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Abstract. Flooding is the natural hazard most likely to af-
fect individuals and can be driven by rainfall, river discharge,
storm surge, tides, and waves. Compound floods result from
their co-occurrence and can generate a larger flood hazard
when compared to the synthetic flood hazard generated by
the respective flood drivers occurring in isolation from one
another. Current state-of-the-art stochastic compound flood
risk assessments are based on statistical, hydrodynamic, and
impact simulations. However, the stochastic nature of some
key variables in the flooding process is often not accounted
for as adding stochastic variables exponentially increases the
computational costs (i.e., the curse of dimensionality). These
simplifications (e.g., a constant flood driver duration or a
constant time lag between flood drivers) may lead to a mis-
quantification of the flood risk. This study develops a con-
ceptual framework that allows for a better representation of
compound flood risk while limiting the increase in the overall
computational time. After generating synthetic events from a
statistical model fitted to the selected flood drivers, the pro-
posed framework applies a treed Gaussian process (TGP).
A TGP uses active learning to explore the uncertainty as-
sociated with the response of damages to synthetic events.
Thereby, it informs regarding the best choice of hydrody-
namic and impact simulations to run to reduce uncertainty in
the damages. Once the TGP predicts the damage of all syn-
thetic events within a tolerated uncertainty range, the flood
risk is calculated. As a proof of concept, the proposed frame-
work was applied to the case study of Charleston County
(South Carolina, USA) and compared with a state-of-the-art
stochastic compound flood risk model, which used equidis-

tant sampling with linear scatter interpolation. The proposed
framework decreased the overall computational time by a
factor of 4 and decreased the root mean square error in dam-
ages by a factor of 8. With a reduction in overall computa-
tional time and errors, additional stochastic variables such as
the drivers’ duration and time lag were included in the com-
pound flood risk assessment. Not accounting for these re-
sulted in an underestimation of 11.6 % (USD 25.47 million)
in the expected annual damage (EAD). Thus, by accelerating
compound flood risk assessments with active learning, the
framework presented here allows for more comprehensive
assessments as it loosens constraints imposed by the curse
of dimensionality.

1 Introduction

Flooding has been identified as the natural hazard most
likely to affect individuals (UNDRR, 2020). Moreover, cli-
mate change is expected to increase the magnitude and fre-
quency of extreme water levels (e.g., Hirabayashi et al.,
2013; Bloschl, 2022), which are driven by precipitation, river
discharge, surge, tide, and waves (e.g., Couasnon et al., 2020;
Hendry et al., 2019; Parker et al., 2023; Ward et al., 2018).
Low-lying coastal areas are especially susceptible to com-
pound events of these drivers, which enhance the flood haz-
ard (Wahl et al., 2015). In addition, migration patterns are
causing an increase in assets and people in these areas (e.g.,
Swain et al., 2020; Neumann et al., 2015). Governing bodies
tackle the challenge of compound flooding using the con-
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cept of stochastic flood risk (e.g., Klijn et al., 2015; Muis
et al., 2015). This concept takes into account the three fol-
lowing metrics: (1) flood hazard, which is the intensity and
frequency of a flood event; (2) exposure, which is the as-
sets and/or people susceptible to flooding; and (3) vulnerabil-
ity, which is the economic and/or social consequences of ex-
posed elements as a result of a flood hazard (e.g., Klijn et al.,
2015; Koks et al., 2015). The risk associated with flooding
can be diminished through the development of resilient in-
frastructure (e.g., Jongman, 2018; Woodward et al., 2014).

To develop such infrastructure under unknown future sce-
narios, quantifying the risk from compound flooding requires
an accurate quantification from the interactions between the
many flood drivers impacting the flood hazard (e.g., Bates
et al., 2023; Woodward et al., 2013; Barnard et al., 2019).
Currently, state-of-the-art stochastic compound flood risk as-
sessments usually apply the following four steps to quan-
tify risk (e.g., Wyncoll and Gouldby, 2013; Couasnon et al.,
2022; Rueda et al., 2015). Firstly, the joint probability dis-
tribution between the selected flood drivers is modeled based
on the observed dependence and is used to generate synthetic
events. Secondly, the flood hazard is modeled using a hydro-
dynamic model to account for the non-linear interactions of
the flood drivers. Thirdly, the damage is modeled by combin-
ing the flood hazard with information on exposure and vul-
nerability. Lastly, the risk is modeled by accounting for the
probability and damages associated with the flood hazard. To
obtain an accurate probability distribution of damages, many
events must be generated in the first step. To this end, a brute
force Monte Carlo simulation (MCS) of the selected flood
drivers can be applied (e.g., Wu et al., 2021; Winter et al.,
2020). This can model the joint probability distribution of
the different stochastic variables that define the time record
of the flood drivers. While this minimizes the number of sim-
plifications, it requires a large number of simulations from
hydrodynamic models to quantify the flood hazard of each
event, which can be computationally infeasible (e.g., Eilan-
der et al., 2023b; Rueda et al., 2015).

Consequently, compound flood risk assessments have fo-
cused on reducing the computational time of performing
hydrodynamic simulations while ensuring the risk estimate
is accurate. Examples of strategies in the literature include
the following: (1) improving computational resources (e.g.,
Apel et al., 2016), (2) using faster reduced-physics hydro-
dynamic models (e.g., Bates et al., 2010; Leijnse et al.,
2021), (3) reducing the number of hydrodynamic simula-
tions through various sampling techniques (e.g., Moftakhari
et al., 2019; Barnard et al., 2019; Diermanse et al., 2014;
Bakker et al., 2022), and (4) replacing hydrodynamic simu-
lations with data-driven (i.e., regression) models (e.g., Mora-
dian et al., 2024; Fraehr et al., 2024). The above examples are
not mutually exclusive (e.g., Eilander et al., 2023b; Gouldby
et al., 2017). Nonetheless, the largest reduction in compu-
tational time can be expected by focusing on the last two
strategies (e.g., Rueda et al., 2015), which generate a sur-
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rogate model by combining sampling and regression tech-
niques to obtain an estimate of the damages from all events
in the MCS.

State-of-the-art surrogate models select simulations a pri-
ori by performing equidistant/factorial sampling for the
events contained in the MCS (e.g., Jane et al., 2022; Filan-
der et al., 2023b; Gouldby et al., 2017; Rueda et al., 2015).
However, compound flood events are characterized by many
stochastic variables, such as the flood driver magnitude and
duration, and the time lag between drivers. Therefore, a pri-
ori sampling requires a large number of hydrodynamic and
impact simulations to provide a robust quantification of the
damages of non-simulated events in the MCS. This often re-
sults in simplifications (e.g., Diermanse et al., 2023; Filan-
der et al., 2023b; Couasnon et al., 2022; Jane et al., 2022;
Rueda et al., 2015). Examples of these include the following:
(1) flood drivers are omitted; (2) stochastic variables such
as the duration and the time lag are taken as constants; and
(3) interpolation techniques are used for regression, as they
minimize the computational time involved in training a data-
driven model, for which ensuring it generalizes well to un-
seen locations or forcing conditions can be computationally
expensive (e.g., Fraehr et al., 2024; Moradian et al., 2024).
These series of simplifications may impact the distribution
of flood damages and result in a mis-quantification of com-
pound flood risk.

