Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-383-2025
https://doi.org/10.5194/nhess-25-383-2025
Research article
 | Highlight paper
 | 
27 Jan 2025
Research article | Highlight paper |  | 27 Jan 2025

Modelling current and future forest fire susceptibility in north-eastern Germany

Katharina H. Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit

Related authors

Brief communication: What do we need to know? Ten questions about climate and water challenges in Berlin-Brandenburg
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428,https://doi.org/10.5194/egusphere-2025-428, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing
Steve Ahlswede, Christian Schulz, Christiano Gava, Patrick Helber, Benjamin Bischke, Michael Förster, Florencia Arias, Jörn Hees, Begüm Demir, and Birgit Kleinschmit
Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023,https://doi.org/10.5194/essd-15-681-2023, 2023
Short summary
Modelling hourly evapotranspiration in urban environments with SCOPE using open remote sensing and meteorological data
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022,https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021,https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020,https://doi.org/10.5194/essd-12-2289-2020, 2020

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025,https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
Causes, consequences and implications of the 2023 landslide-induced Lake Rasac glacial lake outburst flood (GLOF), Cordillera Huayhuash, Peru
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025,https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
The Avalanche Terrain Exposure Scale (ATES) v.2
Grant Statham and Cam Campbell
Nat. Hazards Earth Syst. Sci., 25, 1113–1137, https://doi.org/10.5194/nhess-25-1113-2025,https://doi.org/10.5194/nhess-25-1113-2025, 2025
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca A. Hetland, Tarjei Tveito Skille, and Andrea Mannberg
Nat. Hazards Earth Syst. Sci., 25, 929–948, https://doi.org/10.5194/nhess-25-929-2025,https://doi.org/10.5194/nhess-25-929-2025, 2025
Short summary

Cited articles

Abdollahi, A. and Pradhan, B.: Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model, Sci. Total Environ., 879, 163004, https://doi.org/10.1016/j.scitotenv.2023.163004, 2023. a, b, c, d, e
Acharya, T. D. and Yang, I.: Exploring Landsat 8, International Journal of IT, Engineering and Applied Sciences Research (IJIEASR), 4, 4–10, 2015. a
Achour, H., Toujani, A., Trabelsi, H., and Jaouadi, W.: Evaluation and comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS data for forest fires mapping. Illustrations from the summer 2017 fires in Tunisia, Geocarto Int., 37, 7021–7040, https://doi.org/10.1080/10106049.2021.1980118, 2022. a
Afreen, S., Sharma, N., Chaturvedi, R. K., Gopalakrishnan, R., and Ravindranath, N. H.: Forest policies and programs affecting vulnerability and adaptation to climate change, Mitig. Adapt. Strat. Gl., 16, 177–197, https://doi.org/10.1007/s11027-010-9259-5, 2011. a, b, c
Ambadan, J. T., Oja, M., Gedalof, Z., and Berg, A. A.: Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk, Remote Sens.-Basel, 12, 1543, https://doi.org/10.3390/rs12101543, 2020. a, b
Download
Executive editor
Forest fires have become a major problem in many regions of the world, including parts of Central Europe. The modelling study addresses the different factors for Forest Fire Susceptibility (FFS), making use of high spatial resolution of input data for the state of Brandenburg, Germany. An increasing susceptibility is found under rising greenhouse gas forcing scenarios when other changes are not taken into account. Extreme weather periods are of particular relevance in this respect. However, the importance of anthropogenic and vegetation parameters for modelling FFS on a regional level can outweigh the pure climatic effects. The paper also suggests some recommendations for forest management and environmental planning for a reduction of fire risk.
Short summary
In this study we applied a random forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-eastern Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % and 71 %, showing moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters. This study will support regional forest fire prevention and management.
Share
Altmetrics
Final-revised paper
Preprint