Agnon, A.: Pre-Instrumental Earthquakes Along the Dead Sea Rift, in: Dead Sea Transform Fault System: Reviews, edited by: Garfunkel, Z., Ben-Avraham, Z., and Kagan, E., Springer, 207–262, https://doi.org/10.1007/978-94-017-8872-4_8, 2014.
Anooshehpoor, A., Brune, J. N., and Zeng, Y.: Methodology for Obtaining Constraints on Ground Motion from Precariously Balanced Rocks, B. Seismol. Soc. Am., 94, 285–303, https://doi.org/10.1785/0120020242, 2004.
Bakun-Mazor, D., Hatzor, Y. H., Glaser, S. D., and Carlos Santamarina, J.: Thermally vs. seismically induced block displacements in Masada rock slopes, Int. J. Rock Mech. Min. Sci., 61, 196–211, https://doi.org/10.1016/j.ijrmms.2013.03.005, 2013.
Bommer, J. J.: Earthquake hazard and risk analysis for natural and induced seismicity: towards objective assessments in the face of uncertainty, B. Earthq. Eng., 20, 2825–3069, https://doi.org/10.1007/s10518-022-01357-4, 2022.
Boroda, R., Matmon, A., Amit, R., Haviv, I., Arnold, M., Aumaître, G., Bourlès, D. L., Keddadouche, K., Eyal, Y., and Enzel, Y.: Evolution and degradation of flat-top mesas in the hyper-arid Negev, Israel revealed from 10Be cosmogenic nuclides, Earth Surf. Proc. Land., 39, 1611–1621, https://doi.org/10.1002/esp.3551, 2014.
Brune, J. N.: Precariously balanced rocks and ground-motion maps for Southern California, B. Seismol. Soc. Am., 86, 43–54, 1996.
Chen, Z., Arrowsmith, R., Das, J., Wittich, C., Madugo, C., and Kottke, A.: Virtual Shake Robot: Simulating Dynamics of Precariously Balanced Rocks for Overturning and Large-displacement Processes, Seismica, 3, https://doi.org/10.26443/seismica.v3i1.692, 2024.
Chopra, A. K.: Dynamics of Structures, 4th, Pearson, 944 pp., ISBN 10: 0-273-77424-7 2014.
Elmo, D., Donati, D., and Stead, D.: Challenges in the characterisation of intact rock bridges in rock slopes, Eng. Geol., 245, 81-96, https://doi.org/10.1016/j.enggeo.2018.06.014, 2018.
Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., and Sharon, D.: The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts, Global Planet. Change, 60, 165–192, https://doi.org/10.1016/j.gloplacha.2007.02.003, 2008.
Finnegan, R., Moore, J. R., Geimer, P. R., Dzubay, A., Bessette-Kirton, E. K., Bodtker, J., and Vollinger, K.: Ambient Vibration Modal Analysis of Natural Rock Towers and Fins, Seismol. Res. Lett., 93, 1777-1786, https://doi.org/10.1785/0220210325, 2022.
Finzi, Y., Ganz, N., Dor, O., Davis, M., Volk, O., Langer, S., Arrowsmith, R., and Tsesarsky, M.: Stability Analysis of Fragile Rock Pillars and Insights on Fault Activity in the Negev, Israel, J. Geophys. Res.-Sol. Ea., 125, e2019JB019269, https://doi.org/10.1029/2019JB019269, 2020.
Frayssines, M. and Hantz, D.: Modelling and back-analysing failures in steep limestone cliffs, Int. J. Rock Mech. Min., 46, 1115–1123, https://doi.org/10.1016/j.ijrmms.2009.06.003, 2009.
Garfunkel, Z.: Lateral motion and deformation along the Dead Sea transform, in: Dead Sea Transform Fault System: Reviews, edited by: Garfunkel, Z., Ben-Avraham, Z., and Kagan, E. J., Springer, Dordrecht, the Netherlands, 109–150, https://doi.org/10.1007/978-94-017-8872-4_5, 2014.
Geological Survey of Israel: Earthquake Catalog of Israel,
https://eq.gsi.gov.il/en/earthquake/searchEQS.php (last access: 24 December 2024), 2024.
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K.-F., Meletti, C., and Petersen, M. D.: Probabilistic Seismic Hazard Analysis at Regional and National Scales: State of the Art and Future Challenges, Rev. Geophys., 58, e2019RG000653, https://doi.org/10.1029/2019rg000653, 2020.
Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y., Campbell, K. W., Chiou, B. S.-J., Idriss, I. M., Kamai, R., Seyhan, E., Silva, W., Stewart, J. P., and Youngs, R.: Comparison of NGA-West2 GMPEs, Earthq. Spectra, 30, 1179–1197, https://doi.org/10.1193/070113eqs186m, 2014.
Grünthal, G., Hakimhashemi, A., Schelle, H., Bosse, C., and Wahlström, R.: The long-term temporal behaviour of the seismicity of the Dead Sea Fault Zone and its implication for time-dependent seismic hazard assessments, GFZ, Potsdam, 48 pp., https://doi.org/10.2312/GFZ.b103-09098, 2009.
Hall, C. M., Webb, H. N., Girty, G. H., Allam, A. A., and Rockwell, T. K.: A case study of a precariously balanced rock, its partially exhumed corestone platform, and encasing saprock and soil, CATENA, 172, 719–737, https://doi.org/10.1016/j.catena.2018.09.029, 2019.
Hamiel, Y., Piatibratova, O., and Mizrahi, Y.: Creep along the northern Jordan Valley section of the Dead Sea Fault, Geophys. Res. Lett., 43, 2494–2501, https://doi.org/10.1002/2016GL067913, 2016.
Hoek, E. and Diederichs, M. S.: Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min., 43, 203–215, https://doi.org/10.1016/j.jijrmms.2005.06.005, 2006.
Katz, O., Reches, Z., and Roegiers, J. C.: Evaluation of mechanical rock properties using a Schmidt Hammer, Int. J. Rock Mech. Min., 37, 723–728, https://doi.org/10.1016/S1365-1609(00)00004-6, 2000.
Klinger, Y., Le Beon, M., and Al-Qaryouti, M.: 5000 yr of paleoseismicity along the southern Dead Sea fault, Geophys. J. Int., 202, 313–327, https://doi.org/10.1093/gji/ggv134, 2015.
Lefevre, M., Klinger, Y., Al-Qaryouti, M., Le Béon, M., and Moumani, K.: Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations, Scientific Reports, 8, 4511, https://doi.org/10.1038/s41598-018-22627-9, 2018.
Marzocchi, W. and Meletti, C.: PSHA: Does It Deal with What It Is or What We Want It to Be?, Seismol. Res. Lett., 95, 1469–1472, https://doi.org/10.1785/0220230418, 2024.
McPhillips, D. and Pratt, T. L.: Precariously Balanced Rocks in Northern New York and Vermont, U.S.A.: Ground-Motion Constraints and Implications for Fault Sources, B. Seismol. Soc. Am., 114, 3171–3182, https://doi.org/10.1785/0120240069, 2024.
Moore, J. R., Geimer, P. R., Finnegan, R., and Michel, C.: Dynamic Analysis of a Large Freestanding Rock Tower (Castleton Tower, Utah), B. Seismol. Soc. Am., 109, 2125–2131, https://doi.org/10.1785/0120190118, 2019.
Moore, J. R., Geimer, P. R., Finnegan, R., and Thorne, M. S.: Use of Seismic Resonance Measurements to Determine the Elastic Modulus of Freestanding Rock Masses, Rock Mech. Rock Eng., 51, 3937–3944, https://doi.org/10.1007/s00603-018-1554-6, 2018.
Moore, J. R., Thorne, M. S., Koper, K. D., Wood, J. R., Goddard, K., Burlacu, R., Doyle, S., Stanfield, E., and White, B.: Anthropogenic sources stimulate resonance of a natural rock bridge, Geophys. Res. Lett., 43, 9669–9676, https://doi.org/10.1002/2016gl070088, 2016.
Mulargia, F., Stark, P. B., and Geller, R. J.: Why is Probabilistic Seismic Hazard Analysis (PSHA) still used?, Phys. Earth Planet. In., 264, 63–75, https://doi.org/10.1016/j.pepi.2016.12.002, 2017.
Rood, A. H., Stafford, P. J., and Rood, D. H.: San Andreas Fault Earthquake Hazard Model Validation Using Probabilistic Analysis of Precariously Balanced Rocks and Bayesian Updating, Seismol. Res. Lett., 95, 1776–1793, https://doi.org/10.1785/0220220287, 2024.
Rood, A. H., Rood, D. H., Balco, G., Stafford, P. J., Ludwig, L. G., Kendrick, K. J., and Wilcken, K. M.: Validation of earthquake ground-motion models in southern California, USA, using precariously balanced rocks, GSA Bulletin, 135, 2179–2199, https://doi.org/10.1130/b36484.1, 2022.
