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Abstract. Preventing and fighting forest fires has been a
challenge worldwide in recent decades. Forest fires alter for-
est structure and composition; threaten people’s livelihoods;
and lead to economic losses, as well as soil erosion and deser-
tification. Climate change and related drought events, paired
with anthropogenic activities, have magnified the intensity
and frequency of forest fires. Consequently, we analysed for-
est fire susceptibility (FFS), which can be understood as the
likelihood of fire occurrence in a certain area. We applied
a random forest (RF) machine learning (ML) algorithm to
model current and future FFS in the federal state of Branden-
burg (Germany) using topographic, climatic, anthropogenic,
soil, and vegetation predictors. FFS was modelled at a spatial
resolution of 50 m for current (2014–2022) and future sce-
narios (2081–2100). Model accuracy ranged between 69 %
(RFtest) and 71 % (leave one year out, LOYO), showing a
moderately high model reliability for predicting FFS. The
model results underscore the importance of anthropogenic
parameters and vegetation parameters in modelling FFS on
a regional level. This study will allow forest managers and
environmental planners to identify areas which are most sus-
ceptible to forest fires, enhancing warning systems and pre-
vention measures.

1 Introduction

Over the past decades, climate change has led to a higher
intensity and frequency in extreme weather events all over
the planet (Kemter et al., 2021; Silva et al., 2018; Wu et

al., 2021). In Germany, very low precipitation has occurred
more frequently in the last 6 years, leading to an increased
number of forest fires (Gnilke and Sanders, 2021). Long pe-
riods of drought have been causing soils and vegetation to
dry out substantially. Especially in forests, the drying out
of trees, underground vegetation, litter, and soils is making
forests highly flammable (Littell et al., 2016). Consequently,
it is crucial to understand the conditions that cause the emer-
gence and spread of forest fires as well as to detect the areas
that are most prone to forest fires (Ambadan et al., 2020).
This way, forest fire prevention and management strategies
can be improved, decreasing the subsequent potential threats
to forests, the population, and infrastructure located in prox-
imity to forests. In the long run, this may also decrease the
financial costs of climate change (Chicas and Østergaard
Nielsen, 2022).

Apart from meteorological conditions, forest fires are in-
fluenced by a number of environmental factors, including soil
moisture, topography, sun exposition, lightning strikes, and
wind (He et al., 2022; Saidi et al., 2021; Wang et al., 2021).
Moreover, they are closely linked to human influence, en-
compassing the expansion of infrastructure in proximity to
forests, as well as the utilisation of forests for recreational
purposes (Ghorbanzadeh et al., 2019). On a European scale,
a study by El Garroussi et al. (2024) shows that 96 % of
wildfires are triggered by human influence. In a similar vein,
Gnilke and Sanders (2021) state that up to 50 % of the area
burnt by forest fires in Germany is caused by human action.
German forest fire statistics identified human negligence as
the most important factor in the occurrence of forest fires
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(Federal Office for Agriculture and Food, 2023). Thus, an-
thropogenic influences should be carefully considered along
with other parameters when analysing forest fires (He et al.,
2022; Ruffault and Mouillot, 2017).

Forest fires and the assessment of meteorological, cli-
matic, and anthropogenic parameters have been addressed
in numerous studies. Some of them analyse the fire risk of
certain regions (Ambadan et al., 2020; Saidi et al., 2021),
whereas others focus on the identification of parameters in-
fluencing forest fire emergence (He et al., 2022; Ruffault and
Mouillot, 2017). For example, Saidi et al. (2021) developed
a GIS–remote sensing approach to investigate forest fire risk
in Tunisia, whereas He et al. (2022) studied the drivers of
bushfires in New South Wales, Australia, over a time period
of 40 years. The current state of research on forest fires sug-
gests that topography, climate, land use, and anthropogenic
influences are the most influential parameters (Abdollahi and
Pradhan, 2023; Cilli et al., 2022; Ghorbanzadeh et al., 2019;
He et al., 2022; Ruffault and Mouillot, 2017; Saidi et al.,
2021; Li et al., 2024). For example, Ruffault and Mouillot
(2017) consider human influence, land cover, and weather
conditions for the assessment of influencing factors for wild-
fires in the French Mediterranean region.

Forest fire susceptibility (FFS) can be analysed with a va-
riety of methodological approaches, including knowledge-
based approaches, such as hierarchical weighting (Busico et
al., 2019), machine learning (ML) and statistical approaches,
or hybrid approaches (Chicas and Østergaard Nielsen, 2022).
ML algorithms include random forest (RF) models (Cilli et
al., 2022; He et al., 2022; Milanović et al., 2021; Oliveira
et al., 2012, 2016), boosting models (Ruffault and Mouil-
lot, 2017; Wang et al., 2021), and artificial neural networks
(Ghorbanzadeh et al., 2019). Previous research on FFS has
focused on bigger research areas (Busico et al., 2019; He et
al., 2022; Saidi et al., 2021), whereas research on a smaller
scale has fallen short. However, geodata and remote sens-
ing data at high spatial resolution allow for detailed anal-
ysis to enhance forest fire research on a local scale. Espe-
cially regarding climate change and the growing likelihood
of weather extremes such as droughts, local FFS modelling
is essential for identifying key drivers on a local scale. This
way, improved prevention and management strategies of for-
est fires can be provided. While future climate data now en-
able the modelling of future forest fire susceptibility (FFS),
those types of studies remain scarce (Busico et al., 2019), in-
dicating significant untapped potential for enhancing forest
fire prevention efforts.

This study focuses on the analysis of forest fires in Bran-
denburg, Germany. Due to a high percentage of coniferous
forest, this federal state has been particularly prone to forest
fires in the past. Furthermore, remnants of old munitions at
former military training sites caused forest fires in Branden-
burg in 2018 and 2019 (Gnilke et al., 2022). Although this
issue has been addressed by German newspapers, it has re-
ceived minimal attention in scientific research (Feng et al.,

2022). Therefore, this study aims to predict FFS in Branden-
burg under two current (2016 and 2022) and two future sce-
narios (2081–2100) using geodata and remote sensing data at
high spatial resolution and the random forest (RF) machine
learning (ML) algorithm. Following Zhang et al. (2019), FFS
in this study represents “the probability estimation of fire oc-
currence”. In addition to topographic, vegetation, and soil
parameters, this study incorporates a comprehensive set of
anthropogenic and land use parameters, including new pre-
dictors such as the distance to campsites and military train-
ing sites, to expand existing research on forest fires. To our
knowledge, only a few studies have analysed FFS at a high
spatial resolution so far (Ghorbanzadeh et al., 2019; Suryab-
hagavan et al., 2016; Razavi-Termeh et al., 2020; Pourtaghi
et al., 2015), and we do not know of any studies that mod-
elled future FFS at a high spatial resolution. Within the scope
of this investigation, the following research questions will be
answered:

a. Which variables are most significant in terms of forest
fire spread in north-eastern Germany?

b. Which areas in Brandenburg are most susceptible to for-
est fires now? How will these areas change considering
future climate conditions?

