Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-47-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-47-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano
U.S. National Science Foundation National Center for Atmospheric Research, Research Applications Laboratory, Boulder, CO, USA
Fernando Szasdi-Bardales
Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
Neil P. Lareau
CORRESPONDING AUTHOR
Department of Physics, University of Nevada Reno, Reno, NV, USA
Kasra Shamsaei
Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV, USA
Branko Kosović
U.S. National Science Foundation National Center for Atmospheric Research, Research Applications Laboratory, Boulder, CO, USA
Negar Elhami-Khorasani
CORRESPONDING AUTHOR
Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
Eric P. James
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Hamed Ebrahimian
Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV, USA
Related authors
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025, https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Short summary
This paper evaluates a new model configuration for wind energy forecasting in complex terrain. We compare model results to observations in the Altamont Pass (California, USA), where wind channeling through a mountain gap leads to increased energy production. We demonstrate that the new model configuration performs similarly to a more established approach, with some evidence of improved wind speed predictions, and provide guidance for future model testing.
Nathan J. Agarwal, Julie K. Lundquist, Timothy W. Juliano, and Alex Rybchuk
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-16, https://doi.org/10.5194/wes-2025-16, 2025
Revised manuscript under review for WES
Short summary
Short summary
Models of wind behavior inform offshore wind farm site investment decisions. Here we compare a newly-developed model to another, historically-used, model based on how these models represent winds and turbulence at two North Sea sites. The best model depends on the site. While the older model performs best at the site above a wind farm, the newer model performs best at the site that is at the same altitude as the wind farm. We support using the new model to represent winds at the turbine level.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025, https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the US West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Pedro Angel Jimenez y Munoz, Maria Frediani, Masih Eghdami, Daniel Rosen, Michael Kavulich, and Timothy W. Juliano
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-124, https://doi.org/10.5194/gmd-2024-124, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We present the Community Fire Behavior model (CFBM) a fire behavior model designed to facilitate coupling to atmospheric models. We describe its implementation in the Unified Forecast System (UFS). Simulations of the Cameron Peak ire allowed us to verify our implementation. Our vision is to foster collaborative development in fire behavior modeling with the ultimate goal of increasing our fundamental understanding of fire science and minimizing the adverse impacts of wildland fires.
Tasnim Zaman, Timothy Juliano, Pat Hawbecker, and Marina Astitha
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-148, https://doi.org/10.5194/wes-2023-148, 2024
Preprint withdrawn
Short summary
Short summary
We suggest a model configuration to predict offshore wind speed and wind power density in the Northeast US. We focused on wind droughts, long periods of low wind speed that affect the reliability of wind power generation. We show that wind prediction depends primarily on the initial and boundary conditions, and that it is important to evaluate the connection of wind speed to wind power generation, to select the best model configuration.
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023, https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Short summary
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy. It also points to code, assessment tools, and data for testing the methods.
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022, https://doi.org/10.5194/wes-7-2085-2022, 2022
Short summary
Short summary
Numerical weather prediction models are used to predict how wind turbines will interact with the atmosphere. Here, we characterize the uncertainty associated with the choice of turbulence parameterization on modeled wakes. We find that simulated wind speed deficits in turbine wakes can be significantly sensitive to the choice of turbulence parameterization. As such, predictions of future generated power are also sensitive to turbulence parameterization choice.
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025, https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Short summary
This paper evaluates a new model configuration for wind energy forecasting in complex terrain. We compare model results to observations in the Altamont Pass (California, USA), where wind channeling through a mountain gap leads to increased energy production. We demonstrate that the new model configuration performs similarly to a more established approach, with some evidence of improved wind speed predictions, and provide guidance for future model testing.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Nathan J. Agarwal, Julie K. Lundquist, Timothy W. Juliano, and Alex Rybchuk
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-16, https://doi.org/10.5194/wes-2025-16, 2025
Revised manuscript under review for WES
Short summary
Short summary
Models of wind behavior inform offshore wind farm site investment decisions. Here we compare a newly-developed model to another, historically-used, model based on how these models represent winds and turbulence at two North Sea sites. The best model depends on the site. While the older model performs best at the site above a wind farm, the newer model performs best at the site that is at the same altitude as the wind farm. We support using the new model to represent winds at the turbine level.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025, https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the US West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Pedro Angel Jimenez y Munoz, Maria Frediani, Masih Eghdami, Daniel Rosen, Michael Kavulich, and Timothy W. Juliano
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-124, https://doi.org/10.5194/gmd-2024-124, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We present the Community Fire Behavior model (CFBM) a fire behavior model designed to facilitate coupling to atmospheric models. We describe its implementation in the Unified Forecast System (UFS). Simulations of the Cameron Peak ire allowed us to verify our implementation. Our vision is to foster collaborative development in fire behavior modeling with the ultimate goal of increasing our fundamental understanding of fire science and minimizing the adverse impacts of wildland fires.
