Articles | Volume 24, issue 12
https://doi.org/10.5194/nhess-24-4431-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4431-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Where will the next flank eruption at Etna occur? An updated spatial probabilistic assessment
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, viale Carlo Berti Pichat, 6/2, 40127 Bologna, Italy
Alexander Garcia
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, viale Carlo Berti Pichat, 6/2, 40127 Bologna, Italy
Cristina Proietti
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, piazza Roma, 2, 95125 Catania, Italy
Stefano Branca
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, piazza Roma, 2, 95125 Catania, Italy
Gaetana Ganci
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, piazza Roma, 2, 95125 Catania, Italy
Annalisa Cappello
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, piazza Roma, 2, 95125 Catania, Italy
Related authors
Laura Sandri, Alexander Garcia, Simona Scollo, Luigi Mereu, and Michele Prestifilippo
EGUsphere, https://doi.org/10.5194/egusphere-2025-5875, https://doi.org/10.5194/egusphere-2025-5875, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We model how eruptive events occur in time at Mt Etna. We distinguish between eruptions from flank fissures and paroxysmal eruptions from the summit craters. Our model allows to compute the expected annual frequency of flank events and the expected number of summit paroxysms in a future period of time, with uncertainty estimates. We show how this model can improve the assessment of probabilistic hazard from these eruptions.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Laura Sandri, Alexander Garcia, Simona Scollo, Luigi Mereu, and Michele Prestifilippo
EGUsphere, https://doi.org/10.5194/egusphere-2025-5875, https://doi.org/10.5194/egusphere-2025-5875, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We model how eruptive events occur in time at Mt Etna. We distinguish between eruptions from flank fissures and paroxysmal eruptions from the summit craters. Our model allows to compute the expected annual frequency of flank events and the expected number of summit paroxysms in a future period of time, with uncertainty estimates. We show how this model can improve the assessment of probabilistic hazard from these eruptions.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Cited articles
Acocella, V. and Neri, M.: Dike propagation in volcanic edifices: Overview and possible developments, Tectonophysics, 471, 67–77, https://doi.org/10.1016/j.tecto.2008.10.002, 2009. a, b
Alparone, S., Andronico, D., Lodato, L., and Sgroi, T.: Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000, J. Geophys. Res.-Solid, 108, 2241, https://doi.org/10.1029/2002JB001866, 2003. a
Alparone, S., Barberi, G., Giampiccolo, E., Maiolino, V., Mostaccio, A., Musumeci, C., Scaltrito, A., Scarfì, L., Tuvè, T., and Ursino, A.: Seismological constraints on the 2018 Mt. Etna (Italy) flank eruption and implications for the flank dynamics of the volcano, Terra Nova, 32, 334–344, https://doi.org/10.1111/ter.12463, 2020. a
Anderson, E. M.: The Dynamics of Faulting and Dyke Formation with Applications to Britain, in: Edn. 2, Oliver and Boyd, 1951. a
Andronico, D., Scollo, S., Caruso, S., and Cristaldi, A.: The 2002–03 Etna explosive activity: tephra dispersal and features of the deposits, J. Geophys. Res.-Solid, 113, B04209, https://doi.org/10.1029/2007JB005126, 2008. a
Azzaro, R. and Neri, M.: L'attività eruttiva dell'Etna nel corso del ventennio 1971–1991. Primi passi verso la costituzione di un data-base relazionale, CNR IIV Open File Report 3/92, 1–10, 1992. a
