short summary
Short summary
In the Apulia region (southeastern Italy) we are monitoring a soft-rock coastal cliff using webcams and strain sensors. In this urban and touristic area, coastal recession is extremely rapid and rockfalls are very frequent. In our work we are using low-cost and open-source hardware and software, trying to correlate both meteorological information with measures obtained from crack meters and webcams, aiming to recognize potential precursor signals that could be triggered by instability phenomena.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Johnny Douvinet, Anna Serra-Llobet, Esteban Bopp, and G. Mathias Kondolf
Nat. Hazards Earth Syst. Sci., 21, 2899–2920, https://doi.org/10.5194/nhess-21-2899-2021, https://doi.org/10.5194/nhess-21-2899-2021, 2021
Short summary
Short summary
This study proposes to combine results of research regarding the spatial inequalities due to the siren coverage, the political dilemma of siren activation, and the social problem of siren awareness and trust for people in France. Surveys were conducted using a range of complementary methods (GIS analysis, statistical analysis, questionnaires, interviews) through different scales. Results show that siren coverage in France is often determined by population density but not risks or disasters.
Fabio Brighenti, Francesco Carnemolla, Danilo Messina, and Giorgio De Guidi
Nat. Hazards Earth Syst. Sci., 21, 2881–2898, https://doi.org/10.5194/nhess-21-2881-2021, https://doi.org/10.5194/nhess-21-2881-2021, 2021
Short summary
Short summary
In this paper we propose a methodology to mitigate hazard in a natural environment in an urbanized context. The deformation of the ground is a precursor of paroxysms in mud volcanoes. Therefore, through the analysis of the deformation supported by a statistical approach, this methodology was tested to reduce the hazard around the mud volcano. In the future, the goal is that this dangerous area will become both a naturalistic heritage and a source of development for the community of the area.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Short summary
The online landslide database CHILDA (Czech Historical Landslide Database) summarises information about landslides which occurred in the area of Czechia (the Czech Republic). The database is freely accessible via the https://childa.cz/ website. It includes 699 records (spanning the period of 1132–1989). Overall, 55 % of all recorded landslide events occurred only within 15 years of the extreme landslide incidence.
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible
cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021, https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Short summary
In this paper, we study when social media is an adequate source to find metadata about incidents that cannot be acquired by traditional means. We identify six major use cases: impact assessment and verification of model predictions, narrative generation, recruiting citizen volunteers, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021, https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021, https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
Cited articles
Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought
indicators and impacts, Nat. Hazards Earth Syst. Sci., 15, 1381–1397,
https://doi.org/10.5194/nhess-15-1381-2015, 2015.
Blauhut V., Gudmundsson, L., and Stahl, K.: Towards pan-European drought risk
maps: quantifying the link between drought indices and reported drought
impacts, Environ. Res. Lett., 10, 014008, https://doi.org/10.1088/1748-9326/10/1/014008, 2015a.
Blauhut, V., Stahl, K., and Kohn, I.: The dynamics of vulnerability to
drought from an impact perspective, in: Drought: Research and Science-Policy
Interfacing, edited by: Andreu, J., Solera, A., Paredes-Arquiola, J.,
Haro-Monteagudo, D., and van Lanen, H. A. J., CRC Press, London, 349–354,
https://doi.org/10.1201/b18077-56, 2015b.
Bouma, E.: Development of comparable agro-climatic zones for the
international exchange of data on the efficacy and crop safety of plant
protection products, Bulletin OEPP/EPPO, 35, 233–238, 2005.
Ceglar, A., Medved-Cvikl, B., Morán-Tejeda, E., Vicente Serrano, S. M.,
and Kajfež-Bogataj, L.: Assessment of multi-scale drought datasets to
quantify drought severity and impacts in agriculture: a case study for
Slovenia, Int. J. Spat. Data Infrastruct. Res., 7, 464–487, https://doi.org/10.2902/1725-0463.2012.07.art21, 2012.
