Articles | Volume 16, issue 5
Nat. Hazards Earth Syst. Sci., 16, 1217–1237, 2016
Nat. Hazards Earth Syst. Sci., 16, 1217–1237, 2016

Research article 30 May 2016

Research article | 30 May 2016

Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom

Mark C. de Jong et al.

Related authors

Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter fire radiative power products
Tianran Zhang, Mark C. de Jong, Martin J. Wooster, Weidong Xu, and Lili Wang
Atmos. Chem. Phys., 20, 10687–10705,,, 2020
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576,,, 2020
Short summary
A classification scheme to determine wildfires from the satellite record in the cool grasslands of southern Canada: considerations for fire occurrence modelling and warning criteria
Dan K. Thompson and Kimberly Morrison
Nat. Hazards Earth Syst. Sci., 20, 3439–3454,,, 2020
Short summary
Assessments of land subsidence along the Rizhao–Lankao high-speed railway at Heze, China, between 2015 and 2019 with Sentinel-1 data
Chuanguang Zhu, Wenhao Wu, Mahdi Motagh, Liya Zhang, Zongli Jiang, and Sichun Long
Nat. Hazards Earth Syst. Sci., 20, 3399–3411,,, 2020
Short summary
Tailings-flow runout analysis: examining the applicability of a semi-physical area–volume relationship using a novel database
Negar Ghahramani, Andrew Mitchell, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 20, 3425–3438,,, 2020
Short summary
Experimental assessment of the relationship between rainfall intensity and sinkholes caused by damaged sewer pipes
Tae-Young Kwak, Sang-Inn Woo, Choong-Ki Chung, and Joonyoung Kim
Nat. Hazards Earth Syst. Sci., 20, 3343–3359,,, 2020
Short summary

Cited articles

Albertson, K., Aylen, J., Cavan, G., and McMorrow, J.: Forecasting the outbreak of moorland wild fires in the English Peak District, J. Environ. Manage., 90, 2642–2651, 2009.
Alexander, M. E. and Cruz, M. G.: Assessing the effect of foliar moisture on the spread rate of crown fires, Int. J. Wildland Fire, 22, 415–427, 2012.
Alexander, M. E. and de Groot, W. J.: Fire behaviour in Jack pine stands as related to the Canadian Forest Fire Weather Index (FWI) System. Canadian Forestry Service, Northern Forestry Centre, Edmonton, Alberta, 1988.
Anderson, S. A. J. and Anderson, W. R.: Predicting the elevated dead fine fuel moisture content in gorse (Ulex europaeus L.) shrub fuels, Can. J. Forest Res., 39, 2355–2368, 2009.
Short summary
We present a percentile-based calibration of the Canadian Forest Fire Weather Index (FWI) System for the United Kingdom (UK), developed from numerical weather prediction data, and evaluate it using historic wildfire records. The Fine Fuel Moisture Code, Initial Spread Index and final FWI component of the FWI system show the greatest predictive skill for UK wildfires. Our findings provide useful insights for any future redevelopment of the current operational UK fire danger rating system.
Final-revised paper