This mis-quantification can be minimized by accelerat-
ing the process of obtaining a robust surrogate model. This
can be potentially achieved by using active learning, which
guides the sampling technique by optimizing towards a goal.
In the context of compound flood risk, a suitable goal could
be to minimize the uncertainty related to the damages from
the previous hydrodynamic and impact simulations. This
would allow for hydrodynamic and impact simulations to be
selected a posteriori. Treed Gaussian process (TGP) mod-
els can make use of active learning and have been shown
to reduce the number of hydrodynamic simulations associ-
ated with high-dimensional datasets (e.g., Hendrickx et al.,
2023, did so for modeling salt intrusion). Moreover, TGP
models can also provide a reasonable regression model with
limited training data (Gramacy and Lee, 2009). To the au-
thors’ knowledge, active learning is not used in state-of-the-
art stochastic compound flood risk frameworks but has suc-
cessfully been used in other types of risk assessments (Tomar
and Burton, 2021).

Therefore, this study aims to explore active learning to im-
prove the quantification of compound flood risk assessments
while limiting the increase in overall computational time.
To this end, a new conceptual framework based on the TGP
model is proposed, which (1) leverages the uncertainty in the
response of damages to flood drivers to minimize the num-
ber of required hydrodynamic and impact simulations and
(2) can account for more stochastic variables in compound
flood risk assessments. Therefore, this framework results in
a more robust and comprehensive characterization of com-
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pound flood risk. As a proof of concept, the framework is
applied to the case study of Charleston County in South Car-
olina (USA).

2 Methods

Our framework for compound flood risk assessments that
utilize active learning uses the five following general steps,
which can be visualized as follows (Fig. 1; e.g., Eilander
et al., 2023b; Rueda et al., 2015).

1. Based on the characteristics of the case study, parame-
terize the selected flood drivers (Sect. 2.1).

2. Infer the natural variability of compound flood drivers
to generate stochastic event sets (Sect. 2.2).

3. Simulate the damages associated with a synthetic event
(Sect. 2.3).

4. Use a surrogate model to select simulations (synthetic
events) with active learning and model the input-to-
output (i.e., flood driver parameters to damages associ-
ated with a geographic location) relationship associated
with a stochastic event set (Sect. 2.4).

5. Model the risk by combining information on the prob-
ability and the damages of synthetic events to obtain
an estimate of the expected annual damage (EAD)
(Sect. 2.5).

The main difference between the proposed framework and
the current state-of-the-art lies in the fourth step (Sect. 2.4).
Therefore, an experiment was designed in Sect. 2.6 to com-
pare the active learning-based framework with a state-of-the-
art one based on equidistant sampling and a linear scatter
interpolation (e.g., Eilander et al., 2023b; Jane et al., 2022).

2.1 Case study, flood drivers, and data

Charleston County, located in South Carolina (USA), is on
the coast of the Atlantic Ocean. Figure 2 shows Charleston
County subdivided by sub-county (United States Census Bu-
reau, 2024). According to their distance to the open coast, the
sub-counties can be classed as either “inland” or “coastal”
(Fig. 2).

Charleston County is prone to compound flooding caused
by hurricanes and extratropical events (e.g., Parker et al.,
2023; Nederhoff et al., 2024). These events cause precipi-
tation, and wind shear and pressure effects offshore, which
can result in the co-occurrence of astronomical tides, runoff,
storm surges, and waves (e.g., Barnard et al., 2023), which
regularly causes damages (e.g., Samadi and Lunt, 2023).
Moreover, sea level rise (SLR) is expected to worsen the
flood hazards in the future (e.g., Morris and Renken, 2020).
This has caused the city to create a plan to manage its infras-
tructure (City of Charleston, 2015).
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Since validating a hydrodynamic model is not the pur-
pose of this article, the hydrodynamic SFINCS model (Lei-
jnse et al., 2021) validated by Diermanse et al. (2023) for
Charleston County was used (see Sect. 2.3). The small off-
shore model domain meant waves could not be taken into
account (Diermanse et al., 2023). Moreover, waves are not a
dominant driver for Charleston County (e.g., Parker et al.,
2023). Thus, the same flood drivers as Diermanse et al.
(2023) were investigated here. These are the storm surge,
tides, and precipitation.

Data for the still water level and the tides in Charleston
Harbor were obtained at an hourly resolution from the Na-
tional Oceanic and Atmospheric Administration (NOAA), at
the tide gauge location shown in Fig. 2 (station ID: 8665530).
The still water level time record contained the tidal, sea level
rise, and non-tidal residual components. The tidal time record
was obtained from NOAA’s stationary harmonic analysis.
The non-tidal residual component was assumed to be equiva-
lent to the storm surge. The storm surge time record was cal-
culated by subtracting the tidal time record from the still wa-
ter level time record. Data for precipitation were obtained at
an hourly resolution from the ERAS reanalysis dataset (Hers-
bach et al., 2020) at the grid location of 32.75°N, 79.75°W
(see Fig. 2). The ERAS dataset has a spatial resolution of
0.25°, roughly equivalent to 30 km. The time record for the
storm surge, tides, and precipitation had an overlapping time
record of 24 years and 4 months.

Increased still water levels from storm surges induce a
phase shift in the tidal signal, creating spurious peaks in the
storm surge time record (Williams et al., 2016). Therefore,
the skew surge was considered. It is the difference between
the highest still water level and the high tide within a tidal
period (Williams et al., 2016; Couasnon et al., 2022; Dier-
manse et al., 2023). A tidal period was taken as the time be-
tween two consecutive low tides. To recreate a time record
with an hourly resolution, the skew surge values were as-
sumed to be constant over their tidal period, which was ap-
proximately 12 h for Charleston Harbor. Furthermore, to re-
move the sea level rise component, the 1-year moving aver-
age of the skew surge time record was subtracted from the
skew surge time record (Arns et al., 2013). The sea level rise
component was also used to identify the current sea level as
0.2 m above mean sea level (a.m.s.1.).

Based on skew surge, tides, and precipitation, six stochas-
tic variables were selected to parameterize compound flood
events in Charleston County: skew surge magnitude (S.Mag),
precipitation magnitude (P.Mag), tidal magnitude (T.Mag),
precipitation duration (P.Dur), skew surge duration (S.Dur),
and precipitation lag (P.Lag).

2.2 Inference of natural variability
Describing and inferring natural variability is key in risk

management. Due to the relatively short time span of mea-
sured and/or reanalysis data, statistical models are often used
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Figure 1. Typical framework required to characterize the flood risk associated with compound floods when using a surrogate model and our

implementation for this study.
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Figure 2. Charleston County with sub-county divisions that are color-coded according to their proximity to the open coast. Markers indicate

the location of where data on the drivers were collected.

to stochastically generate a large number of synthetic com-
pound events (e.g., Couasnon et al., 2022; Bevacqua et al.,
2017; Bates et al., 2023). The statistical model presented in
the proposed framework follows the following four steps.

