Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-383-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-383-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling current and future forest fire susceptibility in north-eastern Germany
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Artificial Intelligence and Land Use Change, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Stenka Vulova
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Chair of Smart Water Networks, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Hanyu Li
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Birgit Kleinschmit
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Related authors
No articles found.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Steve Ahlswede, Christian Schulz, Christiano Gava, Patrick Helber, Benjamin Bischke, Michael Förster, Florencia Arias, Jörn Hees, Begüm Demir, and Birgit Kleinschmit
Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023, https://doi.org/10.5194/essd-15-681-2023, 2023
Short summary
Short summary
Imagery from air and space is the primary source of large-scale forest mapping. Our study introduces a new dataset with over 50000 image patches prepared for deep learning tasks. We show how the information for 20 European tree species can be extracted from different remote sensing sensors. Our algorithms can detect single species with precision scores up to 88 %. With a pixel size of 20×20 cm, forestry administration can now derive large-scale tree species maps at a very high resolution.
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022, https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Short summary
Evapotranspiration (ET) is a sum of soil evaporation and plant transpiration. ET produces a cooling effect to mitigate heat waves in urban areas. Our method uses a physical model with remote sensing and meteorological data to predict hourly ET. Designed for uniform vegetation, it overestimated urban ET. To correct it, we create a factor using vegetation fraction that proved efficient for reducing bias and improving accuracy. This approach was tested on two Berlin sites and can be used to map ET.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Acharya, T. D. and Yang, I.: Exploring Landsat 8, International Journal of IT, Engineering and Applied Sciences Research (IJIEASR), 4, 4–10, 2015. a
Achour, H., Toujani, A., Trabelsi, H., and Jaouadi, W.: Evaluation and comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS data for forest fires mapping. Illustrations from the summer 2017 fires in Tunisia, Geocarto Int., 37, 7021–7040, https://doi.org/10.1080/10106049.2021.1980118, 2022. a
Afreen, S., Sharma, N., Chaturvedi, R. K., Gopalakrishnan, R., and Ravindranath, N. H.: Forest policies and programs affecting vulnerability and adaptation to climate change, Mitig. Adapt. Strat. Gl., 16, 177–197, https://doi.org/10.1007/s11027-010-9259-5, 2011. a, b, c
Ambadan, J. T., Oja, M., Gedalof, Z., and Berg, A. A.: Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk, Remote Sens.-Basel, 12, 1543, https://doi.org/10.3390/rs12101543, 2020. a, b
Amelung, W., Blume, H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., and Wilke, B.-M.: Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 17th edn., Springer eBook Collection, Springer Spektrum, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-55871-3, 2018. a
Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., and Martí-Dalmau, C.: Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire, Geoderma, 213, 400–407, https://doi.org/10.1016/j.geoderma.2013.08.038, 2014. a
Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., and Grammalidis, N.: A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing, Sensors, 20, 6442, https://doi.org/10.3390/s20226442, 2020. a
Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., and Pretzsch, H.: Ecological Stability of Mixed-Species Forests, in: MIXED-species forests: Ecology and management, edited by: Pretzsch, H., Forrester, D. I., and Bauhus, J., Springer-Verlag, Berlin, 337–382, https://doi.org/10.1007/978-3-662-54553-9_7, 2017. a, b, c, d
Berčák, R., Holuša, J., Kaczmarowski, J., Tyburski, L., Szczygieł, R., Held, A., Vacik, H., Slivinský, J., and Chromek, I.: Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review, Fire, 6, 310, https://doi.org/10.3390/fire6080310, 2023. a
Boháč, A. and Drápela, E.: Present Climate Change as a Threat to Geoheritage: The Wildfire in Bohemian Switzerland National Park and Its Use in Place-Based Learning, Geosciences, 13, 383, https://doi.org/10.3390/geosciences13120383, 2023. a
Bradley, A. P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145–1159, https://doi.org/10.1016/S0031-3203(96)00142-2, 1997. a
Breiman, L.: Using adaptive bagging to debias regressions, Tech. rep., University of California at Berkeley, https://www.stat.berkeley.edu/users/breiman/adaptbag99.pdf (last access: 10 August 2023), 1999. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Buras, A., Schunk, C., Zeiträg, C., Herrmann, C., Kaiser, L., Lemme, H., Straub, C., Taeger, S., Gößwein, S., Klemmt, H.-J., and Menzel, A.: Are Scots pine forest edges particularly prone to drought-induced mortality?, Environ. Res. Lett., 13, 025001, https://doi.org/10.1088/1748-9326/aaa0b4, 2018. a, b, c
Burge, J., Bonanni, M., Ihme, M., and Hu, L.: Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics, arXiv [preprint], https://doi.org/10.48550/arXiv.2012.06679, 2021. a
Chanthiya, P. and Kalaivani, V.: Forest fire detection on LANDSAT images using support vector machine, Concurr. Comp.-Pract. E., 33, e6280, https://doi.org/10.1002/cpe.6280, 2021. a
Chicas, S. D. and Østergaard Nielsen, J.: Who are the actors and what are the factors that are used in models to map forest fire susceptibility? A systematic review, Nat. Hazards, 114, 2417–2434, https://doi.org/10.1007/s11069-022-05495-5, 2022. a, b, c
Cilli, R., Elia, M., D'Este, M., Giannico, V., Amoroso, N., Lombardi, A., Pantaleo, E., Monaco, A., Sanesi, G., Tangaro, S., Bellotti, R., and Lafortezza, R.: Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe, Sci. Rep.-UK, 12, 16349, https://doi.org/10.1038/s41598-022-20347-9, 2022. a, b, c
Crecente-Campo, F., Pommerening, A., and Rodríguez-Soalleiro, R.: Impacts of thinning on structure, growth and risk of crown fire in a Pinus sylvestris L. plantation in northern Spain, Forest Ecol. Manag., 257, 1945–1954, https://doi.org/10.1016/j.foreco.2009.02.009, 2009. a
DWD: Klimareport Brandenburg. Fakten bis zur Gegenwart – Erwartungen für die Zukunft, Report 1, Deutscher Wetterdienst, Offenbach am Main, Deutschland, https://www.dwd.de/DE/leistungen/klimareport_bb/klimareport_bb_2019_download.pdf;jsessionid=5BB70292853A51CB031B8D1E338E7F56.live21071?__blob=publicationFile&v=5 (last access: 20 December 2023), 2019. a
DWD Climate Data Center (CDC): Grids of monthly averaged daily air temperature (2 m) over Germany, version v1.0., Tech. rep., Deutscher Wetterdienst, https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthl/air_temperature_mean/ (last access: 14 March 2024), 2023a. a
DWD Climate Data Center (CDC): Grids of monthly total precipitation over Germany, version v1.0., Tech. rep., Deutscher Wetterdienst, https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/precipitation/ (last access: 14 March 2024), 2023b. a
EEA – European Environment Agency: Forest Type 2018 (raster 10 m), Europe, 3 yearly, October 2020, Tech. rep., European Environment Agency, https://land.copernicus.eu/en/products/high-resolution-layer-dominant-leaf-type (last access: 30 May 2023), 2020a.
EEA – European Environment Agency: Tree Cover Density 2018 (raster 10 m), Europe, 3 yearly, September 2020, Tech. rep., European Environment Agency, https://land.copernicus.eu/en/products/high-resolution-layer-tree-cover-density (last access: 24 May 2023), 2020c.