Rood, A. H., Rood, D. H., Stirling, M. W., Madugo, C. M., Abrahamson, N. A., Wilcken, K. M., Gonzalez, T., Kottke, A., Whittaker, A. C., Page, W. D., and Stafford, P. J.: Earthquake Hazard Uncertainties Improved Using Precariously Balanced Rocks, AGU Advances, 1, e2020AV000182, https://doi.org/10.1029/2020av000182, 2020.
Saltzman, B.: Possible correlation between the mechanical layer's joint spacing and rock mechanical properties, MSc thesis, Ben Gurion University of the Negev, 2001.
Shamir, G., Bartov, Y., Sneh, A., Fleischer, L., Arad, V., and Rosensaft, M.: Preliminary seismic zonation for Israel, GII Report No. 550/95/01(1),
https://www.gov.il/BlobFolder/reports/shamir-et-
al-report-2001/en/report_2001_12 Shamir-G-2001-Preliminary-Seismic-Zonation-Israel-GSI-12-2001.pdf (last access: 1 July 2025), 2001.
Shang, J., West, L. J., Hencher, S. R., and Zhao, Z.: Tensile strength of large-scale incipient rock joints: a laboratory investigation, Acta Geotech., 13, 869–886, https://doi.org/10.1007/s11440-017-0620-7, 2018.
Sheorey, P. R., Biswas, A. K., and Choubey, V. D.: An empirical failure criterion for rocks and jointed rock masses, Eng. Geol., 26, 141–159, https://doi.org/10.1016/0013-7952(89)90003-3, 1989.
Simulia: Abaqus Users' Manual (6.20), Dassault Systèmes Simulia Corporation [code],
https://www.3ds.com/products/simulia/abaqus/cae (last access: 1 July 2025), 2020.
Stark, P. B.: Pay No Attention to the Model Behind the Curtain, Pure Appl. Geophys., 179, 4121–4145, https://doi.org/10.1007/s00024-022-03137-2, 2022.
Stirling, M. W. and Anooshehpoor, R.: Constraints on Probabilistic Seismic-Hazard Models from Unstable Landform Features in New Zealand, B. Seismol. Soc. Am., 96, 404–414, https://doi.org/10.1785/0120050034, 2006.
Stirling, M. W., Abbott, E. R., Rood, D. H., McVerry, G. H., Abrahamson, N. A., Barrell, D. J. A., Huso, R., Litchfield, N. J., Luna, L., Rhoades, D. A., Silvester, P., Van Dissen, R. J., Van Houtte, C., and Zondervan, A.: First Use of Fragile Geologic Features to Set the Design Motions for a Major Existin
g Engineered Structure, B. Seismol. Soc. Am., 111, 2673–2695, https://doi.org/10.1785/0120210026, 2021a.
Stirling, M. W., Oskin, M. E., Arrowsmith, J. R., Rood, A. H., Goulet, C. A., Grant Ludwig, L., King, T. R., Kottke, A., Lozos, J. C., Madugo, C. M., McPhillips, D., Rood, D. H., Sleep, N. H., and Wittich, C. E.: Evaluation of Seismic Hazard Models with Fragile Geologic Features, Seismol. Res. Lett., 92, 314–324, https://doi.org/10.1785/0220200197, 2021b.
Strasser, F. O., Bommer, J. J., and Abrahamson, N. A.: Truncation of the distribution of ground-motion residuals, J. Seismol., 12, 79–105, https://doi.org/10.1007/s10950-007-9073-z, 2008.
Valentin, J., Capron, A., Jongmans, D., Baillet, L., Bottelin, P., Donze, F., Larose, E., and Mangeney, A.: The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modeling, Geophys. J. Int., 208, 1058–1076, https://doi.org/10.1093/gji/ggw440, 2017.
Yu, H., Ng, K., Grana, D., Alvarado, V., Kaszuba, J., and Campbell, E.: A generalized power-law criterion for rocks based on Mohr failure theory, Int. J. Rock Mech. Min., 128, 104274, https://doi.org/10.1016/j.ijrmms.2020.104274, 2020.
Zohar, M.: Temporal and Spatial Patterns of Seismic Activity Associated with the Dead Sea Transform (DST) during the Past 3000 Yr, Seismol. Res. Lett., 91, 207–221, https://doi.org/10.1785/0220190124, 2020.