Tasnim Zaman, Timothy Juliano, Pat Hawbecker, and Marina Astitha
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-148, https://doi.org/10.5194/wes-2023-148, 2024
Preprint withdrawn
Short summary
Short summary
We suggest a model configuration to predict offshore wind speed and wind power density in the Northeast US. We focused on wind droughts, long periods of low wind speed that affect the reliability of wind power generation. We show that wind prediction depends primarily on the initial and boundary conditions, and that it is important to evaluate the connection of wind speed to wind power generation, to select the best model configuration.
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023, https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Short summary
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy. It also points to code, assessment tools, and data for testing the methods.
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023, https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Short summary
This study uses in situ aircraft measurements to characterize the size and shape distributions of 10 µm to 6 mm diameter particles observed during six penetrations of wildfire-induced pyroconvection. Particles sampled in one penetration of a smoke plume are most likely pyrometeors composed of ash. The other penetrations are through pyrocumulus clouds where particle composition is most likely a combination of hydrometeors (ice particles) and pyrometeors (ash).
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022, https://doi.org/10.5194/wes-7-2085-2022, 2022
Short summary
Short summary
Numerical weather prediction models are used to predict how wind turbines will interact with the atmosphere. Here, we characterize the uncertainty associated with the choice of turbulence parameterization on modeled wakes. We find that simulated wind speed deficits in turbine wakes can be significantly sensitive to the choice of turbulence parameterization. As such, predictions of future generated power are also sensitive to turbulence parameterization choice.
Stanley G. Benjamin, Tatiana G. Smirnova, Eric P. James, Eric J. Anderson, Ayumi Fujisaki-Manome, John G. W. Kelley, Greg E. Mann, Andrew D. Gronewold, Philip Chu, and Sean G. T. Kelley
Geosci. Model Dev., 15, 6659–6676, https://doi.org/10.5194/gmd-15-6659-2022, https://doi.org/10.5194/gmd-15-6659-2022, 2022
Short summary
Short summary
Application of 1-D lake models coupled within earth-system prediction models will improve accuracy but requires accurate initialization of lake temperatures. Here, we describe a lake initialization method by cycling within a weather prediction model to constrain lake temperature evolution. We compared these lake temperature values with other estimates and found much reduced errors (down to 1-2 K). The lake cycling initialization is now applied to two operational US NOAA weather models.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Alfredo Peña, Branko Kosović, and Jeffrey D. Mirocha
Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, https://doi.org/10.5194/wes-6-645-2021, 2021
Short summary
Short summary
We investigate the ability of a community-open weather model to simulate the turbulent atmosphere by comparison with measurements from a 250 m mast at a flat site in Denmark. We found that within three main atmospheric stability regimes, idealized simulations reproduce closely the characteristics of the observations with regards to the mean wind, direction, turbulent fluxes, and turbulence spectra. Our work provides foundation for the use of the weather model in multiscale real-time simulations.
Philipp J. Griewank, Thijs Heus, Neil P. Lareau, and Roel A. J. Neggers
Atmos. Chem. Phys., 20, 10211–10230, https://doi.org/10.5194/acp-20-10211-2020, https://doi.org/10.5194/acp-20-10211-2020, 2020
Short summary
Short summary
The idea that larger shallow cumulus clouds have stronger updrafts than small shallow cumulus clouds is as intuitive as it is old. In this paper we gather years of upward-pointing laser measurements from a plain in Oklahoma and combine them with 28 d of high-resolution simulations. Our approach, which has much more data than previous studies, confirms that updraft strength and cloud size are linked and that the simulations reproduce the observed cloud wind and moisture structure.
Cited articles
Abatzoglou, J. T., Kolden, C. A., Williams, A. P., Sadegh, M., Balch, J. K., and Hall, A.: Downslope wind-driven fires in the western United States, Earths Future, 11, e2022EF003471, https://doi.org/10.1029/2022EF003471, 2023.