2 Materials and methods

2.1 Study area

The federal state of Brandenburg (Fig. 1) was selected as
the study area for modelling FFS under current and future
scenarios. Brandenburg is located in the north-east of Ger-
many. With sandy or sandy–loamy soils and a high num-
ber of rivers and lakes, the federal state is characterised by
a periglacial landscape. Agriculture and managed forests are
the main land uses. The forests are dominated by pine trees
(Pinus sylvestris L.) (Matos et al., 2010), and the climate is
characterised by rather dry summer months. The combina-
tion of these conditions is linked to a medium to high forest
fire risk (Holsten et al., 2009; Matos et al., 2010; Reyer et
al., 2012; Thonicke and Cramer, 2006). Comparing all Ger-
man federal states, Brandenburg has been most affected by
forest fires (Gnilke and Sanders, 2021), which is why it was
selected for this study.

2.2 Current and future forest fire susceptibility
scenarios

The aim of this research is to compare FFS under different
temporal scenarios. To do so, current and future FFS in the
federal state of Brandenburg was modelled. To represent the
current state, the years of 2016 and 2022 were selected af-
ter carefully analysing the monthly precipitation sums and
mean monthly air temperature of Brandenburg between 2014
and 2022 (see Figs. S1 and S2 in the Supplement). Based
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Figure 1. The federal state of Brandenburg in north-eastern Ger-
many. Basemap © 2024 TerraMetrics, Google, GeoBasis-DE/BKG
(© 2009). Border layers © BKG (2024) dl-de/by-2-0 (data not
changed).

on this analysis, 2016 was characterised by average climatic
conditions, whereas 2022 was characterised by conditions
of drought (low precipitation rates). Consequently, the 2016
scenario was considered a baseline scenario with average cli-
matic conditions. In contrast to 2016, the 2022 scenario rep-
resents a very dry year, which can be expected to occur more
frequently due to the expected increase in extreme weather
events in the future (Silva et al., 2018; Wu et al., 2021).

The future scenarios of FFS cover the period of 2081
to 2100 using SSP5-8.5 (Shared Socioeconomic Pathway).
SSPs are different projections of future greenhouse gas emis-
sions under distinct potential political and socioeconomic de-
velopments. The SSPs range from SSP1-1.9 to SSP5-8.5,
covering CO2 concentrations ranging from 393 to 1135 ppm
until 2100. SSP5-8.5 represents “a high fossil-fuel devel-
opment world throughout the 21st century” (Meinshausen
et al., 2020). We decided to use SSP5-8.5 from the global
climate model (GCM) MPI-ESM-1-2-HR. Xu et al. (2023)
state that this GCM reflects future drought conditions rather
well, which is why it was selected for this study. The climate

data (monthly average minimum temperature (°C), monthly
average maximum temperature (°C), and monthly total pre-
cipitation (mm)) were downloaded from WorldClim (https:
//www.worldclim.org, last access: 22 December 2023). This
website provides gridded multi-annual datasets based on dif-
ferent GCMs for different Shared Socioeconomic Pathways
(SSPs) and different time periods between 2021 to 2100 up
to 30 arcsec (∼ 1 km) spatial resolution. In order to include
future land cover changes into the future predictions, future
FFS was predicted twice: (a) once including only projected
meteorological data for 2081–2100 and (b) once including
projected meteorological data for 2081–2100 and projected
land cover data. Within Figs. 2, 4, 5, 6, and 7, as well as in
Table 3, the latter will be labelled with an asterisk (*). Ad-
ditionally, a third future scenario based on the SSP3-7.0 was
predicted. The results can be found in Figs. S10–S13. After
analysing the monthly frequency of forest fires in the federal
state of Brandenburg, the month of June was selected for the
prediction of the four scenarios, since forest fire data showed
the highest number of forest fires in this month between 2014
and 2022 (Lower Forestry Authority of the State of Branden-
burg, 2023). For model training, we used all available forest
fire events of all months between 2014 and 2022 and pre-
processed climatic datasets in accordance with the available
forest fire data.

2.3 Data

2.3.1 Forest fire data

To model FFS in Brandenburg under different scenarios,
forest fire data as well as a set of predictor datasets were
acquired and pre-processed. Data including statistical and
geospatial information on forest fires in Brandenburg were
provided by the Lower Forestry Authority of the State of
Brandenburg (2023), an institution that focuses on analysing
the vitality of forests in the federal state (Lower Forestry Au-
thority of the State of Brandenburg, 2023; Ministry for Ru-
ral Development, Environment and Agriculture in Branden-
burg, 2023). The Lower Forestry Authority of the State of
Brandenburg (2023) provided data containing the following
information: forest district number, section, date and hour,
cause of fire, burnt area (ha), and x–y coordinates of the fire
ignition point.

2.3.2 Predictor variables

To model FFS in Brandenburg, a set of 20 predictors were
selected for the analysis. The predictor variables are shown
in Table 1 (also see Fig. S4). They cover meteorology, veg-
etation, topography, soil, anthropogenic influences, and land
use and land cover (LULC) and were identified as most rel-
evant to modelling FFS based on an extensive literature re-
view. In the following sections, the predictor variables will
be presented in more detail.
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(a) Meteorology

To assess climatic conditions for both the current and fu-
ture scenarios, air temperature and precipitation were se-
lected. Since climate change and the consequent increase
in extreme weather events such as meteorological droughts
around the world may increase the frequency and intensity
of forest fires in the future (Abdollahi and Pradhan, 2023;
Silva et al., 2018), air temperature and precipitation patterns
are crucial for the analysis of FFS. Further climatic parame-
ters such as wind speed, solar radiation, or lightning strikes
may impact the emergence of forest fires as well (Abdol-
lahi and Pradhan, 2023; Busico et al., 2019). However, for
the scope of this work the focus remained on air tempera-
ture and precipitation, since both current and projected data
were only available for those climatic parameters. Following
the suggestions by He et al. (2022), we used monthly cli-
mate data between 2013 and 2022, which were aggregated
to 3 months to incorporate precipitation and air temperature
prior to the occurrence of a forest fire. Several forest-fire-
related studies have used a monthly aggregation of meteo-
rological datasets to model forest fires (Busico et al., 2019;
Wang et al., 2021; He et al., 2022). He et al. (2022) further
argue that future studies should consider a monthly or quar-
terly aggregation of meteorological data when investigating
forest fires. In particular, in order to identify conditions of
meteorological droughts prior to the emergence of a forest
fire, we followed the methodology of other authors that used
a 3-month aggregation of the broadly used SPEI (standard-
ised precipitation evapotranspiration index) drought index to
identify meteorological droughts (Zhou et al., 2023; Wen et
al., 2020; Guo et al., 2018).