Dessai, S. and Sims, C.: Public perception of drought and climate change in
southeast England, Environ. Hazards, 9, 340–357, https://doi.org/10.3763/ehaz.2010.0037, 2010.
De Stefano, L., Urquijo, J., Acácio, V., Andreu, J., Assimacopoulos, D.,
Bifulco, C., and Wolters, W.: Policy and drought responses – Case Study
scale, DROUGHT-R&SPI Technical Report No. 4, 115 pp., available at:
http://www.eu-drought.org/technicalreports/10821986/ (last access:
7 February 2016), 2012.
Dieker, E., van Lanen, H. A. J., and Svoboda, M.: Comparison of Three Drought
Monitoring Tools in the USA, WATCH Technical Report No. 25, 86 pp.,
available at: http://www.eu-watch.org/media/default.aspx/emma/org/10653999/
(last access: 7 February 2016), 2010.
Ding, Y., Hayes, M. J., and Wildham, M.: Measuring economic impacts of
drought: a review and discussion, Disaster Prev. Manage., 20, 434–446,
https://doi.org/10.1108/09653561111161752, 2011.
Estrela, M. J., Peñarrocha, D., and Millán, M.: Multi-annual drought
episodes in the Mediterranean (Valencia region) from 1950–1996. A
spatio-temporal analysis, Int. J. Climatol., 20, 1599–1618, https://doi.org/10.1002/1097-0088, 2000.
European Commission: Communication from the Commission to the European
Parliament and the Council, the European Economic and Social Committee and
the Committee of the Regions: A Blueprint to Safeguard Europe's Water
Resources (COM (2012) 0673 Final), available at:
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0673
(last access: 7 February 2016), 2012.
European Environment Agency: Safe water and healthy water services in a
changing environment, EEA Technical Report 7/2011, 33 pp., Publications
Office of the European Union, Luxembourg, https://doi.org/10.2800/78043, 2011.
European Environment Agency: Water resources in Europe in the context of
vulnerability, EEA 2012 state of water assessment, EEA Report No. 11/20122,
Publications Office of the European Union, Luxembourg, 92 pp., https://doi.org/10.2800/65298, 2012.
Folland, C. K., Hannaford, J., Bloomfield, J. P., Kendon, M., Svensson, C.,
Marchant, B. P., Prior, J., and Wallace, E.: Multi-annual droughts in the English
Lowlands: a review of their characteristics and climate drivers in the winter
half-year, Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, 2015.
Gil, M., Garrido, A., and Hernández-Mora, N.: Direct and indirect
economic impacts of drought in the agri-food sector in the Ebro River basin
(Spain), Nat. Hazards Earth Syst. Sci., 13, 2679–2694, https://doi.org/10.5194/nhess-13-2679-2013, 2013.
Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S., and Prudhomme, C.:
Examining the large-scale spatial coherence of European drought using
regional indicators of precipitation and streamflow deficit, Hydrol.
Process., 25, 1146–1162, https://doi.org/10.1002/hyp.7725, 2011.
Hayes, M., Svoboda, M., Wall, N., and Widhalm, M.: The Lincoln declaration on
drought indices: universal meteorological drought index recommended, B. Am.
Meteorol. Soc., 92, 485–488, https://doi.org/10.1175/2010BAMS3103.1, 2011.
Kallis, G.: Droughts, Ann. Rev. Environ. Resour., 33, 85–118, https://doi.org/10.1146/annurev.environ.33.081307.123117, 2008.
Knight, C. G., Reav, I., and Staneva, M. P. (Eds.): Drought in Bulgaria: A
Contemporary Analog for Climate Change, Ashgate Publishing, Aldershot, 336 pp., 2004.
Knutson, C. L., Hayes, M. J., and Philipps, T.: How to Reduce Drought Risk,
Western Drought Coordination Council, Preparedness and Mitigation Working
Group, Lincoln, 10 pp., available at: http://drought.unl.edu/portals/0/docs/risk.pdf
(last access: 7 February 2016), 1998.