Azzaro, R., Branca, S., Winner, K., and Coltelli, M.: The volcano-tectonic map of Etna volcano, 1:100.000 scale: an integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data, Ital. J. Geosci. (Boll. Soc. Geol. It.), 131, 153–170, https://doi.org/10.3301/IJG.2011.29, 2012. a, b, c, d, e, f
Barberi, G., Cocina, O., Maiolino, V., Musumeci, C., and Privitera, E.: Insight into Mt. Etna (Italy) kinematics during the 2002–2003 eruption as inferred from seismic stress and strain tensors, Geophys. Res. Lett., 31, L21614, https://doi.org/10.1029/2004GL020918, 2004. a
Bebbington, M. and Cronin, S.: Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model, Bull. Volcanol., 73, 55–72, https://doi.org/10.1007/s00445-010-0403-6, 2011. a
Behncke, B. and Neri, M.: Cycles and trends in the recent eruptive behaviour of Mount Etna (Italy), Can. J. Earth Sci., 40, 1405–1411, https://doi.org/10.1139/e03-052, 2003. a
Bonaccorso, A. and Aloisi, M.: Tracking Magma Storage: New Perspectives From 40 Years (1980–2020) of Ground Deformation Source Modeling on Etna Volcano, Front. Earth Sci., 9, 638742, https://doi.org/10.3389/feart.2021.638742, 2021. a, b, c, d
Bonali, F., Tibaldi, A., and Corazzato, C.: Sensitivity analysis of earthquake-induced static stress changes on volcanoes: the 2010 Mw 8.8 Chile earthquake, Geophys. J. Int., 201, 1868–1890, https://doi.org/10.1093/gji/ggv122, 2015. a
Branca, S. and Del Carlo, P.: Eruptions of Mt. Etna during the past 3,200 years: A revised compilation integrating the historical and stratigraphic records, in: Mt. Etna, volcano laboratory, edited by: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., and Falsaperla, S., American Geophysical Union, Geophys. Monogr., 143, 1–27, 2004. a, b, c
Branca, S. and Vigliotti, L.: Finding of an historical document describing an eruption in the NW flank of Etna in July 1643 AD: timing, location and volcanic products, Bull. Volcanol., 77, 1–6, 2015. a
Branca, S., Coltelli, M., De Beni, E., and Wijbrans, J.: Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data, Int. J. Earth Sci. (Geol. Rundsch.), 97, 135–152, 2008. a
Branca, S., Coltelli, M., Groppelli, G., and Lentini, F.: Geological map of Etna volcano, scale, Ital. J. Geosci., 130, 265–291, https://doi.org/10.3301/IJG.2011.15, 2011b. a, b, c, d
Branca, S., De Beni, E., and Proietti, C.: The large and destructive 1669 AD eruption at Etna volcano: reconstruction of the lava flow field evolution and effusion rate trend, Bull. Volcanol., 75, 1–16, https://doi.org/10.1007/s00445-013-0694-5, 2013. a
Branca, S., Azzaro, R., De Beni, E., Chester, D., and Duncan, A.: Impacts of the 1669 eruption and the 1693 earthquakes on the Etna Region (Eastern Sicily, Italy): An example of recovery and response of a small area to extreme events, J. Volcanol. Geoth. Res., 303, 25–40, 2015a. a
Branca, S., Condomines, M., and Tanguy, J. C.: Flank eruptions of Mt Etna during the Greek–Roman and Early Medieval periods: New data from 226Ra–230Th dating and archaeomagnetism, J. Volcanol. Geoth. Res., 304, 265–271, 2015b. a
Branca, S., Musumeci, D., and Ingaliso, L.: The significance of the 1971 flank eruption of Etna from volcanological and historic viewpoints, Ann. Geophys., 64, VO543, https://doi.org/10.4401/ag-8669, 2021. a
Cappello, A., Neri, M., Acocella, V., Gallo, G., Vicari, A., and Del Negro, C.: Spatial vent opening probability map of Mt Etna volcano (Sicily, Italy), Bull. Volcanol., 74, 2083–2094, https://doi.org/10.1007/s00445-012-0647-4, 2012. a, b, c
Chester, D. K., Duncan, A. M., and Sangster, H.: Human responses to eruptions of Etna (Sicily) during the late-Pre-Industrial Era and their implications for present-day disaster planning, J. Volcanol. Geoth. Res., 225–226, 65–80, https://doi.org/10.1016/j.jvolgeores.2012.02.017, 2012. a