(b) Vegetation

The type and condition of vegetation is a crucial factor in
the emergence of forest fires (Abdollahi and Pradhan, 2023).
Several studies have shown that monocultural forests are
more likely to be affected by forest fires not only in num-
ber but also in extent (Afreen et al., 2011; Bauhus et al.,
2017). For example, Bauhus et al. (2017) state that conif-
erous species such as pine trees tend to be highly flammable,
which is mainly caused by their resins and oils. Furthermore,
the distance to the forest edge can impact tree vitality and
the consequent vulnerability to droughts (Buras et al., 2018).
Buras et al. (2018) analysed the tree mortality of Scots pine
forests by comparing trees on the forest edge and trees in the
interior of the forests. Their results show an increase in vul-
nerability to drought of trees located at forest edges, resulting
in higher mortality and decreased vitality. Consequently, the
selected vegetation-related predictors were the percentage of
broadleaf forest, canopy height, tree cover density, and the
distance to forest edges.

(c) Topography

Numerous studies have shown the influence of topography on
the emergence of forest fires, which is why topographic pa-
rameters are commonly used for studying forest fires (Abdol-
lahi and Pradhan, 2023; Busico et al., 2019; Ghorbanzadeh
et al., 2019; He et al., 2022; Maingi and Henry, 2007; Saidi
et al., 2021; Wang et al., 2021). For example, Preston et al.
(2009) have pointed out that bushfires spread with a higher
velocity and intensity on upward slopes. Furthermore, they
discuss how aspect impacts sun and wind regimes, which
may influence forest fires as well. In this regard, Busico et
al. (2019) conclude that northern aspects decrease the likeli-
hood of forest fire ignition. Besides slope and aspect, eleva-
tion has been pointed out as a significant parameter for forest
fires (He et al., 2022; Maingi and Henry, 2007). Chicas and
Østergaard Nielsen (2022) performed an extensive analysis
of existing studies on mapping FFS, confirming that slope,
elevation, aspect, and the topographic wetness index (TWI)
are the most commonly used topographic parameters. Fol-
lowing their assessment, those four parameters were selected
for the scope of this study.

(d) Soil

The spread of forest fires is greatly influenced by the charac-
teristics of the soil and its moisture content (He et al., 2022).
Therefore, it was considered important to include different
soil characteristics as predictor variables. The soil depth cho-
sen for the soil predictors was 0–5 cm, since fires are usu-
ally initiated on the soil surface (Badía-Villas et al., 2014;
Mallik et al., 1984). The water retention capacity of soils is
significantly influenced by their structure, such as the rel-
ative proportions of sand and silt. Soil types characterised
by larger pore sizes, such as sandy soils, typically exhibit
low water retention capabilities, leading to arid conditions
and a diminished field capacity. Conversely, soils with inter-
mediate pore sizes or silty soils have higher moisture levels
and more water available for plants (Amelung et al., 2018).
Therefore, the proportion of sand particles (> 0.05 mm) in
the fine earth fraction (sand) and the proportion of silt parti-
cles (≥ 0.002 mm and ≤ 0.05 mm) in the fine earth fraction
(silt) were selected for the analysis. Similarly, both bulk den-
sity of the fine earth fraction (bdod) and organic carbon den-
sity (ocs) can serve as proxies for water retention and there-
fore for the flammability of the soil (Oyonarte et al., 1998).
For example, Oyonarte et al. (1998) have shown a high cor-
relation between water retention and organic carbon, as well
as bulk density, which underlines their potential influence on
FFS. Thus, bulk density of the fine earth fraction and organic
carbon density were used as predictor variables as well.
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(e) Anthropogenic influences and land use and land
cover (LULC)

Finally, anthropogenic factors as well as LULC have been
shown to influence the emergence of past forest fires in Bran-
denburg (Gnilke and Sanders, 2021). The data provided by
the Lower Forestry Authority of the State of Brandenburg
(2023) on causes of forest fire ignitions in Brandenburg be-
tween 2014 to 2022 (see Table S2) confirm this statement.
In a similar vein, He et al. (2022) argue that human activi-
ties such as the construction of transportation networks and
other types of infrastructure influence forest fire emergence
on a local scale. Therefore, they highly recommend including
anthropogenic factors into the analysis of forest fires. Like-
wise, Ghorbanzadeh et al. (2019) relate the increase in for-
est fires not only to the changing climate but also to anthro-
pogenic aspects such as human activities or demographic ex-
pansion. Thus, to predict FFS in northern Iran, they included
the proximity to villages, streets, and recreational areas, as
well as aspects of land use, as predictor variables. The latter
has been emphasised by Busico et al. (2019) as well, who
stated that anthropogenic land use significantly contributes
to forest fire emergence. Consequently, to include anthro-
pogenic influences as well as aspects of LULC, the distances
to urban settlements, streets, railways, campsites, waterbod-
ies, and military sites were selected as predictor variables.
According to the respective dataset, we understand the “dis-
tance to urban settlements” as the distance to any type of con-
structed above-ground building (EEA, 2020b). We assume
that this predictor can show (ir)regular human presence at
these places that may be related to an increased FFS. Fur-
thermore, to address future land cover changes, we included
a dataset on projected land cover change in 2050 provided
by Esri Environment (2021). To our knowledge, this was the
only available dataset with a high spatial resolution to show
future land cover changes, which is why it was selected for
this study. Table 1 provides an overview of the predictors as
well as their characteristics and origin.

2.4 Data processing

RStudio version 2023.12.0.369 with R version 4.3.1 (2023-
06-16 ucrt) was used for data pre-processing; analysis; RF
modelling; and the computation of statistics, graphs, and
maps. Geospatial packages such as terra, sf, maptools, and
ggplot2 were used for data pre-processing and analysis. The
caret package was used for modelling and the computation
of performance metrics. The dplyr and readxl packages were
used for the analysis and formatting of the forest fire data.
The open-source software QGIS 3.28.10 Firenze was used
for processing, analysis, and visualisation of the geodata.
Figure 2 provides an overview of the main data processing
steps that will be explained in the following sections.