El Garroussi, S., Di Giuseppe, F., Barnard, C., and Wetterhall, F.: Europe faces up to tenfold increase in extreme fires in a warming climate, npj Climate and Atmospheric Science, 7, 30, https://doi.org/10.1038/s41612-024-00575-8, 2024. a
Eslami, R., Azarnoush, M., Kialashki, A., and Kazemzadeh, F.: GIS-Based Forest Fire Susceptbility Assessment By Random Forest, Artificial Neural Network And Logistic Regression Methods, J. Trop. For. Sci., 33, 173–184, 2021. a
Federal Office for Agriculture and Food: Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2022, Tech. rep., Federal Office for Agriculture and Food, Bonn, https://www.bmel-statistik.de/fileadmin/daten/0302250-2022.pdf (last access: 13 June 2023), 2023. a
Fekete, A. and Nehren, U.: Assessment of social vulnerability to forest fire and hazardous facilities in Germany, Int. J. Disaster Risk Re., 87, 103562, https://doi.org/10.1016/j.ijdrr.2023.103562, 2023. a
Feng, L., Lysakowski, B., Eisenschmidt, J., and Birkhofer, K.: The impact of wildfire and mammal carcasses on beetle emergence from heathland soils, Ecol. Entomol., 47, 883–894, https://doi.org/10.1111/een.13179, 2022. a
Fu, Y., Li, R., Wang, X., Bergeron, Y., Valeria, O., Chavardès, R. D., Wang, Y., and Hu, J.: Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products, Remote Sens.-Basel, 12, 2870, https://doi.org/10.3390/rs12182870, 2020. a
Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests for land cover classification, Pattern Recogn. Lett., 27, 294–300, https://doi.org/10.1016/j.patrec.2005.08.011, 2006. a
Guo, H., Bao, A., Liu, T., Jiapaer, G., Ndayisaba, F., Jiang, L., Kurban, A., and De Maeyer, P.: Spatial and temporal characteristics of droughts in Central Asia during 1966–2015, Sci. Total Environ., 624, 1523–1538, https://doi.org/10.1016/j.scitotenv.2017.12.120, 2018. a
Hilker, J. M., Busse, M., Müller, K., and Zscheischler, J.: Photovoltaics in agricultural landscapes: “Industrial land use” or a “real compromise” between renewable energy and biodiversity? Perspectives of German nature conservation associations, Energy, Sustainability and Society, 14, 6, https://doi.org/10.1186/s13705-023-00431-2, 2024. a
Holsten, A., Vetter, T., Vohland, K., and Krysanova, V.: Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas, Ecol. Model., 220, 2076–2087, https://doi.org/10.1016/j.ecolmodel.2009.04.038, 2009. a
Horn, K. H.: Forest Fire Susceptibility Modelling in north-east Germany, Zenodo [code], https://doi.org/10.5281/zenodo.14214917, 2024. a
Horn, K. H.: Forest fire susceptibility modelling in north-eastern Germany, Zenodo [code and data set], https://doi.org/10.5281/zenodo.14710876, 2025. a
Kemter, M., Fischer, M., Luna, L. V., Schönfeldt, E., Vogel, J., Banerjee, A., Korup, O., and Thonicke, K.: Cascading Hazards in the Aftermath of Australia's 2019/2020 Black Summer Wildfires, Earths Future, 9, e2020EF001884, https://doi.org/10.1029/2020EF001884, 2021. a
Kroll, F. and Haase, D.: Does demographic change affect land use patterns?: A case study from Germany, Land Use Policy, 27, 726–737, https://doi.org/10.1016/j.landusepol.2009.10.001, 2010. a, b
Kühn, M.: Planungskonflikte und Partizipation: die Gigafactory Tesla, Raumforschung und Raumordnung | Spatial Research and Planning, 81, 538–556, https://doi.org/10.14512/rur.1698, 2023. a
Kuhn, M. and Johnson, K.: Applied Predictive Modeling, Springer New York, New York, NY, https://doi.org/10.1007/978-1-4614-6849-3, 2013. a
Kussul, N., Fedorov, O., Yailymov, B., Pidgorodetska, L., Kolos, L., Yailymova, H., and Shelestov, A.: Fire Danger Assessment Using Moderate-Spatial Resolution Satellite Data, Fire, 6, 72, https://doi.org/10.3390/fire6020072, 2023. a
Lang, N., Jetz, W., Schindler, K., and Wegner, J. D.: A high-resolution canopy height model of the Earth, Nature Ecology & Evolution, 7, 1778–1789, https://doi.org/10.1038/s41559-023-02206-6, 2023. a
Leibert, T., Wolff, M., and Haase, A.: Shifting spatial patterns in German population trends: local-level hot and cold spots, 1990–2019, Geogr. Helv., 77, 369–387, https://doi.org/10.5194/gh-77-369-2022, 2022. a
Li, H., Vulova, S., Rocha, A. D., and Kleinschmit, B.: Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI), Sci. Total Environ., 916, 170330, https://doi.org/10.1016/j.scitotenv.2024.170330, 2024. a, b