1. Identify extreme high-water events (Sect. 2.2.1).
2. Quantify flood driver parameters (Sect. 2.2.2).
3. Model the joint probability distribution (Sect. 2.2.3).

Nat. Hazards Earth Syst. Sci., 25, 1353-1375, 2025

4. Generate stochastic event sets (Sect. 2.2.4).
2.2.1 Identify extreme high-water events

Charleston Harbor’s tidal record showed daily inequalities
larger than semi-diurnal differences in S.Mags. Therefore,
applying peak over threshold (POT) to all S.Mags could have
identified high-water events that were not extreme as they
could co-occur with lower high 7.Mags. Therefore, to only
identify extreme high-water events, POT was only applied to
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S.Mag when it co-occurred with a higher high (HH) T.Mag.
POT identifies extremes as exceedances over a threshold and
uses a declustering time window to ensure all extremes are
independent and identically distributed. Therefore, the num-
ber of identified extremes is dependent on the threshold and
declustering time window. A threshold of 0.32 m relative to
mean sea level (MSL) and a declustering time window of
14 d between each extreme S.Mag were chosen. The latter
was based on the longest S. Dur before restricting the duration
of events (see Sect. 2.2.2). This ensured consecutive extreme
events were not embedded in events longer than the declus-
tering time window. This resulted in 2.91 extreme high-water
events per year.

2.2.2 Quantify flood driver parameters

All six flood driver parameters had to be quantified for each
extreme high-water event. POT was applied on S.Mag in
Sect. 2.2.1. For PMag, the largest value that co-occurred
within £3d of all identified S.Mag extremes was used. For
T:Mag, the co-occurring HH tide with all identified S.Mag
extremes were used. P.Dur and S.Dur were taken as the dura-
tion of PMag and S.Mag to continuously remain above a crit-
ical value within the +3 d window used to quantify P.Mag.
For precipitation and skew surge, the values used to define
the duration were 0.3 mmh~! and 0.2 m, respectively. P.Lag
was defined as the difference in hours between S.Mag and
P.Mag for each extreme high-water event.

2.2.3 Model the joint probability distribution

The joint probability distribution between the different
stochastic variables was modeled using a vine copula be-
cause of the method’s flexibility in high dimensional datasets
(Czado and Nagler, 2022; Bedford and Cooke, 2002) and
successful applications in other compound flooding stud-
ies (e.g., Bevacqua et al., 2017; Eilander et al., 2023b). A
vine copula is defined by three components (e.g., Czado,
2019): (1) bivariate copulas; (2) a graph, named regular vine,
which composed of a series of nested trees; and (3) marginal
cumulative distribution functions (CDFs). A vine copula
constructs a multivariate distribution using bivariate copu-
las. A bivariate copula models the dependence between two
stochastic variables in the normalized ranked space. A vine
copula organizes the bivariate copulas into a series of trees.
The first tree represents the unconditional dependence be-
tween the stochastic variables. The following trees add a
layer of conditional dependence. To transform the observa-
tions and generated data to and from the normalized ranked
space where the vine copula is defined, marginal CDFs are
required.

To select and fit a regular vine for a given problem, two
options are possible: (1) brute force (Morales-Népoles et al.,
2023) or (2) heuristic algorithms. It has been shown that the
number of regular vines grows extremely fast with the num-
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ber of stochastic variables (Morales-Népoles, 2010). There-
fore, in this study the regular vine was chosen using Dif3-
mann’s algorithm (Dimann et al., 2013) as implemented in
the pyvinecopulib Python package (Nagler and Vatter, 2023)
and fitted to minimize the Bayesian information criterion
(BIC; Schwarz, 1978).

To mimic different levels of simplifications typically used
in compound flood risk assessments, multiple (vine) cop-
ula models were fitted, each one considering different num-
bers of stochastic variables. The starting point was the cop-
ula model fitted between S.Mag and P.Mag. Then, T.Mag,
P.Dur, S.Dur, and P.Lag were added one at a time. This re-
sulted in one copula and four vine copulas fitted to two, three,
four, five, and six stochastic variables, respectively. To sim-
plify the models, if the stochastic variable that was added had
independent copulas between all the pairs, it was removed
from the vine copula. This simplified the number of models
from five to three. Table A1 located in Appendix A shows an
overview of the models.

Marginal CDFs were defined for each stochastic variable.
For S.Mag, both the exponential and generalized Pareto dis-
tribution (GPD) were fitted to the data using the L-moments
method and the best fit was selected based on the BIC using
the HydroMT Python package (Eilander et al., 2023a). For
T:Mag, the empirical CDF of all HH tides was used as T.Mag
is expected to be independent of S.Mag (e.g., Williams et al.,
2016). For PMag, 80 continuous distributions available in
the scipy Python package (Virtanen et al., 2020) were fitted
using maximum likelihood estimates, and the best fit was se-
lected based on the BIC. For P.Dur, S.Dur, and P.Lag, ex-
trapolation is not desired, so only the truncated distributions
available in the scipy Python package (Virtanen et al., 2020)
were considered. The smallest sum squared error (SSE) was
used to choose the models. For PMag, P.Dur, S.Dur, and
P.Lag, the fitter Python package was used (Cokelaer et al.,
2024) to apply the exposed methodology. Table A2 located
in Appendix A summarizes the CDFs and respective param-
eters chosen for the different stochastic variables.

2.2.4 Generate stochastic event sets

The fitted vine copula models were used to generate stochas-
tic event sets to represent the different extents of simplifica-
tions in compound flood risk assessments. Stochastic event
sets were generated with the inverse Rosenblatt transform in
the pyvinecopulib Python package (Nagler and Vatter, 2023).
When a variable was not yet stochastic, a constant was de-
fined. This constant was assumed to be the median value
from the empirical distribution. Moreover, in some cases, the
incremental addition of a stochastic variable resulted in this
variable only being contained in statistically independent bi-
variate copulas. To simplify, this variable was removed from
the vine copula model, which resulted in the vine copula
model only modeling statistically dependent variables. Thus,
to obtain a stochastic event set that included a statistically in-
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dependent variable, the stochastic event set generated by the
simplified vine copula model was combined with data gener-
ated from the marginal of the independent variable.

Two different types of stochastic event sets were gener-
ated. For the first type, two “benchmark” event sets with 500
synthetic events with two and six stochastic variables were
generated. For these event sets, the damage of each event
was simulated (Sect. 2.3). For the second type, five “testing”
event sets with 10 000 synthetic events with two, three, four,
five, and six stochastic variables were generated.

2.3 Damage simulation

The damage related to synthetic events is required to train a
surrogate model. This requires: (1) the simulation of the flood
hazard and (2) the simulation of the damages associated with
a flood hazard. This study uses a hydrodynamic and impact
model.