(a) Pre-processing of predictor layers

Prior to modelling FFS under current and future scenarios,
the necessary datasets were downloaded and pre-processed.
Pre-processing steps involved projecting the data to the same
coordinate reference system (EPSG:25833), cropping to the
geographic extent of Brandenburg, masking the forest areas
in Brandenburg, and resampling to a spatial resolution of
50 m using bilinear interpolation for numeric variables and
nearest-neighbour interpolation for factor variables. Further-
more, several predictor datasets such as the distance to camp-
sites or military areas were created based on available data
from OpenStreetMap Contributors (2023) or the LGB State
Office for Land Surveying and Geoinformation Brandenburg
(2023). The topographic predictors – slope, aspect, and TWI
– were computed using the digital elevation model derived
from the LGB State Office for Land Surveying and Geoin-
formation Brandenburg (2023). A forest mask was generated
by filtering all pixels with tree cover density greater than or
equal to 50 % from the tree cover density dataset. Proximity
rasters were computed for various features, including urban
settlements, roads, railways, military sites, campsites, water-
bodies, and forest edges, by applying the “Proximity (raster
distance)” tool in QGIS derived from the GDAL (Geospatial
Data Abstraction Library) toolbox.

(b) Processing of training points

The forest fire data table provided by the Lower Forestry Au-
thority of the State of Brandenburg (2023) served as the base-
line for the creation of the training points for the RF models.
Rows containing NA (not available) values were removed,
and the fire data points were converted to the shapefile format
for further processing. Looking at the statistics of the burnt
area (ha) of each of the fires in Brandenburg between 2014 to
2022, the maximum burnt area of a forest fire was 422 ha. In
contrast, the median burnt area was only 0.05 ha, indicating
a high number of small fires and a relatively low number of
big fires (see Table S1 in the Supplement). Since the spread
extent of the fires was not included in the data provided by
the Lower Forestry Authority of the State of Brandenburg
(2023), a circular fire spread was assumed. The diameter of
a circular burnt forest fire based on the median burnt area
(0.05 ha or 500 m2) is ∼ 25 m. Considering that the direction
of the fire spread was unknown as well, the doubled diameter
of a median-sized forest fire in Brandenburg (50 m) was as-
sumed as a baseline for converting the forest fire points into
a raster dataset (see Fig. S3). Consequently, the fire points
were resampled to a raster grid with 50 m spatial resolution
considering the potential fire spread in different directions.
Accordingly, all the predictor variables were resampled to
the same spatial resolution.

In addition to the provided set of fire points, a set of non-
fire points was created that included the identical number
of points per year as the pre-processed fire points from the
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Figure 2. Methodological approach for modelling forest fire susceptibility under different scenarios.

data table provided by the Lower Forestry Authority of the
State of Brandenburg (2023). To create those non-fire points,
the maximum extent of each forest fire for each year was
computed to identify areas where no fires occurred for each
year. To do so, the fire point data table was first subsetted by
year and then burnt area was estimated based on the previ-
ously described approach. The results were nine raster lay-
ers for each year between 2014 and 2022 that contained the
maximum extent that was potentially burnt in that respec-
tive year. For each year, potentially burnt areas were then
removed from the forest mask layer to derive areas where no
fires occurred. Based on the forest masks that excluded po-
tentially burnt areas, random non-fire points were created for
each year, matching the number of fires that occurred in the
respective year. To do so, the randomPoints() function from
the R package raptr was used.

Finally, the resulting non-fire points were merged with the
fire points to complement the training points. To do so, the
training points were assigned to the classes of “fire” and
“non-fire”, respectively. Each fire registered by the Lower
Forestry Authority of the State of Brandenburg (2023) was
paired with a non-fire point with the same date. To prepare
the data frame for the RF models, the training points were
used to extract the geospatial information of the predictor
variables using the extract() function from the terra R pack-

age. The resulting data table included the spatial coordinates
of all non-fire and fire points and the information of all the
predictor variables at those locations. This data frame served
as the basis for training RF models to predict FFS under cur-
rent and future scenarios.

2.5 Correlation analysis and random forest modelling

To assess FFS in Brandenburg under different temporal sce-
narios, an RF classification ML algorithm was used. In par-
ticular, a total of 10 RF models were run using binary classes
(fire and non-fire) for predicting current and future FFS. RF
is a well-known and often-used ML algorithm in forestry and
remote sensing applications (Gislason et al., 2006). In the
field of forest fire research, RF has been frequently applied,
achieving high levels of accuracy (Eslami et al., 2021; He
et al., 2022; Lizundia-Loiola et al., 2020; Milanović et al.,
2021; Oliveira et al., 2016). The RF algorithm is based on
the bagging approach, developed by Breiman (1999). It in-
volves the growth of a set of random decision trees to form
what is known as a “random forest” (Breiman, 2001; Kuhn
and Johnson, 2013). As mentioned before, FFS is defined in
this study as the estimated likelihood of a forest fire event
(Zhang et al., 2019). The probability score of a pixel being
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predicted as a fire pixel represents its susceptibility to a forest
fire.

2.5.1 Model for future scenarios

First, a model (RFfuture) containing data from all the available
years (2014 to 2022) was set up for the prediction of future
FFS scenarios. Following Nguyen et al. (2021), the input data
for modelling FFS were split into 70 % for model training
(RFtrain) and 30 % for testing the model performance (RFtest).
We refer to the 30 % of left-out data as the testing dataset.
Before running a RF model, a set of tuning parameters can
be set. After initially running the model, the results showed
the best model performance at mtry= 2. Consequently, the
model was run with mtry set to 2.

2.5.2 Models for current scenarios

For current FFS scenarios, a so-called “leave-one-year-out”
(LOYO) approach was implemented in order to evaluate the
models’ capacity for temporal extrapolation. Leaving one
year out from training and using the excluded year for testing
can be used to assess how models will perform on an unseen
(or future) year. In this case, the approach was used for mod-
elling current FFS for the scenarios of 2016 and 2022. LOYO
models were computed for all nine available years (2014 to
2022). For instance, LOYO2016 refers to a model trained on
all years except 2016, which was used to predict FFS in 2016.
As mentioned before, mtry was set to 2 to be consistent with
the model for the future FFS scenarios.

2.5.3 Performance metrics

After training the RF models, performance metrics were cal-
culated using the caret and rPROC packages. The confu-
sionMatrix() function provides information on the different
performance metrics such as accuracy, kappa, sensitivity, or
specificity. Additionally, the F1 score and AUC (area under
the curve) were computed using the rPROC package in RStu-
dio. The AUC was calculated by first computing the receiver
operator characteristic (ROC) curve using the roc() function.
The formulas for calculating the different performance met-
rics can be found in Table S3. They typically range between
0 and 1, with values close to 1 implying high model perfor-
mance.