Coltelli, M., Del Carlo, P., Pompilio, M., and Vezzoli, L.: Explosive eruption of a picrite: the 3930 BP subplinian eruption of Etna volcano (Italy), Geophys. Res. Lett., 32, L23307, https://doi.org/10.1029/2005GL024271, 2005. a
Coltelli, M., Marsella, M., Proietti, C., and Scifoni, S.: The case of the 1981 eruption of Mount Etna: An example of very fast moving lava flows, Geochem. Geophy. Geosy., 13, Q01004, https://doi.org/10.1029/2011GC003876, 2012. a
Dahm, T.: Numerical simulations of the propagation path and the arrest of fluid-filled fractures in the Earth, Geophys. J. Int., 141, 623–638, https://doi.org/10.1046/j.1365-246x.2000.00102.x, 2000. a
Davis, T., Bagnardi, M., Lundgren, P., and Rivalta, E.: Extreme Curvature of Shallow Magma Pathways Controlled by Competing Stresses: Insights From the 2018 Sierra Negra Eruption, Geophys. Res. Lett., 48, e2021GL093038, https://doi.org/10.1029/2021GL093038, 2021. a
Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Herault, A., and Ganci, G.: Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations, Sci. Rep., 3, 3493, https://doi.org/10.1038/srep03493, 2013. a, b
Dumont, Q., Cayol, V., and Froger, J.-L.: Is stress modeling able to forecast intrusions and slip events at Piton de la Fournaise volcano?, Earth Planet. Sc. Lett., 626, 118494, https://doi.org/10.1016/j.epsl.2023.118494, 2024. a
Favalli, M., Chirico, G. D., Papale, P., Pareschi, M. T., and Boschi, E.: Lava flow hazard at Nyiragongo volcano, DRC. 1. Model calibration and hazard mapping, Bull. Volcanol., 71, 363–374, https://doi.org/10.1007/s00445-008-0233-y, 2009a. a
Favalli, M., Mazzarini, F., Pareschi, M. T., and Boschi, E.: Topographic control on lava flow paths at Mount Etna, Italy: Implications for hazard assessment, J. Geophys. Res.-Earth, 114, F01019, https://doi.org/10.1029/2007JF000918, 2009b. a, b, c
Gudmundsson, A.: Infrastructure and mechanics of volcanic systems in Iceland, J. Volcanol. Geoth. Res., 64, 1–22, https://doi.org/10.1016/0377-0273(95)92782-Q, 1995. a
Guest, J. E. and Murray, J. B.: An analysis of hazard from Mount Etna volcano, J. Geol. Soc., 136, 347–354, https://doi.org/10.1144/gsjgs.136.3.0347, 1979. a, b, c, d
Guidoboni, E., Ciuccarelli, C., Mariotti, D., Comastri, A., and Bianchi, M. G.: L'Etna nella storia. Catalogo delle eruzioni dall'antichità alla fine del XVII sec., Bononia University Press, Bologna, ISBN 978-88-7395-916-8, 2014. a
IST: IstatData – La banca dati dell'Istituto Nazionale di Statistica, http://dati.istat.it/Index.aspx?QueryId=18976# (last access: 9 May 2023), 2023. a
Lin, J. and Stein, R. S.: Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res.-Solid, 109, B02303, https://doi.org/10.1029/2003JB002607, 2004. a, b
Lutz, T. M. and Gutmann, J. T.: An improved method for determining and characterizing alignments of point like features and its implications for the Pinacate volcanic field, Sonora, Mexico, J. Geophys. Res., 100, 17659–17670, 1995. a
Maccaferri, F., Bonafede, M., and Rivalta, E.: A numerical model of dyke propagation in layered elastic media, Geophys. J. Int., 180, 1107–1123, https://doi.org/10.1111/j.1365-246X.2009.04495.x, 2010. a
Maccaferri, F., Bonafede, M., and Rivalta, E.: A quantitative study of the mechanism governing dike propagation, dike arrest and sill formation, J. Volcanol. Geoth. Res., 208, 39–50, https://doi.org/10.1016/j.jvolgeores.2011.09.001, 2011. a
Martí, J. and Felpeto, A.: Methodology for the computation of volcanic susceptibility: Application to Tenerife Island (Canary Islands), J. Volcanol. Geoth. Res., 195, 69–77, https://doi.org/10.1016/j.jvolgeores.2010.06.008, 2010. a