Many fully physics-solving and reduced-physics hydrody-
namic models are available (e.g., Delft-3D, Deltares (2022);
MIKE 21, DHI (2017); HEC-RAS, USACE Hydrologic
Engineering Center (2025); LISFLOOD-FP, Bates et al.
(2010)). The SFINCS (Leijnse et al., 2021) model was used
to estimate the flood hazard map associated with the bound-
ary conditions of a synthetic event. SFINCS was chosen
because (1) a model was validated for Charleston County;
(2) the model uses high-resolution local datasets; and (3) the
computational grid is small, reducing the computational time
(Diermanse et al., 2023). SFINCS is a reduced-physics hy-
drodynamic model optimized for the fast calculation of the
flood hazard (Leijnse et al., 2021). The governing equations
are based on the local inertia equations (Bates et al., 2010),
tuned for coastal and compound flooding by including addi-
tional terms, such as wind stress and advection. These equa-
tions are solved at the resolution of the computational grid
using subgrid information about the topography and con-
veyance capacity (van Ormondt et al., 2025). For more de-
tails on SFINCS, see Leijnse et al. (2021) and van Ormondt
et al. (2025). For Charleston County, the SFINCS model had
a 200 x 200m grid resolution. The native 1 x 1 m resolu-
tion information for the topo bathymetry and land rough-
ness were included with a subgrid lookup table. The topo
bathymetry data were based on the Coastal National El-
evation Database (CoNED; Danielson et al., 2016; Cush-
ing et al., 2022). For the spatially varying land roughness,
the National Land Cover Database (NCLD; Homer et al.,
2020) was used and reclassified to Manning roughness val-
ues following Nederhoff et al. (2024). Drainage was handled
with (1) pumps located in the Charleston Central sub-county
(Diermanse et al., 2023), and (2) the curve number infiltra-
tion scheme, which was based on the United States Gen-
eral Soil Map (STATSGO?2; U.S. Department of Agriculture,
2020) following Nederhoff et al. (2024). For our application,
only two boundary conditions were required: (1) the still wa-
ter level at the coast and (2) the precipitation. The time series
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for the still water level was reconstructed by linearly super-
posing three components: the constant MSL equal to 0.2 m
(Sect. 2.1), a historical tidal time series from the HH tide
empirical distribution associated with a given T.Mag, and the
skew surge time series. A Gaussian distribution was used to
reconstruct the time series for skew surge and precipitation.
For skew surge, S.Mag and S.Dur were used. For precipita-
tion, PMag, P.Dur, and P.Lag were used. Figure Al in Ap-
pendix A shows how these variables were combined to create
the time series of boundary conditions for the downstream
water level and precipitation. In terms of spatial distribution,
both the downstream water level and precipitation were spa-
tially uniform.

Impact models combine hazard, exposure, and vulnerabil-
ity to quantify the economic and/or social consequences of
a flooding event (e.g., Bates et al., 2023). The Delft-FIAT
(Deltares, 2024) model was used to compute the damages
associated with a synthetic event. Delft-FIAT was chosen be-
cause (1) a model was validated for Charleston County and
(2) it uses data from the United States Army Corps of En-
gineers and Federal Emergency Management Agency (Dier-
manse et al., 2023). Delft-FIAT combines the hazard map
obtained from the SFINCS model, with the exposure (maxi-
mum damages of a building footprint), and the vulnerability
(depth—damage fraction curves for each building footprint).
This allowed for the computation of the damages associated
with each building footprint included in the model for a syn-
thetic event. Summing all building footprints in the model re-
sults in economic damage for Charleston County. Here, the
damages associated with different geographic locations (re-
ferred to as outputs hereinafter) were also investigated. This
was done per sub-county and according to the classifications
(i.e., coastal vs. inland) made in Sect. 2.1. These different
spatial scales are referred to as the complete, sub-county, and
classified models, respectively.

2.4 Surrogate model

A surrogate model approximates the behavior of a more com-
plex and computationally expensive model. By being compu-
tationally faster, they are an asset in compound flood risk as-
sessments for various reasons (e.g., quantifying uncertainty
and testing risk reduction measures in Eilander et al., 2023b).
The development of a surrogate model requires (1) a sam-
pling technique that selects a subset of events and configura-
tions out of a large multivariate space, (2) running this subset
in the reference numerical model, and (3) training a regres-
sion model to obtain the outcome for any other possible event
or configuration. Previous compound flood risk studies only
use surrogate models that (1) sample based on input param-
eters (e.g., Jane et al., 2022) and (2) are commonly com-
bined with linear interpolation (e.g., Couasnon et al., 2022),
although more complex regression techniques are available
(e.g., neural networks in Hendrickx et al., 2023, and radial
basis functions in Antolinez et al., 2019). However, active
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learning can be used to minimize the number of simulations
by leveraging the uncertainty in the output (e.g., Tomar and
Burton, 2021; Hendrickx et al., 2023). Here, the same sam-
pling technique as in Hendrickx et al. (2023) was applied,
which builds upon the work of Gramacy and Lee (2009).
The tool used to perform active learning was also used as
a regression model. Section 2.6 shows how these surrogate
models were used and compared.

A treed Gaussian process, limiting linear model (TGP-
LLM; Gramacy and Lee, 2009) was used. It is a genera-
tive model able to provide different estimates for the dam-
ages. These estimates are used to calculate a mean and a
confidence interval for the damages from each possible syn-
thetic event from a stochastic event set. The mean is used
as the regression model (Gramacy and Lee, 2009), while the
confidence interval can be used as a metric to drive a sam-
pling technique (e.g., Hendrickx et al., 2023). This is done
by choosing the simulation with the largest standard devia-
tion as it is expected to bring the largest gain in information
(MacKay, 1992). From here on, the standard deviation will
be referred to as the active learning Mackay (ALM; MacKay,
1992) statistic.

A TGP-LLM uses Bayesian tree regression to partition the
input into different subdomains, allowing different Gaussian
processes or linear models to fit different regions in the in-
put space. This allows the TGP-LLM to be non-stationary
and account for heteroskedasticity (Gramacy and Lee, 2009),
preventing the magnitude of the ALM statistic from prop-
agating from one subdomain to another. This could result
in large ALM statistics in uninteresting areas (Gramacy and
Lee, 2009). Therefore, a TGP-LLM enables the selection of
simulations to only occur in feature-rich sub-domains.

To minimize the number of simulations, performing active
learning with the TGP-LLM model is beneficial. The concep-
tual framework, therefore, repeats three steps: (1) fit a TGP-
LLM to the damages associated with the subset; (2) based
on the highest ALM statistic, select a simulation to perform
from the stochastic event set; and (3) perform the simulation
to obtain the damages and append to the subset. The TGP-
LLM has a computational cost that is proportional to the
number of simulations currently in the subset (N): O (N 3
(Gramacy and Lee, 2009).

When provided with a small subset of simulations, the
TGP-LLM may sample randomly, providing a small im-
provement in information for the computational cost (Hen-
drickx et al., 2023). To this end, we initially used a maximum
dissimilarity algorithm (MDA; Kennard and Stone, 1969) as
it selects simulations at the outskirts of a stochastic event
set (Camus et al., 2011). Given an initial subset of simulated
events, and a dissimilarity measure, an MDA repeats the fol-
lowing two steps until the final subset contains a predeter-
mined number of simulated events. Firstly, given the current
subset of simulated events, it assigns non-simulated events to
the simulated event that it is the least dissimilar to. Secondly,
based on this assignment, the non-simulated event with the
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largest remaining dissimilarity to a simulated event is added
to the subset and is simulated.