3 Results

3.1 Model accuracy

To assess the reliability of the RFfuture model in predicting
FFS in Brandenburg, performance metrics and a confusion
matrix (see Table S4) were computed. The training (RFtrain)
and testing set (RFtest) for the RFfuture models consisted of
3243 and 1388 points, respectively. A total of 487 out of 681

fire points and 520 out of 707 non-fire points were correctly
classified. The performance metrics (Table 2) for both RFtest
and the LOYO cross validation all range between 0.654 and
0.718 (excluding the kappa values), showing a moderately
high model reliability of predicting FFS in Brandenburg.
RFtest had an accuracy of 0.718, reflecting the number of
samples that were correctly classified as fire points. The
LOYO cross validation indicates a marginally lower mean
accuracy of 0.695. The precision values of LOYO cross val-
idation (0.702) and RFtest (0.712) illustrate the proportion of
correctly assigned fire points out of all samples that were
classified as fire. To further assess the performance of the RF
FFS classification, the ROC curve was computed. The area
under the ROC curve (AUC) refers to the likelihood that a
fire point was correctly classified (Bradley, 1997). Here, the
AUC is 0.694 for the LOYO cross validation and at 0.718
for RFtest. Finally, recall and F1 score metrics show simi-
lar values, indicating moderately high model reliability. A
detailed overview of all the performance metrics for every
LOYO model can be found in Table S5.

3.2 Importance of predictor variables

Overall, the distance to urban settlements, the percentage
of broadleaf forest, and the distance to railways were the
three most significant predictors for the RFfuture model. The
importance of these predictors, as well as others, is shown
in Fig. 3. Land use and anthropogenic predictors exhibited
moderate to high influence for the model, such as the dis-
tance to urban settlements (100 %), the distance to railways
(84.3 %), or the distance to campsites (50.9 %). Similarly,
vegetation predictors showed varying degrees of influence,
ranging from moderate (e.g. distance to forest edge) to high
parameter importance, notably the percentage of broadleaf
forest (87.8 %). Soil predictors demonstrated medium im-
portance, ranging from 39.9 % for organic carbon density
to 53.4 % for silt content. Topographic predictors displayed
varied importance, with elevation at 49.1 % and the TWI at
11.6 %. In contrast, climatic variables had a relatively mi-
nor influence on model performance, with air temperature
contributing only 14.4 % and precipitation accounting for a
mere 3.1 %. The value distributions of the three most signifi-
cant predictors are depicted in Fig. S5. A Wilcoxon test was
conducted to test significance. The notably low p values of
the Wilcoxon tests, for example p = 5.70×10−20 for the per-
centage of broadleaf, confirm that the value distributions of
all three predictors significantly differ between fire and non-
fire points. A comprehensive overview of the p values for all
predictor variables is provided in Table S6.

The value distributions of the three most significant pre-
dictors (Fig. S5) lead to several conclusions. First, fire points
tend to be closer (mean of∼ 578 m) to urban settlements than
non-fire points (mean of ∼ 813 m). Second, the distribution
in the percentage of broadleaf forest mainly ranges from 0 %
to almost 40 % for non-fire points, whereas the percentage
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Table 2. Overview of the validation metrics.

Accuracy Kappa Precision Recall F1 score AUC

RFtest 0.718 0.435 0.712 0.714 0.713 0.718
LOYO cross validation 0.695 0.388 0.702 0.654 0.676 0.694

Figure 3. Variable importance based on the RFfuture model.

of broadleaf forest for fire points is close to 0 % (excluding
some outliers). Third, similarly to the distance to urban set-
tlements, non-fire points tend to be further away from rail-
ways than fire points. To more deeply explore the relation-
ship between key variables and FFS, partial dependence plots
were created (see Figs. S7–S9).

3.3 Forest fire susceptibility under current and future
scenarios

Figure 4 shows FFS in Brandenburg for the two current sce-
narios, June 2016 and June 2022, as well as for the two fu-
ture scenarios, June 2081–2100 under SSP5-8.5 and June
2081–2100 under SSP5-8.5 including projected land cover
data. For comparison, FFS for June 2081–2100 under SSP3-
7.0 can be found in Fig. S10. The values range from 0 % to
100 %, reflecting the likelihood of fire ignition at each pixel
(FFS). In all four scenarios, FFS is higher in the southern
part of Brandenburg. Especially in the south of Berlin, sev-
eral patches with a FFS of ≥ 75 % can be identified. In the
north and north-east of Brandenburg however, FFS is rather
low in all the scenarios, ranging between 0 % and 20 %.

Figure 5 illustrates the anomalies in FFS relative to the
June 2016 reference scenario. In the June 2022 scenario (sce-
nario a), FFS exhibits notable positive anomalies across vari-
ous regions of the federal state, with anomalies ranging from
+5 % to +15 % compared to June 2016. Many areas across
Brandenburg maintain FFS levels similar to the 2022 sce-
nario. Only a few selected small regions in the south-east
and south-west exhibit negative FFS anomalies compared to
June 2016. Regarding future FFS anomalies relative to June
2016, the future scenarios differ rather substantially from one

Figure 4. Forest fire susceptibility in Brandenburg under different
scenarios. The scenarios in (c) and (d) both show predicted FFS in
June 2081–2100 under SSP5-8.5. The scenario in (d) includes pro-
jected land cover data, whereas the scenario in (c) does not. Border
layer © 2018–2022 GADM.

another. Whereas the scenario neglecting land cover changes
(scenario b) shows positive FFS anomalies up to 15 % and
more in southern, eastern, and western parts of Berlin, one
area in the south shows negative FFS anomalies up to−20 %.
In comparison to the scenario based on only climatological
projections, the scenario incorporating land cover changes
(scenario c) shows mostly negative FFS anomalies rang-
ing from 0 % to −20 %, especially in the southern part of
Brandenburg. The northern part of Brandenburg however is
characterised by an increase in FFS in many areas, reach-
ing anomalies up to +20 %. Additionally, some areas in the
south and west also show positive FFS anomalies. For com-
parison, the FFS anomalies for 2081–2100 under SSP3-7.0
can be found in Figs. S11–S13.

Table 3 presents summary statistics of FFS for the four
scenarios. Upon comparing the values across all scenarios,
it is evident that the 2016 scenario exhibits the lowest min-
imum value among the four. Conversely, the 2022 scenario
demonstrates higher maximum and mean FFS values, sug-
gesting a greater susceptibility compared to 2016. Notably,
the mean susceptibility value for 2022 (0.419) is the high-
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Figure 5. Forest fire anomalies compared to 2016. The scenarios
in (b) and (c) both show predicted FFS anomalies in June 2081–
2100 under SSP5-8.5. The scenario in (c) includes projected land
cover data, whereas the scenario in (b) does not. Border layer
© 2018–2022 GADM.

est among the four scenarios, indicating the highest mean
FFS. The future scenario excluding projected land cover data
shows the highest maximum value and only a slightly lower
mean value (0.414) than the June 2022 scenario. Finally the
future scenario including land cover data (*) shows the low-
est maximum, mean, and standard deviation FFS values com-
pared to the other scenarios.