Kossida, M., Kakava, A., Tekidou, A., and Mimikou, M.: Vulnerability to Water
Scarcity and Drought in Europe, ETC/ICM Technical Report 3/2012, European
Topic Centre on Inland, Coastal and Marine Waters (ETC/ICM), Prague, 102 pp.,
available at: http://icm.eionet.europa.eu/ETC_Reports/VulnerabilityToWaterScarcityAndDroughtInEurope
(last access: 7 February 2016), 2012.
Lackstrom, K., Brennan, A., Ferguson, D., Crimmins, M., Darby, L., Dow, K.,
Ingram, K., Meadow, A., Reges, H., Shafer, M., and Smith, K.: The Missing
Piece: Drought Impacts Monitoring. Workshop report produced by the Carolinas
Integrated Sciences & Assessments program and the Climate Assessment for
the Southwest, 5–6 March 2013, Tucson, AZ, 1–23, 22 pp., 2013.
Lloyd-Hughes, B.: A spatio-temporal structure-based approach to drought
characterisation, Int. J. Climatol., 32, 406–418, https://doi.org/10.1002/joc.2280, 2012.
Logar, I. and van den Bergh, J. C.: Methods to assess costs of drought
damages and policies for drought mitigation and adaptation: review and
recommendations, Water Resour. Manage., 27, 1707–1720, https://doi.org/10.1007/s11269-012-0119-9, 2013.
Musolino, D., Massarutto, A., and De Carli, A.: Ex-post evaluation of the
socio-economic impacts of drought in some areas in Europe, in: Drought:
Research and Science-Policy Interfacing, edited by: Andreu, J., Solera, A.,
Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H. A. J.,
CRC Press, London, 71–77, https://doi.org/10.1201/b18077-56, 2015.
Parry, S., Prudhomme, C., Wilby, R., and Wood, P.: Chronology of drought
termination for long records in the Thames catchment, in: Drought: Research
and Science-Policy Interfacing, edited by: Andreu, J., Solera, A.,
Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H. A. J.,
CRC Press, London, 165–170, https://doi.org/10.1201/b18077-56, 2015.
Sepulcre, G., Horion, S. M. A. F., Singleton, A., Carrao, H., and Vogt, J.:
Development of a Combined Drought Indicator to detect agricultural drought in
Europe, Nat. Hazards Earth Syst. Sci., 12, 3519–3531, https://doi.org/10.5194/nhess-12-3519-2012, 2012.
Smakhtin, V. U. and Schipper, E. L.: Droughts: The impact of semantics and
perceptions, Water Policy, 10, 131–143, https://doi.org/10.2166/wp.2008.036, 2008.
Stagge, J. H., Tallaksen, L. M., Kohn, I., Stahl, K., and van Loon, A. F.: A
European Drought Reference (EDR) Database: design and Online Implementation,
DROUGHT-R&SPI Technical Report No. 12, 42 pp., available at:
http://www.eu-drought.org/technicalreports/10832306/ (last access: 7 February 2016), 2013.
Stagge, J. H., Kohn, I., Tallaksen, L. M., and Stahl, K.: Modeling drought
impact occurrence based on climatological drought indices for Europe,
J. Hydrol.,530, 37–50, https://doi.org/10.1016/j.jhydrol.2015.09.039, 2015.
Stahl, K., Blauhut, V., Kohn, I., Acácio, V., Assimacopoulos, D.,
Bifulco, C., De Stefano, L., Dias, S., Eilertz, D., Frielingsdorf, B.,
Hegdahl, T. J., Kampragou, E., Kourentzis, V., Melsen, L., van Lanen, H. A.
J., Van Loon, A. F., Massarutto, A., Musolino, D., de Paoli, L., Senn, L.,
Stagge, J. H., Tallaksen, L. M., and Urquijo, J.: A European Drought Impact
Report Inventory (EDII): Design and Test for Selected Recent Droughts in
Europe, DROUGHT-R&SPI Technical Report No. 3, 23 pp., available at:
http://www.eu-drought.org/technicalreports/10814306/ (last access: 7 February 2016), 2012.