For our implementation, to prevent bias towards a variable,
the stochastic event set was first normalized using a min—max
scaler from the scikit-learn Python package (Pedregosa et al.,
2011). The MDA was initialized by providing the synthetic
event associated with the largest S.Mag. Euclidean distance
was used as a metric of dissimilarity. We used the MDA un-
til 2¢ (where d represents the number of dimensions) events
were contained in the subset, as it was proportional to the
number of vertices. After the MDA simulations, active learn-
ing with the TGP-LLM was performed, as proposed by Hen-
drickx et al. (2023).

To further minimize the computational cost, we developed
our own stopping criterion as this is still an active area of
research (e.g., Ishibashi and Hino, 2021; Tomar and Bur-
ton, 2021; Hendrickx et al., 2023). The learning curve of
the TGP-LLM was assessed by comparing its mean with
the benchmark (Sect. 2.2.4) after each TGP-LLM iteration.
To this end, different metrics were computed: the root mean
square error (RMSE) of the simulated and non-simulated
events, the mean and maximum ALM statistic of the non-
simulated events, and the EAD (Sect. 2.5). A two-sample
Kolmogorov—Smirnov (KS) test (Sect. 2.6) was applied to
compare the empirical CDFs of the benchmark and the TGP-
LLM.

The stopping criterion was defined as an ALM mean
smaller than 0.1 for two consecutive TGP-LLM models for
an output. This is based on our findings that (1) the mean
ALM is correlated with the RMSE of the simulated events,
(2) the EAD shows more stability and certainty as the num-
ber of simulations increases, (3) the change in the RMSE per
simulation is below USD 1 million per simulation when the
mean ALM is below 0.1, and (4) the two-sample KS test al-
ways has a significant p value for six stochastic variables
(Fig. A2).

The implementation of a stopping criterion meant it was
unknown how well these simulations would perform for an
unseen output. Therefore, a round-robin schedule was used.
After each simulation, the TGP-LLM was fit to a different
output in a predetermined loop. This process was repeated
until all outputs for a model reached the stopping crite-
rion. To reduce the computational costs, outputs that reached
the stopping criterion were incrementally removed from the
round-robin schedule.

2.5 Risk modeling

To model the risk, the method used by Couasnon et al. (2022)
was followed. Each event in the stochastic event set was as-
sumed to occur at a constant frequency, equivalent to the re-
ciprocal of the average number of floods per year identified
by the POT. Then, all events were ranked according to the
magnitude of their economic damage, creating an empirical
CDF. The risk curve was obtained by converting the rank of
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each event to a return period (RP; Gumbel, 1941). The EAD
is an important metric in flood risk assessments (e.g., Olsen
et al., 2015) as it allows one to perform a cost—benefit analy-
sis (e.g., Haer et al., 2017). To obtain the EAD, the empirical
CDF of damages was integrated.

2.6 Experiment

An experiment was designed to validate, test, and assess
the proposed framework under different scenarios. Firstly, a
comparison was made with the state-of-the-art (Sect. 2.6.1).
Secondly, the scalability was tested (Sect. 2.6.2). Finally,
the effect of simplifications on flood risk was assessed
(Sect. 2.6.3).

To compare the different risk estimates, statistical tests
were performed. A two-sample Kolmogorov—Smirnov (KS)
test was applied to compare two empirical CDFs (Hodges,
1958). The null hypothesis assumes that both empirical
CDFs are drawn from the same parent distribution. To com-
pare two EADs, a Mann—Whitney U (MWU) rank test was
used (Mann and Whitney, 1947). The null hypothesis as-
sumes both empirical CDFs have the same EAD. For the lat-
ter, an empirical bootstrap (Efron, 1979) was repeated 500
times for each empirical CDF to obtain a distribution of
EADs. For the implementation of both tests, the scipy Python
package (Virtanen et al., 2020) was used. Two risk estimates
were considered significantly different if the p value was
smaller than 0.05.

When comparing the computational cost of different sur-
rogate models, the computational time was assessed on an
AMD Ryzen 5 5600X 6-core-processor 3.70 GHz CPU.

2.6.1 State-of-the-art vs. active learning

To validate the proposed framework, the active learning ap-
proach was compared with a current state-of-the-art equidis-
tant sampling approach based on the methods used by Jane
et al. (2022) and Eilander et al. (2023b). Both approaches
were only compared for the models with two stochastic vari-
ables.

For the current state-of-the-art approach, MDA sampling
was combined with linear scatter interpolation based on the
recommendation of Jane et al. (2022). In a linear scatter
interpolation, simulated events are triangulated (for two di-
mensions), and linear interpolation occurs within each trian-
gle. To prevent extrapolation, 2% simulations representing the
vertices of the stochastic event set were simulated. Then, an
MDA was applied to the stochastic event set using the same
implementation as the active learning approach (Sect. 2.4).
In total 64 events were simulated, which is comparable to the
number of events used by Eilander et al. (2023b) based on
factorial sampling with 8¢ simulations. The gridddata func-
tion from the scipy Python package was used to implement
the linear scatter interpolation (Virtanen et al., 2020).
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The testing and benchmark event sets in two dimensions
were used to compare the approaches. The testing event set
was used to select the simulations to run as it provided a
larger diversity in the synthetic events. Then, the regression
model was used to calculate the damages of all synthetic
events in the benchmark event set, which allowed for the
quantification of the RMSE.

2.6.2 Scalability of the proposed framework

To test the scalability of the proposed framework, the active
learning approach was deployed on the testing event sets.
Since compound flood drivers respond differently based on
the geographic location (e.g., Gori et al., 2020), the active
learning approach was not only deployed on the complete
(all sub-counties combined) model but also on the classified
(coastal and inland sub-counties separated) model for all test-
ing events. It was also deployed on the testing event for two
stochastic variables for the sub-county model.

2.6.3 Effect of simplifications on flood risk

To assess the effect of simplifications on current compound
flood risk assessments, the flood risk associated with the
damage of the complete model to the five testing event sets
was modeled.

3 Results and discussion
3.1 State-of-the-art vs. active learning

This section presents and discusses the accuracy and com-
putational time of equidistant sampling and active learning
surrogate models. Figure 3 shows the RMSE of both surro-
gate models compared to the benchmark events set. The ac-
tive learning approach outperforms the equidistant sampling
approach in two ways: (1) for any number of simulations, the
RMSE is smaller; and (2) the smallest RMSE is reached af-
ter fewer simulations (14 vs. 52). This results in the active
learning approach improving the accuracy by a factor of 8
(USD90.8 vs. 11.2 million), while reducing the number of
numerical simulations that would normally be performed by
a factor of 4 (64 vs. 14). This increase in accuracy provides
a better estimate of the EAD for the active learning approach
(37.3 % vs. 1.68 % error) when compared to the benchmark
EAD (Fig. A3).