To assess variabilities in FFS on a local scale, a detailed
zoom to an area in the west of Brandenburg is shown in
Fig. 6. The four maps show the municipality of Medewitz in
the west of Brandenburg. The 2016 scenario shows a fairly
low FFS (Fig. 6a). The three other maps show FFS anomalies
compared to 2016 (Fig. 6b–d). Whereas the 2022 scenario
shows positive anomaly values of 10 % to 15 %, anomaly
values are even higher in the future scenario excluding pro-

Table 3. Statistical overview of the four forest fire susceptibility
scenarios. The 2081–2100 and 2081–2100* scenarios both show
predicted FFS in June 2081–2100 under SSP5-8.5. The 2081–2100*
scenario includes projected land cover data, whereas the 2081–2100
scenario does not.

2016 2022 2081–2100 2081–2100*

Minimum 0.040 0.040 0.042 0.072
Maximum 0.936 0.964 0.976 0.878
Mean 0.409 0.419 0.417 0.393
Standard deviation 0.147 0.146 0.144 0.116

jected land cover data, reaching +20 %. In contrast, the sce-
nario including land cover changes (scenario d) shows nega-
tive anomalies up to −15 %. However, pixels in the east and
south of the map show positive FFS anomalies as well.

The four zoomed-in maps in Fig. 7 depict the municipal-
ity of Crinitz located in the south of Brandenburg. Whereas
the June 2022 scenario (scenario b) mainly shows anoma-
lies close to 0, except for some pixels reaching up to +16 %,
the future scenario relying only on climatic projections (sce-
nario c) shows substantial negative anomalies reaching up
to −20 %. Similarly, the scenario including projected land
cover data (scenario d) shows a substantial proportion of pix-
els with negative FFS anomalies. However, some areas in the
north and south-west of the city show positive FFS anoma-
lies.

Figures 6 and 7 show that despite the trend of overall in-
crease in FFS between 2016 and the 2081–2100 future sce-
nario excluding projected land cover data (Figs. 4 and 5), FFS
differs significantly across the federal state. Furthermore, the
future scenario incorporating land cover changes shows sub-
stantial differences to the scenario only relying on climatic
projections.

4 Discussion

4.1 The drivers of forest fire susceptibility

Overall, the climatic variables did not have a significant in-
fluence on the model performance. In contrast, the anthro-
pogenic, LULC, and vegetation predictors showed higher im-
portance. The results reflect the fact that climatic parame-
ters do not appear to play a pivotal role regarding FFS (see
Fig. S6). The reason for this finding may be the extent of the
study area, as meteorological conditions do not show high
spatial variation within Brandenburg. Meteorological condi-
tions may be more important when analysing FFS on a na-
tional or international scale (Busico et al., 2019; He et al.,
2022; Li et al., 2024). According to the Lower Forestry Au-
thority of the State of Brandenburg (2023), a high number
of fires were caused by intentional arson and other anthro-
pogenic actions such as open fires or smoking (see Table S2).
Therefore, climatic conditions may not have contributed to
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Figure 6. Detailed maps of FFS anomalies in the municipality of Medewitz (Brandenburg). The scenarios in (c) and (d) both show predicted
FFS in June 2081–2100 under SSP5-8.5. The scenario in (d) includes projected land cover data, whereas the scenario in (c) does not. Base
map © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. Border layer ©
2018–2022 GADM.

the emergence of those fires in a significant way. Further-
more, meteorological projections assume that air tempera-
tures will increase overall. However, the input data used for
this study show increased precipitation patterns in Branden-
burg in the future scenarios compared to the periods of June
2016 and June 2022 as well (see Figs. S1 and S2). Conse-
quently, this change in precipitation patterns shown by the
input data may have lowered future FFS in the study re-
gion, thus outweighing the effect of higher air temperatures
and contributing to the lower mean FFS in future scenar-
ios compared to the extremely hot and dry year of 2022.
The Deutscher Wetterdienst (DWD) (DWD, 2019) predicts
changes between −4 % to +13 % in the annual precipitation
sums until the end of the 21st century, illustrating the uncer-
tainty in future precipitation predictions. As a result, in the
case of a decrease in precipitation before the end of the 21st
century, this will strongly affect the flammability of Bran-
denburg’s forests and thus the future FFS.

Extreme weather events may be a better indicator of future
FFS rather than averaged long-term meteorological trends.

Extreme weather conditions such as the dry conditions in
2022 were efficiently captured by the current meteorologi-
cal data, whereas the multi-annually aggregated monthly pro-
jected meteorological data (WorldClim) did not reflect these
extreme weather events. For instance, the monthly average
precipitation sum in Brandenburg shows flatter curves for
the future precipitation, whereas more intense changes in
mean precipitation values can be seen in 2016 and 2022 (see
Fig. S2). For example, the precipitation curve for 2022 shows
a substantial drop in March, reflecting a very dry month with
low precipitation that may have driven the higher FFS mean
value in 2022 compared to other scenarios. Hence, future
FFS might turn out to be higher in reality, given the expected
increase in extreme weather events that will enhance the like-
lihood of drought conditions (Rad et al., 2021; Silva et al.,
2018; Wu et al., 2021). To assess the future development of
FFS on a local scale, climatic data with a higher temporal
resolution are needed to reflect weather extremes more ade-
quately than multi-annually aggregated climate data.
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Figure 7. Detailed maps of FFS anomalies in the municipality of Crinitz (Brandenburg). The scenarios in (c) and (d) both show predicted
FFS in June 2081–2100 under SSP5-8.5. The scenario in (d) includes projected land cover data, whereas the scenario in (c) does not. Base
map © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. Border layer ©
2018–2022 GADM.

The moderate to low influence of topographic predictors in
predicting FFS is most likely due to the rather homogeneous
topography in Brandenburg. For vegetation parameters, the
percentage of broadleaf forest was most important for the
modelling. This result aligns with several studies that have
shown monocultural coniferous forests being more sensitive
to forest fires (Afreen et al., 2011; Bauhus et al., 2017; Gnilke
et al., 2022). Being dominated by pine trees makes Bran-
denburg particularly susceptible to forest fires. For example,
Gnilke et al. (2022) assessed the fire damage in pine forests
in Brandenburg, concluding that pure pine stands showed the
most burning marks, whereas mixed tree stands were more
resilient to forest fires. Furthermore, Buras et al. (2018) have
underlined the vulnerability of pine trees located at forest
edges, similarly to our results about the influence of the dis-
tance to the forest edge (mean distance for fire points of
148.5 m and mean distance for non-fire points of 174.8 m;
also see Table S6). Thus, forest edges in Brandenburg may
require special protection to avoid future forest fires.

