Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-383-2025
https://doi.org/10.5194/nhess-25-383-2025
Research article
 | Highlight paper
 | 
27 Jan 2025
Research article | Highlight paper |  | 27 Jan 2025

Modelling current and future forest fire susceptibility in north-eastern Germany

Katharina H. Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit

Related authors

TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing
Steve Ahlswede, Christian Schulz, Christiano Gava, Patrick Helber, Benjamin Bischke, Michael Förster, Florencia Arias, Jörn Hees, Begüm Demir, and Birgit Kleinschmit
Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023,https://doi.org/10.5194/essd-15-681-2023, 2023
Short summary
Modelling hourly evapotranspiration in urban environments with SCOPE using open remote sensing and meteorological data
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022,https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021,https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020,https://doi.org/10.5194/essd-12-2289-2020, 2020
Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015,https://doi.org/10.5194/esd-6-83-2015, 2015

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
The effect of propagation saw test geometries on critical cut length
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 321–334, https://doi.org/10.5194/nhess-25-321-2025,https://doi.org/10.5194/nhess-25-321-2025, 2025
Short summary
Statistical calibration of probabilistic medium-range Fire Weather Index forecasts in Europe
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024,https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Causes, consequences and implications of the 2023 landslide-induced Lake Rasac GLOF, Cordillera Huayhuash, Peru
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316,https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary

Cited articles

Abdollahi, A. and Pradhan, B.: Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model, Sci. Total Environ., 879, 163004, https://doi.org/10.1016/j.scitotenv.2023.163004, 2023. a, b, c, d, e
Acharya, T. D. and Yang, I.: Exploring Landsat 8, International Journal of IT, Engineering and Applied Sciences Research (IJIEASR), 4, 4–10, 2015. a
Achour, H., Toujani, A., Trabelsi, H., and Jaouadi, W.: Evaluation and comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS data for forest fires mapping. Illustrations from the summer 2017 fires in Tunisia, Geocarto Int., 37, 7021–7040, https://doi.org/10.1080/10106049.2021.1980118, 2022. a
Afreen, S., Sharma, N., Chaturvedi, R. K., Gopalakrishnan, R., and Ravindranath, N. H.: Forest policies and programs affecting vulnerability and adaptation to climate change, Mitig. Adapt. Strat. Gl., 16, 177–197, https://doi.org/10.1007/s11027-010-9259-5, 2011. a, b, c
Ambadan, J. T., Oja, M., Gedalof, Z., and Berg, A. A.: Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk, Remote Sens.-Basel, 12, 1543, https://doi.org/10.3390/rs12101543, 2020. a, b
Download
Executive editor
Forest fires have become a major problem in many regions of the world, including parts of Central Europe. The modelling study addresses the different factors for Forest Fire Susceptibility (FFS), making use of high spatial resolution of input data for the state of Brandenburg, Germany. An increasing susceptibility is found under rising greenhouse gas forcing scenarios when other changes are not taken into account. Extreme weather periods are of particular relevance in this respect. However, the importance of anthropogenic and vegetation parameters for modelling FFS on a regional level can outweigh the pure climatic effects. The paper also suggests some recommendations for forest management and environmental planning for a reduction of fire risk.
Short summary
In this study we applied a random forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-eastern Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % and 71 %, showing moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters. This study will support regional forest fire prevention and management.
Altmetrics
Final-revised paper
Preprint