The difference between the accuracy and number of nu-
merical simulations of the approaches is caused by their
respective sampling and regression techniques. On the one
hand, equidistant sampling cannot explore uncertainty and
thus selects a large number of numerical simulations. When
combined with linear scatter interpolation, it is not flexi-
ble enough to correctly represent the non-linear response of
damages to the flood drivers. To achieve a similar accuracy
to the active learning approach, a large number of numeri-
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Figure 3. RMSE of both approaches as a function of the number of

simulations from the testing event set with two stochastic variables,
measured based on the difference with benchmark events.

cal simulations would be required, increasing the computa-
tional cost. This is similar to observations made by Gouldby
et al. (2017). If the number of stochastic variables were to in-
crease, the curse of dimensionality would cause the number
of simulations to increase exponentially, making the problem
infeasible. On the other hand, the active learning approach
explores the uncertainty related to the output (i.e., damages
related to a geographic location) of simulations already per-
formed. This allows for the sampling of simulations that are
expected to bring the largest gain in expected information.
This is combined with a generative model that can capture
some of the non-linear relationships between the flood driver
parameters and the damages. However, the active learning
approach is unable to provide a perfect fit as the RMSE never
reaches 0 (Fig. A2), showing that a stopping criterion is nec-
essary, as marginal gains in accuracy may bring high com-
putational costs. This causes the active learning approach to
show significant differences with the benchmark when using
the two-sample KS test (Fig. A3).

Figure 4 shows the computational time associated with
both approaches when they sample from the testing event set.
The overall computational time can be split into three com-
ponents: (1) Delft-FIAT, (2) SFINCS, and (3) TGP-LLM. For
both approaches, Delft-FIAT is the component that requires
the largest computational time. This is caused by the Delft-
FIAT model being poorly optimized for Charleston County
as it preprocesses the exposure data before each simulation.
The added computational time (2.3 min) for the active learn-
ing approach due to the TGP-LLM is relatively small as the
number of simulations is small. Therefore, the number of
simulations is the main factor influencing the overall compu-
tational time. For our experiment, the overall computational
time was reduced by a factor of 4 (95.4 vs. 23.6 min).
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Figure 4. Computational time associated with both approaches for
the testing event set with two stochastic variables.

3.2 Scalability of the proposed framework

In this section, we present and discuss the computational time
of the active learning approach under different extents of sim-
plifications. These simplifications can take various forms, but
only two of these are investigated: (1) the inclusion of ad-
ditional stochastic variables and (2) increasing the number
of outputs (i.e., damages related to different geographic lo-
cations). Figure 5 shows the computational time of the ac-
tive learning approach for the testing event sets with dif-
ferent numbers of stochastic variables (or dimensions) and
the number of outputs. For each, the overall computational
time is subdivided into three components: (1) Delft-FIAT,
(2) SFINCS, and (3) TGP-LLM. A horizontal red line is pro-
vided as a reference, showing the overall computational time
of the equidistant sampling approach with two dimensions.
Henceforth, this will be referred to as either the equidistant
sampling computational time or the reference computational
time. For a singular output (complete), the reference compu-
tational time is only exceeded with six dimensions. The dif-
ference in overall computational time between two and six
dimensions is a factor of 5 (100 min). The overall computa-
tional time for two outputs (classified), is larger for all test
event sets when compared to a singular output (complete).
For one and two outputs, the overall computational time does
not always increase as the number of dimensions increases.
Moreover, the TGP-LLM dominates the overall computa-
tional time of the active learning approach for the classified
model in six dimensions, where the TGP-LLM amounts to
75 % (1163.9 out of 1553.3 min) of the overall computational
time. This caused it to exceed the reference computational
time by a factor of 16. Finally, when increasing the number
of outputs to 11 (sub-county), the active learning approach is
below the reference computational time but requires substan-
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Figure 5. Computational time required for different approaches as
a function of outputs (i.e., damages related to different geographic
locations) and number of stochastic variables (dimensions).

tially more overall computational time compared to 1 and 2
outputs.

For a singular output, the cost associated with the TGP-
LLM is limited as the stopping criterion is often met quickly
after the MDA initialization (Table A3). Thus, the TGP-LLM
only has to select a small number of simulations, which
dominates the reduction in the overall computational time.
The use of an initialization results in five dimensions having
a smaller overall computational time than four dimensions.
This is because the TGP-LLM was used a smaller number of
times.

When increasing the number of outputs to two, the number
of simulations also increases. This is because the response of
economic damages to the flood drivers is different for both
locations. This can be seen in Fig. A4 and is a known phe-
nomenon in compound flood risk (e.g., Gori et al., 2020). The
number of additional simulations will depend on how com-
plex and diverse the response surfaces are. Here, the more
complex response surface of the inland location requires a
larger number of numerical simulations than the coastal loca-
tion (Table A3). These additional simulations cause the over-
all computational time for the classified model to increase
when compared to the complete model. This increase in sim-
ulations also causes the relative cost of the TGP-LLM to in-
crease as its cost is proportional to the number of simulations
cubed (Gramacy and Lee, 2009).

For 11 outputs, the overall computational time signifi-
cantly increases when compared to one and two outputs. This
is not only caused by the response of the flood drivers to each
location but also by the stopping criterion. The round-robin
schedule requires a minimum number of simulations, which
is proportional to the number of outputs (Sect. 2.4).
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3.3 Effect of simplifications on flood risk

This section presents and discusses the outcomes of incre-
mentally adding stochastic variables to the estimate of eco-
nomic risk. This is tested for a singular output using the ac-
tive learning approach. Figure 6 shows the risk curves as-
sociated with the different numbers of stochastic variables
(or dimensions). The samples represent the mean response
of the TGP-LLM to a test event set in d dimensions. Ad-
ditionally, since the TGP-LLM is a generative model (i.e.,
it captures and models the distribution of the output), the
5% and 95 % confidence interval associated with the TGP-
LLM damage response to the d-dimensional space is used to
show the 5 % and 95 % confidence interval associated with
each RP. The EAD associated with each risk curve is also
shown. The logarithmic behavior of the x axis makes it eas-
ier to see the differences in the economic damages at large
RPs. The uncertainty bands of the TGP-LLM can be used
to show statistically significant differences between the risk
curve in two dimensions and the risk curves in higher di-
mensions when the RP > 10 years. In addition, based on the
two-sample KS test, all combinations show significant dif-
ferences (Fig. AS). When considering the EADs, all but one
of the combinations show a significant difference (Fig. A6).
When comparing models with two and three dimensions
(all driver magnitudes) and the three and six dimensions
(adding driver durations and time lag), the EAD difference
is 11.3 % (USD 22.01 million) and 11.6 % (USD 25.47 mil-
lion), respectively. The return values are also directly com-
pared. For an RP of 1, 10, and 100 years the differences be-
tween (1) two- and three-dimension models are USD 2.98,
115.08, and 279.57 million, respectively; and (2) six- and
three-dimension models are USD 3.03, 31.03, and 66.08 mil-
lion, respectively.

