Articles | Volume 15, issue 7
Nat. Hazards Earth Syst. Sci., 15, 1457–1471, 2015
https://doi.org/10.5194/nhess-15-1457-2015

Special issue: Monitoring and modelling to guide coastal adaptation to extreme...

Nat. Hazards Earth Syst. Sci., 15, 1457–1471, 2015
https://doi.org/10.5194/nhess-15-1457-2015

Research article 02 Jul 2015

Research article | 02 Jul 2015

Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change

P. J. Knight et al.

Related authors

Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea
Svetlana Jevrejeva, Lucy Bricheno, Jennifer Brown, David Byrne, Michela De Dominicis, Andy Matthews, Stefanie Rynders, Hindumathi Palanisamy, and Judith Wolf
Nat. Hazards Earth Syst. Sci., 20, 2609–2626, https://doi.org/10.5194/nhess-20-2609-2020,https://doi.org/10.5194/nhess-20-2609-2020, 2020
Short summary
Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate
J. M. Brown, P. Ciavola, G. Masselink, R. McCall, and A. J. Plater
Nat. Hazards Earth Syst. Sci., 16, 463–467, https://doi.org/10.5194/nhess-16-463-2016,https://doi.org/10.5194/nhess-16-463-2016, 2016
Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions
M. P. Wadey, J. M. Brown, I. D. Haigh, T. Dolphin, and P. Wisse
Nat. Hazards Earth Syst. Sci., 15, 2209–2225, https://doi.org/10.5194/nhess-15-2209-2015,https://doi.org/10.5194/nhess-15-2209-2015, 2015
Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK
P. Dissanayake, J. Brown, and H. Karunarathna
Nat. Hazards Earth Syst. Sci., 15, 1533–1543, https://doi.org/10.5194/nhess-15-1533-2015,https://doi.org/10.5194/nhess-15-1533-2015, 2015
Short summary
A century of sea level data and the UK's 2013/14 storm surges: an assessment of extremes and clustering using the Newlyn tide gauge record
M. P. Wadey, I. D. Haigh, and J. M. Brown
Ocean Sci., 10, 1031–1045, https://doi.org/10.5194/os-10-1031-2014,https://doi.org/10.5194/os-10-1031-2014, 2014

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021,https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Opportunities and risks of disaster data from social media: a systematic review of incident information
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021,https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021,https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Predicting power outages caused by extratropical storms
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021,https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021,https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary

Cited articles

Agafonkin, V.: Leaflet: open source Javascript library for mobile friendly interactive maps, available at: http://www.leafletjs.com, last access: 10 November 2014.
Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, 2000.
Bates, P. D., Dawson, R. J., Hall, J. W., Horritt, M. S., Nicholls, R. J., and Wicks, J.: Simplified two-dimensional numerical modelling of coastal flooding and example applications, Coast. Eng., 52, 793–810, 2005.
Ciavola, P., Ferreira, O., Haerens, P., Van Koningsveld, M., and Armaroli, C.: Storm impacts along European coastlines. Part 2: lessons learned from the MICORE project, Environm. Sci. Pol., 14, 924–933, 2011.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Download
Short summary
A pressing problem facing coastal decision makers is the conversion of "high-level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms, and high river flows.
Altmetrics
Final-revised paper
Preprint