Alfonseca, K.: Timeline: How the deadly wildfires took over Maui day by day, ABC News, https://abcnews.go.com/US/timeline-deadly-wildfires-maui-day-day/story?id=102253075 (last access: 31 October 2023), 2023.
AP News: This is how the Lahaina wildfire unfolded, The Associated Press, https://apnews.com/us-news/interactive (last access: 31 October 2023), 2023.
Ball, F. K.: The theory of strong katabatic winds, Aust. J. Phys., 9, 373–386, https://doi.org/10.1071/ph560373, 1956.
Bogel-Burroughs, N., Kovaleski, Serge F., Hubler, S., and Mellen, R.: How fire turned Lahaina into a death trap, The New York Times, https://www.nytimes.com/2023/08/15/us/hawaii-maui-lahaina-fire.html?searchResultPosition=3 (last access: 31 October 2023), 2023.
Computational and Information Systems Laboratory: Cheyenne: HPE/SGI ICE XA System (U.S. NSF NCAR Community Computing). Boulder, CO: U.S. National Science Foundation National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX, 2019.
County of Maui: Press releases: Lahaina fire flareup forces Lahaina Bypass road closure; shelter in place encouraged, https://www.mauicounty.gov/CivicAlerts.aspx?AID=12632 (last access: 31 August 2023), 2023.
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I.: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description, Weather Forecast., 37, 1371–1395, 2022.
Durran, D. R. and Klemp, J. B.: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers, J. Atmos. Sci., 44, 3402–3412, 1987.
Juliano, T. W., Lareau, N., Frediani, M. E., Shamsaei, K., Eghdami, M., Kosiba, K., Wurman, J., DeCastro, A., Kosović, B., and Ebrahimian, H.: Toward a better understanding of wildfire behavior in the wildland-urban interface: A case study of the 2021 Marshall Fire, Geophys. Res. Lett., 50, e2022GL101557, https://doi.org/10.1029/2022GL101557, 2023.
Masoudvaziri, N., Szasdi Bardales, F. J., Keskin, O. K., Sarreshtehdari, A., Sun, K., and Elhami Khorasani, N.: Streamlined wildland-urban interface fire tracing (SWUIFT): modeling wildfire spread in communities, Environ. Model. Softw., 143, 105097, https://doi.org/10.1016/j.envsoft.2021.105097, 2021.
Masoudvaziri, N., Elhami Khorasani, N., and Sun, K.: Toward probabilistic risk assessment of wildland-urban interface communities for wildfires, Fire Technol., 59, 1379–1403, 2023.
Maui Police Department: Release of information from the Maui Police Department as of 9/22/2023, http://www.mauipolice.com/uploads/1/3/1/2/131209824/092223_mpd_credible_list.pdf (last access: 31 October 2023), 2023.
Mass, C. F. and Ovens, D.: The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event, B. Am. Meteorol. Soc., 100, 235–256, 2019.
Nauslar, N. J., Abatzoglou, J. T., and Marsh, P. T.: The 2017 North Bay and Southern California fires: A case study, Fire, 1, 18, https://doi.org/10.3390/fire1010018, 2018.
Pacific Disaster Center: Damage Assessment Release as of 8/17/2023, https://www.pdc.org/maui-wildfire/ (last access: 31 November 2023), 2023.
Shamsaei, K., Juliano, T. W., Roberts, M., Ebrahimian, H., Kosovic, B., Lareau, N. P., and Taciroglu, E.: Coupled fire-atmosphere simulation of the 2018 Camp Fire using WRF-Fire, Int. J. Wildland Fire, 32, 195–221, 2023.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A description of the advanced research WRF version 4, NCAR Tech. Note NCAR/TN-556+ Str 145, https://doi.org/10.5065/1dfh-6p97, 2019.
Szasdi-Bardales, F., Shamsaei, K., Lareau, N., Juliano, T.W., Kosovic, B., Ebrahimian, H., and Elhami-Khorasani, N.: Integrating dynamic wildland fire position input with a community fire spread simulation: a case study of the 2018 Camp Fire, Fire Safety Jorunal, 143, 104076, https://doi.org/10.1016/j.firesaf.2023.104076, 2024.
University of Hawai'i News: Estimated $5.5B needed to rebuild from Lāhainā fire, https://www.hawaii.edu/news/2023/08/14/estimated-5-5b-needed-rebuild-lahaina/ (last access: 31 August 2023), 2023.
Short summary
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The simulation results show that extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making during wildfire events.
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread...
Altmetrics
Final-revised paper
Preprint