The uncertainty bands in Fig. 6 show the uncertainty
driven by the confidence of the TGP-LLM in modeling the
damage response to a d-dimensional space. The uncertainty-
based stopping criterion ensures the mean ALM for non-
simulated events is at least a certain value for all dimen-
sions. However, differences in the width of the confidence
interval at different RPs can be expected because of the fol-
lowing three reasons. Firstly, the uncertainty associated with
simulated events will be smaller. This is most noticeable at
large RPs, where the density of events is lower in the d-
dimensional space, making them more likely to be simulated.
Moreover, the uncertainty and damage of an RP are likely to
represent the same synthetic event, as the difference in dam-
ages between consecutive RPs is large. At smaller RPs, this is
less noticeable as (1) a large proportion of these events have
not been simulated, (2) the logarithmic scale on this x axis
makes it difficult to visualize the uncertainty associated with
specific RPs, and (3) the uncertainty and damage of an RP
may not represent the same synthetic event because of small
differences in damages between consecutive RPs. Secondly,
the TGP-LLM can partition the d-dimensional space, which
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Figure 6. Risk curves for models with a different number of stochastic variables (dimensions). The uncertainty bands represent the 5th and

95th percentiles. The legend includes the EAD estimate for each model.

allows the TGP-LLM to model heteroskedasticity. However,
this did not affect the uncertainty bands in Fig. 6, as the TGP-
LLM did not have any partitions for all the d-dimensional
spaces when the stopping criterion was met. Thirdly, the pre-
dictability of the damage response by the TGP-LLM changes
depending on the magnitude of the synthetic events and the
number of dimensions considered.

A stricter stopping criterion will lead to a larger confidence
in the risk curve, which could show a larger number of signif-
icant differences between the risk curves. However, this will
come at the expense of a larger computational cost.

The main reason for the risk curve in two dimensions
showing large differences with other risk curves in higher
dimensions is the omission of 7.Mag as a stochastic vari-
able. This greatly influences the quantification of flood risk
as Charleston County is located close to the open coast. This
means that the tide and the surge drivers will have a large ef-
fect on the economic damage. When 7.Mag is included, the
more extreme coastal water levels have a larger magnitude.
Combined with non-linear vulnerability curves (Diermanse
et al., 2023), this causes a non-linear increase in damages.
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Significant differences between almost all risk curves and
EAD show that neglecting drivers’ duration and time lag will
lead to a mis-quantification in flood risk estimates. In gen-
eral, the effect of an added stochastic variable on the flood
risk depends on two things: (1) how the economic damages
respond to the stochastic variable and (2) the assumed con-
stant value used in a model with fewer dimensions and how
well that represents its probability distribution and depen-
dence on other stochastic variables. If a constant is used to
represent a stochastic variable, it will be unable to provide
the same risk curve but may provide a similar estimate in the
EAD or return value. For the EAD, this is shown in Figs. A5
and A6 where two and four dimensions show significantly
different risk curves but have similar estimates in the EAD.
This is because the EAD is an integral of the empirical CDF.
Thus, differences can be offset, showing that the EAD is not
the best metric to use when justifying simplifications.

3.4 Limitations

In this study, the surrogate models were assessed for the case
study of Charleston County. Other case study locations will
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show a different response to economic damages as these will
have (1) a different combination of flood drivers (e.g., Ei-
lander et al., 2023b), (2) different physical properties that
determine the response of the flood hazard to the drivers,
and (3) different spatial distributions of exposure and vul-
nerability (e.g., Koks et al., 2015). While the findings about
the exact reduction in overall computational time and in-
creased accuracy are case specific, we expect similar results
in other locations. Active learning allows for the number
of numerical simulations to be minimized given an input-
to-output relationship. The number of simulations will de-
pend on how complex this relationship is, but as shown in
Sect. 3.2, the TGP-LLM is still able to reach the stopping
criterion for different outputs that have a different response
to the flood drivers. A stricter stopping criterion can be used
to achieve a higher confidence in the results. However, this
will increase the computational cost. Furthermore, the stop-
ping criterion may never be reached as the TGP-LLM is reg-
ularized. The results of this study only investigate up to six
stochastic variables, but certain case study locations can be
affected by more than six drivers (e.g., California Bay-Delta;
Cloern et al., 2011), leading to a stronger curse of dimen-
sionality if their duration, time lag, and spatial distribution
are also included. We expect that the conceptual framework
can still be applied to these case studies, but the overall com-
putational time will largely depend on the interaction of the
flood drivers and the number of outputs to be modeled. The
overall computational time of the conceptual framework can
be further minimized by reducing the number of times the
TGP-LLM is applied (e.g., each x simulation rather than af-
ter each single simulation).

The choice of boundary condition will not affect the con-
clusions drawn from the conceptual framework as long as
the damage response to the d-dimensional space is consistent
for all synthetic events in the stochastic event set. Nonethe-
less, the current representation of the boundary conditions
for the flood drivers is not accurate compared to the state-of-
the-art (e.g., Apel et al., 2016; Bakker et al., 2022; Anderson
et al., 2019; Marra et al., 2023). This is because (1) Gaus-
sian distributions force the time series to be symmetrical,
rigid, and monotonically increasing/decreasing before/after
the peak magnitude of the event, and (2) spatially homoge-
neous boundary conditions do not represent historical events
if the model domain is large and are based on the data from
a point source. These boundary conditions were used be-
cause they minimize the number of parameters, ensure the re-
sults are interpretable, and can be applied to all flood drivers.
Moreover, they facilitate the use of vine copulas, which offer
more flexibility when inferring the natural variability.

Choosing the number of flood drivers and associated
stochastic variables to include is currently based on knowl-
edge from previous studies, expert knowledge, or a prelimi-
nary sensitivity analysis. We expect the TGP-LLM to under-
stand if a stochastic variable is not contributing to economic
damages as it can associate a linear model with this dimen-
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sion. However, this will require additional numerical simu-
lations. Moreover, it may become difficult to generate repre-
sentative synthetic events from a robust statistical model in
higher dimensions (Morales-Népoles et al., 2023).

SFINCS is used here as a hydrodynamic model as it has
been validated during a previous study (Diermanse et al.,
2023). SFINCS significantly decreases the computational
cost associated with the hydrodynamic simulation of an
event. However, it neglects certain physical processes (e.g.,
morphodynamics) (Leijnse et al., 2021), potentially increas-
ing the modeling bias associated with the flood hazard. The
use of the conceptual framework proposed in this study re-
duces the number of numerical simulations. This allows for
the use of more computationally demanding numerical mod-
els, which are expected to represent the flood hazard better in
more complex cases. Nonetheless, the majority of the mod-
eling bias is caused by the input datasets used to calibrate
and validate the hydrodynamic model, which would also be
present in more complex hydrodynamic models (Bates et al.,
2021).

When fitting the statistical model to the observed ex-
treme high-water events, we grouped extratropical and trop-
ical events together because of the short time record for the
available data (see Sect. 2.1). Ideally, these should be taken
into account using separate distributions when modeling risk
(e.g., Nederhoff et al., 2024).

During this study, only the uncertainty associated with
economic consequences was explored. However, risk can
also be social. Authors who use the equidistant/factorial sam-
pling approach make a necessary simplification that the sim-
ulations chosen to represent economic risk also represent so-
cial risk (e.g., Diermanse et al., 2023; Eilander et al., 2023b).
This simplification is not required for the active learning ap-
proach as the social consequences can be included as a dif-
ferent type of output in the round-robin schedule of the TGP-
LLM.