Stahl K., Blauhut, V., Kohn, I., De Stefano, L., Dias, S., Urquijo, J.,
Tallaksen, L. M., Van Lanen, H. A. J., and Wolters, W.: Stakeholder views on drought
impacts and Drought Risk Maps at the Pan-European scale: results from the
2nd Pan-European Drought Dialogue Forum, DROUGHT-R&SPI Technical Report
No. 17, available at: http://www.eu-drought.org/technicalreports/10850944/
(last access: 7 February 2016), 2014.
Stahl, K., Kohn, I., De Stefano, L., Tallaksen, L. M., Rego, F.C.,
Seneviratne, S. I., Andreu, J., and van Lanen, H. A. J.: An impact
perspective on pan-European drought sensitivity, in: Drought: Research and
Science-Policy Interfacing, edited by: Andreu, J., Solera, A.,
Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H. A. J.,
CRC Press, London, 329–334, https://doi.org/10.1201/b18077-56, 2015.
Steinemann, A.: Drought Information for Improving Preparedness in the
Western States, B. Am. Meteorol. Soc., 95, 843–847, https://doi.org/10.1175/BAMS-D-13-00067.1, 2014.
Tallaksen, L. M. and Stahl, K.: Spatial and temporal patterns of large-scale
droughts in Europe: model dispersion and performance, Geophys. Res. Lett.,
41, 429–434, https://doi.org/10.1002/2013GL058573, 2014.
Tánago, I. G., Ballesteros, M., Urquijo, J., and De Stefano, L.:
Exploring situations of vulnerability to drought from a sectorial
perspective: A starting point for regional assessments, in: Drought:
Research and Science-Policy Interfacing, edited by: Andreu, J., Solera, A.,
Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H. A. J.,
CRC Press, London, 341–348, https://doi.org/10.1201/b18077-56, 2015.
UN/ISDR: Drought Risk Reduction, Framework and Practices, Contributing to
the Implementation of the Hyogo Framework for Action, United Nations
secretariat of the International Strategy for Disaster Reduction (UNISDR),
Geneva, 213 pp., 2009.
Van Lanen, H. A. J., Tallaksen, L. M., Stahl, K., Assimacopoulos, D.,
Wolters, W., Andreu, J., Rego, F., Seneviratne, S. I., De Stefano, L.,
Massarutto, A., Garnier, E., and Seidl, I.: Fostering Drought Research and
Science-Policy Interfacing: Achievements of the DROUGHT-R&SPI project,
in: Drought: Research and Science-Policy Interfacing, edited by: Andreu, J.,
Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H. A.
J., CRC Press, London, 3–12, https://doi.org/10.1201/b18077-56, 2015.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological
drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Ploum, S. W., Parajka, J., Fleig, A. K., Garnier, E.,
Laaha, G. and Van Lanen, H. A. J.: Hydrological drought types in cold
climates: quantitative analysis of causing factors and qualitative survey of
impacts, Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, 2015.
Wilhite, D. A.: Reducing societal vulnerability to drought, in: Drought: A
Global Assessment II, edited by: Wilhite, D. A., Routledge, New York, London, 295–298, 2000.
Wilhite, D. A. and Glantz, M. H.: Understanding the drought phenomenon: the
role of definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Wilhite, D. A. and Vanyarkho, O.: Pervasive impacts of a creeping
phenomenon, in: Drought: A Global Assessment I, edited by: Wilhite, D. A.,
Routledge, New York, London, 245–255, 2000.
Wilhite, D. A., Svoboda, M. D., and Hayes, M. J.: Understanding the complex
impacts of drought: A key to enhancing drought mitigation and preparedness,
Water Resour. Manage., 21, 763–774, https://doi.org/10.1007/s11269-006-9076-5, 2007.
Short summary
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment of the occurrence and diversity of drought impacts across Europe. A unique research database has collected close to 5000 textual drought impact reports from 33 European countries. Consistently, reported impacts have been dominated in number by agriculture and water supply, but were very diverse across other sectors. Data and assessment may help drought policy planning at the international level.
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment...
Altmetrics
Final-revised paper
Preprint