Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1353-2025
https://doi.org/10.5194/nhess-25-1353-2025
Research article
 | 
09 Apr 2025
Research article |  | 09 Apr 2025

Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)

Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez

Related authors

Computing extreme storm surges in Europe using neural networks
Tim H. J. Hermans, Chiheb Ben Hammouda, Simon Treu, Timothy Tiggeloven, Anaïs Couasnon, Julius J. M. Busecke, and Roderik S. W. van de Wal
Nat. Hazards Earth Syst. Sci., 25, 4593–4612, https://doi.org/10.5194/nhess-25-4593-2025,https://doi.org/10.5194/nhess-25-4593-2025, 2025
Short summary
Climate and impact attribution of compound flooding induced by tropical cyclone Idai in Mozambique
Doris M. Vertegaal, Bart J. J. M. van den Hurk, Anaïs Couasnon, Natalia Aleksandrova, Tycho Bovenschen, Fernaldi Gradiyanto, Tim W. B. Leijnse, Henrique M. D. Goulart, and Sanne Muis
EGUsphere, https://doi.org/10.5194/egusphere-2025-4502,https://doi.org/10.5194/egusphere-2025-4502, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Validation of the Open-Source Hydrodynamic Model SFINCS on Historical River Floods at the Global Scale
Tarun Sadana, Jeroen C. J. H. Aerts, Dirk Eilander, Bruno Merz, Hans de Moel, Tim Busker, Veerle Bril, and Jens de Bruijn
EGUsphere, https://doi.org/10.5194/egusphere-2025-4387,https://doi.org/10.5194/egusphere-2025-4387, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Coastal process understanding through automated identification of recurring surface dynamics in permanent laser scanning data of a sandy beach
Daan Cornelis Hulskemper, José A. Á. Antolínez, Roderik Lindenbergh, and Katharina Anders
EGUsphere, https://doi.org/10.5194/egusphere-2025-4964,https://doi.org/10.5194/egusphere-2025-4964, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025,https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary

Cited articles

Anderson, D., Rueda, A., Cagigal, L., Antolinez, J. A. A., Mendez, F. J., and Ruggiero, P.: Time‐Varying Emulator for Short and Long‐Term Analysis of Coastal Flood Hazard Potential, J. Geophys. Res.-Oceans, 124, 9209–9234, https://doi.org/10.1029/2019jc015312, 2019. a
Antolínez, J. A. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M.: Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model, J. Geophys. Res.-Earth Surface, 124, 1596–1624, https://doi.org/10.1029/2018jf004790, 2019. a
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B., and Dung, N. V.: Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, 2016. a, b
Arns, A., Wahl, T., Haigh, I., Jensen, J., and Pattiaratchi, C.: Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise, Coast. Eng., 81, 51–66, https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. a
Bakker, T. M., Antolínez, J. A., Leijnse, T. W., Pearson, S. G., and Giardino, A.: Estimating tropical cyclone-induced wind, waves, and surge: A general methodology based on representative tracks, Coast. Eng., 176, 104154, https://doi.org/10.1016/j.coastaleng.2022.104154, 2022. a, b
Download
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantification compared to the state-of-the-art. This win–win allows for an increase in the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
Share
Altmetrics
Final-revised paper
Preprint