4 Conclusions and recommendations

A conceptual framework that uses active learning to lever-
age the input-to-output uncertainty was applied to the case
study of Charleston County. The proposed framework uses
uncertainty related to the economic damages caused by flood
driver parameters. This framework reduces the overall com-
putational time of performing a compound flood risk assess-
ment and/or allows for reducing the number of simplifica-
tions usually taken in compound flood risk assessments.
When comparing the state-of-the-art equidistant sampling
surrogate model with the proposed active learning surrogate
model, the RMSE in damages was reduced by a factor of 8
(USD 90.8 vs. 11.2 million), while reducing the overall com-
putational time by a factor of 4 (95.4 vs. 23.6 min), result-
ing in a win—win scenario. This reduction in error results in
higher accuracy risk estimates. The reduction in overall com-
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putational time makes it possible to include more stochas-
tic variables (i.e., to reduce the number of simplifications)
to improve risk estimates. For a singular output (one geo-
graphic location), the overall computational time increased
by a factor of 5 (100 min) between two and six stochastic
variables. Not accounting for all the simplifications resulted
in an underestimation of the EAD of USD47.48 million,
and an underestimation of the 100-year return period (RP)
of USD 345.65 million. Exploring the uncertainty associated
with different outputs (i.e., geographic locations) increased
the overall computational time as the economic damages re-
sponded differently to the flood drivers, requiring additional
numerical simulations. In the case of six dimensions and
two outputs, this caused the overall computational time to
increase by a factor of 16 when compared with the current
state-of-the-art. While the proposed active learning surrogate
model was only assessed for a single case study, there is a
high expectation to see similar benefits to other case studies.

Based on these findings, we have three recommendations
for future studies. Firstly, different strategies could limit the
computational time associated with training TGP-LLMs, for
instance, by simulating the synthetic events with the x high-
est active learning Mackay (ALM) statistic in each iteration
or increasing the number of simulations in the initialization.
Secondly, some case studies will have stochastic variables
associated with processes that do not dominate the com-
pound flood risk. To limit the increase in overall computa-
tional time, future research should propose simplifications
that do not affect the quantification of compound flood risk.
However, our results show that similar EAD values can result
from different risk curves, and hence, care should be taken
when using EAD to validate these simplifications. Finally,
to propose optimal risk reduction measures, the framework
would have to be deployed once for each possible adapta-
tion measure. Future research should investigate how to limit
the computational cost of this operation by understanding
and predicting how the input-to-output response surface will
change with certain adaptation measures.
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Appendix A: Supplementary i

Table A1l. Regular vine copula models (e.g., Czado, 2019) for different numbers of stochastic variables with associated regular vine distri-

bution and bivariate copula models.

nformation

Two stochastic variables

Tree Edge Copula model  Parameters
1 S.Mag, PMag Gaussian 0.348
Four stochastic variables
Tree Edge Copula model  Parameters
1 S.Mag, PMag Gaussian 0.348
PMag, P.Dur Joe 180° 2.44
T.Mag, P.Dur Frank 1.69
2 T.Mag, PMag | P.Dur Independence
P.Dur, S.Mag | PMag Independence
3 T'Mag, S.Mag | P.Dur, PMag Independence
Six stochastic variables
Tree Edge Copula model  Parameters
1 T:Mag, P.Dur Frank 1.69
P.Dur, PMag Joe 180° 2.44
PMag, S.Mag Gaussian 0.348
S.Dur, S.Mag Independence
S.Mag, P.Lag Frank 1.98
2 T.Mag, PMag | P.Dur Independence
P.Dur, S.Mag | PMag Independence
PMag, S.Dur| S.Mag Independence
S.Dur, P.Lag | S.Mag Joe 270° 1.35
3 T Mag, S.Mag | P.Dur, PMag Independence
P.Dur, S.Dur | PMag, S.Mag Independence
PMag, PLag | S.Mag, S.Dur Joe 180° 1.30
4 T:Mag, S.Dur | P.Dur, PMag, S.Mag Independence
PDur, PLag | PMag, S.Mag, S.Dur Independence
5 T'Mag, P.Lag | PDur, PMag, S.Mag, S.Dur  Independence

Table A2. Summary of the marginal CDFs for the different stochastic variables.

Stochastic ~ Distribution Parameters

variable

S.Mag exponential {mean: 0.322; scale: 0.102}

PMag exponential {mean: 0.0796; scale: 5.60}

T Mag empirical: HH tides

P.Dur truncated normal {a: 0; b: 406; mean: 0.158; scale: 18.9}

S.Dur truncated Gumbel {c: 0.726; mean: 0.880; scale: 5.26}

PLag truncated normal {a: —72.0; b: 72.0; mean: —10.7.; scale: 30.6}
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Table A3. Total number of simulations required to reach stopping criterion for different dimensions and number of outputs. For multiple
outputs, these are ordered top-down in the order they appear in the round-robin schedule. Bold numbers represent the output dictating the

total number of simulations required to reach the final stopping criterion.

Number of dimensions [—]

Model Output 2 3 4 6
Complete total 14 24 36 65
Classified inland 17 38 43 224
coastal 13 30 37 67
Sub-county  Charleston Central 36
Edisto Island 27
James Island 28
Johns Island 29
Kiawah Island 30
Seabrook Island
McClellanville 31
Mount Pleasant 32
North Charleston 33
Ravenel-Hollywood 34
‘Wadmalaw Island 24
West Ashley 35
3
=
02%
@
=

P Mag

Precipitation [mm h™']

P Dur

Tide [m]

Skew surge [m]

rS Mag + T Mag + 0.2

-24 P I;ag 0

Relative time to peak in skew surge [h]

Figure A1. Schematization of SFINCS model boundary conditions.
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Figure A2. Developing a stopping criterion for compound flood risk. Panels (a)—(d) and (e)—(h) represent the benchmark datasets for two
and six dimensions, respectively. Panels (a) and (e) show the error of the surrogate damage model. Panels (b) and (f) show information on
the ALM statistic. Panels (c) and (g) compare the estimate of the EAD from the surrogate damage model with the benchmark. Panels (d) and
(h) show the results of the two-sample KS test when comparing the empirical CDF of the surrogate damage model with the benchmark.
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Figure A3. Risk estimates of both approaches when compared with the benchmark. Panels (a) and (b) show the outcomes of the two-sample
KS test for the active learning and equidistant sampling approaches, respectively. Panel (¢) shows the estimates of EAD from each approach.

(b)

Figure A4. Response of economic damages to the testing event set in two dimensions for the different outputs of the classified model:
panel (a) shows the response of the inland location and panel (b) shows the response of the coastal (coast) location. Plots are obtained from

the #gpllm R package developed by Gramacy and Lee (2009).
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Figure AS. Test statistics and associated p values associated with two-sample KS test for the empirical CDFs of different dimensionalities
when sampling from the total economic damages. If the p value is smaller than 0.05, the null hypothesis (empirical CDFs come from the
same parent distribution) is rejected.
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null hypothesis (empirical CDFs have the same location (EAD)) is rejected.
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