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., and Luce, C. H.: Effects of drought on forests and rangelands in the United States: A comprehensive science synthesis, Fire and Drought, 135–154, https://www.fs.usda.gov/research/treesearch/download/50971.pdf (last access: 23 February 2024), 2016. a
Lizundia-Loiola, J., Otón, G., Ramo, R., and Chuvieco, E.: A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data, Remote Sens. Environ., 236, 111493, https://doi.org/10.1016/j.rse.2019.111493, 2020. a
Maingi, J. K. and Henry, M. C.: Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA, Int. J. Wildland Fire, 16, 23, https://doi.org/10.1071/WF06007, 2007. a, b
Mallik, A. U., Gimingham, C. H., and Rahman, A. A.: Ecological Effects of Heather Burning: I. Water Infiltration, Moisture Retention and Porosity of Surface Soil, J. Ecol., 72, 767, https://doi.org/10.2307/2259530, 1984. a
Martell, D. L.: Forest Fire Management, in: Handbook of Operations Research in Natural Resources, edited by: Weintraub, A., International Series in Operations Research & Management Science, Springer Science+Business Media, LLC, Boston, MA, 489–509, https://doi.org/10.1007/978-0-387-71815-6_26, 2007. a, b, c
Matos, E. S., Freese, D., Śla̧zak, A., Bachmann, U., Veste, M., and Hüttl, R. F.: Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany, J. Plant Nutr. Soil Sc., 173, 654–661, https://doi.org/10.1002/jpln.200900046, 2010. a, b
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020. a
Milanović, S., Marković, N., Pamučar, D., Gigović, L., Kostić, P., and Milanović, S. D.: Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method, Forests, 12, 5, https://doi.org/10.3390/f12010005, 2021. a, b
Ministry for Rural Development, Environment and Agriculture in Brandenburg: Waldzustandsbericht 2023 des Landes Brandenburg, Tech. rep., Ministry for Rural Development, Environment and Agriculture in Brandenburg, Potsdam, https://forst.brandenburg.de/sixcms/media.php/9/wzb23.pdf (last access: 13 March 2024), 2023. a
Ministry for Rural Development, Environment and Agriculture in Brandenburg: Strategie des Landes Brandenburg zur Anpassung an die Folgen des Klimawandels, Tech. rep., Ministry for Rural Development, Environment and Agriculture in Brandenburg, Potsdam, https://mluk.brandenburg.de/sixcms/media.php/9/Klimaanpassungsstrategie-BB-Kurzfassung.pdf (last access: 3 July 2024), 2024. a
Natekar, S., Patil, S., Nair, A., and Roychowdhury, S.: Forest Fire Prediction using LSTM, in: 2021 2nd International Conference for Emerging Technology (INCET), 21–23 May 2021, Belagavi, India, 1–5, https://doi.org/10.1109/INCET51464.2021.9456113, 2021. a
Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., van Le, H., van Tran, Q., Prakash, I., and Pham, B. T.: Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil, Math. Probl. Eng., 2021, 1–15, https://doi.org/10.1155/2021/4832864, 2021. a
Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., and Pereira, J. M.: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest, Forest Ecol. Manag., 275, 117–129, https://doi.org/10.1016/j.foreco.2012.03.003, 2012. a
Oliveira, T. M., Barros, A. M. G., Ager, A. A., and Fernandes, P. M.: Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission, Int. J. Wildland Fire, 25, 619, https://doi.org/10.1071/WF15146, 2016. a, b
OroraTech: Wildfire Solution | OroraTech, https://ororatech.com/wildfire-solution/ (last access: 6 May 2024), 2021. a
Oyonarte, C., Escoriza, I., Delgado, R., Pinto, V., and Delgado, G.: Water-retention capacity in fine earth and gravel fractions of semiarid Mediterranean Montane soils, Arid Soil Res. Rehab., 12, 29–45, https://doi.org/10.1080/15324989809381495, 1998. a, b
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021. a
Pourtaghi, Z. S., Pourghasemi, H. R., and Rossi, M.: Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran, Environ. Earth Sci., 73, 1515–1533, https://doi.org/10.1007/s12665-014-3502-4, 2015. a
Preston, B. L., Brooke, C., Measham, T. G., Smith, T. F., and Gorddard, R.: Igniting change in local government: lessons learned from a bushfire vulnerability assessment, Mitig. Adapt. Strat. Gl., 14, 251–283, https://doi.org/10.1007/s11027-008-9163-4, 2009. a
Rad, A. M., AghaKouchak, A., Navari, M., and Sadegh, M.: Progress, Challenges, and Opportunities in Remote Sensing of Drought, in: Global drought and flood: Observation, modeling, and prediction, edited by: Wu, H., Lettenmaier, D. P., Tang, Q., and Ward, P. J., Geophysical monograph series, vol. 265, American Geophysical Union, 1–28, https://doi.org/10.1002/9781119427339.ch1, 2021. a, b