On a regional scale, anthropogenic parameters appear to
be more relevant to FFS. In particular, the distance to urban
settlements and railways showed a high significance for mod-
elling FFS in Brandenburg. This confirms the statistics of
forest fire emergence in Brandenburg provided by the Lower
Forestry Authority of the State of Brandenburg (2023) (see
Table S2) highlighting that most forest fires in Brandenburg
emerge from human negligence or malicious arson. Several
other studies have reached the same conclusion (Busico et al.,
2019; Cilli et al., 2022; Ghorbanzadeh et al., 2019; Gnilke
and Sanders, 2021; He et al., 2022; Ruffault and Mouillot,
2017). However, the distance to military sites only moder-
ately influenced the RF models (see Fig. 3). Furthermore, the
Wilcoxon test (see Table S6) was not significant, underlining
that there was no clear difference in the distribution of fire
and non-fire points across Brandenburg. Therefore, the data
and model results do not show a clear relationship between
the distance to military sites and FFS.
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4.2 Assessing current and future forest fire
susceptibility

Overall, the 2081–2100 future scenario (excluding projected
land cover data) revealed a substantial increase in mean FFS
compared to 2016. However, in 2022 the mean FFS was
higher than in 2016 and the two future scenarios. The com-
paratively high mean FFS of 2022 can be explained by signif-
icantly drier and hotter conditions compared to 2016. Never-
theless, the mean FFS value of the future scenario neglecting
land cover changes is only slightly below the mean FFS value
of 2022 and higher than the mean FFS value of 2016. Con-
sidering exclusively future climatic conditions, this indicates
an expected overall increase in FFS in Brandenburg until the
end of the 21st century compared to June 2016. However,
since the future modelled climate data rely on multi-annual
monthly averages of air temperature and precipitation, future
FFS is possibly underestimated in this study.

The second future scenario including both projected land
cover changes (*) and future climatic conditions paints a dif-
ferent picture. As shown in Table 3, mean FFS was the low-
est of all scenarios, indicating an overall decrease in FFS.
This result can most likely be explained by two aspects: first,
Esri’s Land Cover 2050 – Global dataset (Esri Environment,
2021) used to plot the future distance to urban settlements
projects a decrease in urbanised areas in the future compared
to the Impervious Built-up dataset (EEA, 2020b). Shrinking
urban areas can be explained by demographic changes, such
as the ageing and decline of the German population, espe-
cially in the east of Germany (Kroll and Haase, 2010). Al-
though Kroll and Haase (2010) state that the ageing of the
German population has not yet influenced land use changes,
they argue that this is likely to change in the future. Sec-
ond, Esri’s Land Cover 2050 – Global dataset (Esri Environ-
ment, 2021) has a lower spatial resolution (300 m) than the
Copernicus Impervious dataset (EEA, 2020b) used to map
the distance to “current” urban settlements (10 m). As a re-
sult, Esri’s dataset may show some inaccuracies due to mixed
pixel effects. For instance, some smaller settlements may not
appear in the future land cover dataset. Our results under-
score how the inclusion of projected land cover data signifi-
cantly changes the projected FFS in the future, an aspect that
can be further explored in future studies with new land cover
projections.

Based on our findings, it can be argued that future urban
development trends will significantly influence FFS. Hence,
population decline and the abandonment of villages and rural
areas may decrease FFS in those areas. However, new settle-
ments due to continuous suburbanisation processes may re-
quire additional forest fire prevention efforts in the future.
Regardless of these trends, the expected increase in drought
events in Brandenburg (Gnilke et al., 2022) may intensify
FFS in Brandenburg in the future. Consequently, effective
forest fire management strategies in Brandenburg need to ad-

dress these aspects. Therefore, the following section provides
key strategies for the management of forest fires in the future.

4.3 Strategies for forest fire management in
Brandenburg

Forest fire management strategies include the improvement
of forest fire prediction, prevention, detection, extinction, the
constant monitoring of meteorological conditions, and the
assessment of previous forest fires to improve management
strategies (Martell, 2007). An effective forest fire preven-
tion strategy in Brandenburg involves promoting the growth
of mixed forests instead of the prevalent monocultural pine
forests. In particular, increasing the percentage of broadleaf
trees is needed (Ministry for Rural Development, Environ-
ment and Agriculture in Brandenburg, 2024; Gnilke et al.,
2022). Protection measures should put particular emphasis
on forest edges and forests in proximity to any type of an-
thropogenic infrastructure. The prediction of FFS as imple-
mented here provides a helpful tool to identifying the most
susceptible forest areas in Brandenburg, where the imple-
mentation of forest fire management strategies is most im-
portant. Complementing the constant monitoring of meteo-
rological conditions, it can provide a powerful means to pre-
dict FFS and to provide an early warning system for forest
fires. In addition to that, constantly updated meteorological
data, as well as drought indices and the forest fire danger in-
dex provided by the Deutscher Wetterdienst, are essential to
predicting FFS in Brandenburg (Fekete and Nehren, 2023).

The conventional approach to fire detection involves inte-
grating public reports with observation towers and aerial pa-
trols (Martell, 2007). Increasing the number of observation
towers in forest areas with high FFS could speed up fire de-
tection and extinguishment. A valuable forest fire prevention
measure is the restriction of human activities in forests or the
closure of forests to the public in accordance with meteoro-
logical conditions, given the large anthropogenic contribu-
tion to FFS. This is recommendable especially in forest ar-
eas with high FFS to decrease the number of fires caused by
anthropogenic influences. However, the meaning of forests
for recreational purposes, as well as the economic factor
of touristic forest users, should be considered before im-
plementing such measures. Additionally, implementing pub-
lic education initiatives regarding forest fires through school
programmes and media campaigns is imperative for fostering
greater awareness of forest fires and modifying behaviours to
reduce ignition risks (Martell, 2007).

Moreover, the implementation of fire breaks is recom-
mendable to limit the spread of forest fires (Berčák et al.,
2023). Another strategy can be the thinning of pine forests to
reduce fire risk. For example, Crecente-Campo et al. (2009)
have concluded that the thinning of Pinus sylvestris can con-
tribute to the growth of a mixed-leaf forest that has shown to
be more resilient to forest fires (Afreen et al., 2011; Bauhus et
al., 2017; Gnilke et al., 2022). Finally, it is crucial to employ
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interregional forest fire management strategies, since forest
fires, such as the fire in Bohemian Switzerland National Park
in 2022, may spread from neighbouring countries to Ger-
many or vice versa (Boháč and Drápela, 2023). Consider-
ing the high FFS in the south-east of the federal state, forest
fire management authorities in Brandenburg should consider
closer cooperation with the neighbouring country of Poland
to develop and implement joint management strategies.