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., and Choi, S.-M.: Ubiquitous GIS-Based Forest Fire Susceptibility Mapping Using Artificial Intelligence Methods, Remote Sens.-Basel, 12, 1689, https://doi.org/10.3390/rs12101689, 2020. a
Reyer, C., Bachinger, J., Bloch, R., Hattermann, F. F., Ibisch, P. L., Kreft, S., Lasch, P., Lucht, W., Nowicki, C., Spathelf, P., Stock, M., and Welp, M.: Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany, Reg. Environ. Change, 12, 523–542, https://doi.org/10.1007/s10113-011-0269-y, 2012. a
Silva, C. V. J., Aragão, L. E. O. C., Barlow, J., Espirito-Santo, F., Young, P. J., Anderson, L. O., Berenguer, E., Brasil, I., Foster Brown, I., Castro, B., Farias, R., Ferreira, J., França, F., Graça, P. M. L. A., Kirsten, L., Lopes, A. P., Salimon, C., Scaranello, M. A., Seixas, M., Souza, F. C., and Xaud, H. A. M.: Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics, Philos. T. Roy. Soc. B, 373, 20180043, https://doi.org/10.1098/rstb.2018.0043, 2018. a, b, c, d
Suryabhagavan, K. V., Alemu, M., and Balakrishnan, M.: GIS-based multi-criteria decision analysis for forest fire susceptibility mapping: a case study in Harenna forest, southwestern Ethiopia, Trop. Ecol., 57, 33–43, 2016. a
Thonicke, K. and Cramer, W.: Long-term Trends in Vegetation Dynamics and Forest Fires in Brandenburg (Germany) Under a Changing Climate, Nat. Hazards, 38, 283–300, https://doi.org/10.1007/s11069-005-8639-8, 2006. a
Wang, S. S.-C., Qian, Y., Leung, L. R., and Zhang, Y.: Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation, Earths Future, 9, 2020001910, https://doi.org/10.1029/2020EF001910, 2021. a, b, c, d
Wen, X., Tu, Y.-H., Tan, Q.-F., Li, W.-Y., Fang, G.-H., Ding, Z.-Y., and Wang, Z.-N.: Construction of 3D drought structures of meteorological drought events and their spatio-temporal evolution characteristics, J. Hydrol., 590, 125539, https://doi.org/10.1016/j.jhydrol.2020.125539, 2020. a
Wu, H., Lettenmaier, D. P., Tang, Q., and Ward, P. J. (Eds.): Global drought and flood: Observation, modeling, and prediction, Geophysical monograph series, vol. 265, American Geophysical Union, print ISBN 9781119427308, online ISBN 9781119427339, https://doi.org/10.1002/9781119427339, 2021. a, b, c
Xu, F., Bento, V. A., Qu, Y., and Wang, Q.: Projections of Global Drought and Their Climate Drivers Using CMIP6 Global Climate Models, Water, 15, 2272, https://doi.org/10.3390/w15122272, 2023. a
Zhang, G., Wang, M., and Liu, K.: Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China, Int. J. Disast. Risk Sc., 10, 386–403, https://doi.org/10.1007/s13753-019-00233-1, 2019. a, b
Zhou, Z., Zhang, L., Chen, J., She, D., Wang, G., Zhang, Q., Xia, J., and Zhang, Y.: Projecting Global Drought Risk Under Various SSP-RCP Scenarios, Earths Future, 11, e2022EF003420, https://doi.org/10.1029/2022EF003420, 2023. a
Executive editor
Forest fires have become a major problem in many regions of the world, including parts of Central Europe. The modelling study addresses the different factors for Forest Fire Susceptibility (FFS), making use of high spatial resolution of input data for the state of Brandenburg, Germany. An increasing susceptibility is found under rising greenhouse gas forcing scenarios when other changes are not taken into account. Extreme weather periods are of particular relevance in this respect. However, the importance of anthropogenic and vegetation parameters for modelling FFS on a regional level can outweigh the pure climatic effects. The paper also suggests some recommendations for forest management and environmental planning for a reduction of fire risk.
Forest fires have become a major problem in many regions of the world, including parts of...
Short summary
In this study we applied a random forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-eastern Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % and 71 %, showing moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters. This study will support regional forest fire prevention and management.
In this study we applied a random forest machine learning algorithm to model current and future...
Altmetrics
Final-revised paper
Preprint