4.4 Shortcomings and future perspectives

Analysing FFS on a local scale ideally requires climatic data
at both high spatial and temporal resolution. High-temporal-
resolution meteorological data better reflect extreme weather
events such as droughts. Consequently, the availability of cli-
matic data at both high spatial and temporal resolution may
significantly enhance the quality of future FFS assessments.
Ideally, future FFS analysis should incorporate projected cli-
mate data with a monthly temporal resolution to reflect future
drought events more effectively. Similarly, forest fire prod-
ucts based on remote sensing data with high spatial and tem-
poral resolution would strongly improve forest fire assess-
ments on smaller scales. However, this data type is not avail-
able yet, and its development is limited by the fact that cur-
rent satellites used for meteorological observations are not
able to create images both at high spatial and temporal reso-
lution due to technical restrictions (Kussul et al., 2023). For-
est fire data providers such as the European Forest Fire Infor-
mation System (EFFIS) supply frequently updated represen-
tations of burnt areas in Europe, the Middle East, and North
Africa, which is helpful for forest fire analysis on national or
international scales. However, the EFFIS burnt-area product
is based on the 250 m spatial resolution of the MODIS optical
scanner, resulting in smaller forest fires not being included
(Achour et al., 2022). Thus, this product is not appropriate
for the assessment of FFS at smaller scales.

In a similar vein, an analysis of forest fire detection sys-
tems by Barmpoutis et al. (2020) underlines the limitations
of satellites in providing both high temporal and spatial res-
olution. Although satellites such as MODIS or Landsat have
thermal infrared bands that can serve for active fire detec-
tion, those satellites have their limitations. MODIS has a high
temporal resolution but a spatial resolution of only 1 km for
the thermal infrared bands. Landsat satellites, on the other
hand, provide higher-spatial-resolution data (e.g. 100 m for
the thermal infrared band for Landsat 8 and 9) but are limited
to a temporal resolution of 16 d (Acharya and Yang, 2015;
Chanthiya and Kalaivani, 2021; Fu et al., 2020). However,
new developments of real-time detection and live tracking of
wildfires based on a set of over 20 satellites such as that pro-
vided by OroraTech (OroraTech, 2021) show the potential of
future analysis of forest fires.

Nevertheless, it is crucial that local forest fire management
institutions provide data on smaller fires as well. However,
in the case of the Lower Forestry Authority of the State of

Brandenburg, forest fire data were not provided in the form
of polygons of burnt areas but in the form of fire ignition
points. Despite the fact that the burnt area (ha) was provided,
the exact extent of it could only be assumed. Consequently,
model results of FFS prediction might have been more accu-
rate if the actual extent of the forest fires had been available.
Nevertheless, with continuous advances in remote sensing,
forest fire data may be openly available at higher spatial res-
olutions in the future, which represents a significant potential
for future FFS predictions on a local scale.

Apart from the spatial resolution of forest fire products, the
modelling approach to predicting FFS should be carefully se-
lected. As previously discussed, meteorological parameters
did not have a significant influence on the model. There-
fore, future research may consider applying a long short-term
memory (LSTM) model to better incorporate meteorological
trends and to improve the understanding of how forests react
to droughts and heat waves (Burge et al., 2021; Natekar et
al., 2021).

Furthermore, the future land cover change dataset (Esri
Environment, 2021) had some limitations. First, it only in-
cluded information on “Artificial Surface or Urban Area”.
Consequently, a differentiation of different anthropogenic
land uses (e.g. campsites, streets, urban settlements, or rail-
ways) for the future scenarios was not possible. Instead, the
dataset was only used to project the future distance to urban
settlements. Second, the projection of the dataset was only
available for 2050. Ideally, a dataset reflecting the land use
changes until the end of the 21st century would have led to
more accurate results. Third, compared to the other land use
and land cover datasets used in this study, the spatial res-
olution of the future land cover change dataset (Esri Envi-
ronment, 2021) was relatively coarse. Therefore, the dataset
may contain some inaccuracies, thus potentially decreasing
the accuracy of the future FFS projections. Nevertheless, to
our knowledge, this dataset had a relatively high spatial res-
olution compared to other datasets, which is why it was se-
lected for the study. In the end, the expansion of renewable
energy (Hilker et al., 2024), the settlement of new companies
and factories (e.g. Tesla Gigafactory in Grünheide) (Kühn,
2023), suburbanisation processes around Berlin driven by ris-
ing housing prices (Leibert et al., 2022), and finally the aban-
donment of smaller villages due to ageing and population de-
cline are likely to lead to future land cover changes and either
heightened or decreased pressures on forests. Consequently,
including this dataset in the analysis provides valuable in-
formation on potential land cover changes. Future research
may consider including higher-spatial-resolution land cover
change data to model FFS.

Finally, future FFS research may integrate further predic-
tors, dynamic predictors in particular, into their analysis. Fol-
lowing Rad et al. (2021), key variables shaping drought con-
ditions are precipitation, soil moisture, and streamflow. Thus,
it may be beneficial to include soil moisture data in particu-
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lar in future analyses. However, due to a lack of soil moisture
projections, this parameter was not integrated into this study.

5 Conclusions

This study successfully predicted FFS on a regional scale
in the federal state of Brandenburg under different scenar-
ios with the RF ML algorithm. The FFS maps show a high
FFS in the south and south-east of the federal state. Consider-
ing only future meteorological conditions, future FFS is ex-
pected to increase compared to the 2016 reference scenario.
Extreme events such as droughts can significantly intensify
FFS, which was demonstrated by the higher mean FFS value
of 2022 compared to the other scenarios. However, includ-
ing both projected land cover change and future meteoro-
logical data into the future projections showed a decrease in
FFS. This trend might be driven by demographic changes ul-
timately leading to future land use changes.

The selection of a 3-month temporal aggregation of the
meteorological datasets was appropriate to reflect long-term
meteorological trends. Using climate data at a higher tem-
poral resolution would have shown the effect of extreme
weather events more adequately. Therefore, future research
could aim at integrating climate data at higher temporal reso-
lution (e.g. weekly) to integrate the effect of extreme weather
events into the predictions.

Our study emphasised the importance of anthropogenic
predictors such as the distance to urban settlements, rail-
ways, or campsites. Thus, it is crucial to protect forests from
anthropogenic influences to reduce the occurrence of for-
est fires, especially during drought events. Furthermore, we
showed the higher resilience of mixed forests in contrast to
monocultural forests, confirming previous literature. Forest
managers should therefore prioritise the growth of broadleaf
trees. Soil parameters such as the percentage of silt and sand
had medium to high importance, suggesting that pore sizes
and the consequent capacity of the soil to carry and maintain
water restrict the availability of water for trees. Finally, topo-
graphic parameters such as slope or TWI had rather low im-
portance for predicting FFS in Brandenburg, which is likely
due to the overall rather flat topography of the federal state.

This study and FFS maps can serve local forest managers
and firefighters in the prevention of forest fires in the region.
Furthermore, the identification of contributing variables can
support the development of forest fire management strategies
adapted to local circumstances.
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