Martin, A., Umeda, K., Connor, C., Weller, J., Zhao, D., and Takahashi, M.: Modeling long-term volcanic hazards through Bayesian inference: An example from the Tohoku volcanic arc, Japan, J. Geophys. Res.-Solid, 109, B10, https://doi.org/10.1029/2004JB003201, 2004. a, b, c, d
Martinez Montesinos, B., Luzón, M., Sandri, L., Rudyy, O., Cheptsov, A., Macedonio, G., Folch, A., Barsotti, S., Selva, J., and Costa, A.: On the feasibility and usefulness of high performance computing in probabilistic volcanic hazard assessment: An application to tephra hazard from Campi Flegrei, Front. Earth Sci., 10, 941789, https://doi.org/10.3389/feart.2022.941789, 2022. a
Marzocchi, W. and Jordan, T.: Testing for ontological errors in probabilistic forecasting models of natural systems, P. Natl. Acad. Sci USA, 111, 11973–11978, https://doi.org/10.1073/pnas.1410183111, 2014. a
Marzocchi, W., Sandri, L., Heuret, A., and Funiciello, F.: Where giant earthquakes may come, J. Geophys. Res.-Solid, 121, 7322–7336, https://doi.org/10.1002/2016JB013054, 2016. a
Mulas, M., Cioni, R., Andronico, D., and Mundula, F.: The explosive activity of the 1669 Monti Rossi eruption at Mt. Etna (Italy), J. Volcanol. Geoth. Res., 328, 115–133, 2016. a
Pollard, F.: Elementary fracture mechanics applied to the structural interpretation of dikes, Geol. Assoc. Can. Spec., 34, 112–128, 1987. a
Proietti, C. and Branca, S.: Dataset of Etna's flank eruptive fissures of the last 4000 years, Zenodo [data set], https://doi.org/10.5281/zenodo.14284932, 2024. a
Proietti, C., De Beni, E., Coltelli, M., and Branca, S.: The flank eruption history of Etna (1610–2006) as a constraint on lava flow hazard, Ann. Geophys., 54, 480–490, https://doi.org/10.4401/ag-5333, 2011. a
Rittman, A., Romano, R., and Sturiale, C.: L'eruzione etnea dell'aprile–giugno 1971, Atti Accad. Gioenia Sci. Nat. (Catania), 1–29, 1971. a
Rivalta, E., Corbi, F., Passarelli, L., Acocella, V., Davis, T., and Di Vito, M. A.: Stress inversions to forecast magma pathways and eruptive vent location, Sci. Adv., 5, eaau9784, https://doi.org/10.1126/sciadv.aau9784, 2019. a, b
Roman, A. and Jaupart, C.: The impact of a volcanic edifice on intrusive and eruptive activity, Earth Planet. Sc. Lett., 408, 1–8, https://doi.org/10.1016/j.epsl.2014.09.016, 2014. a
Romano, R., Lentini, F., and Sturiale, C.: Carta geologica del Monte Etna: Geological map of Mt. Etna, in: Progetto finalizzato Geodinamica, Istituto internazionale di vulcanologia, edited by: Cartografica, L. A., Consiglio nazionale delle ricerche (Italy), Catania, 1979. a
Ruch, J., Acocella, V., Storti, F., Neri, M., Pepe, S., Solaro, G., and Sansosti, E.: Detachment depth of an unstable volcano revealed by rollover deformation: an integrated approach at Mt. Etna, Geophys. Res. Lett., 37, L16304, https://doi.org/10.1029/2010GL044131, 2010. a
Sartorius Von Waltershausen, W.: Atlas des Aetna (v. 1), in: vol. 2–8, Weimar 9, edited by: Schmidt, S., Geografisches Institut, Berlin, 1848–1861. a
Scollo, S., Del Carlo, P., and Coltelli, M.: Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion, J. Volcanol. Geoth. Res., 160, 147–164, https://doi.org/10.1016/j.jvolgeores.2006.09.007, 2007. a
Selva, J., Costa, A., Marzocchi, W., and Sandri, L.: BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy), Bull. Volcanol., 72, 717–733, https://doi.org/10.1007/s00445-010-0358-7, 2010. a, b
Stein, R. S.: The role of stress transfer in earthquake occurrence, Nature, 402, 605–609, https://doi.org/10.1038/45144, 1999. a
Tanguy, J. C., Condomines, M., Branca, S., La Delfa, S., and Coltelli, M.: New archeomagnetic and 226Ra–230Th dating of recent lavas for the Geological map of Etna volcano, Ital. J. Geosci., 131, 241–257, 2012. a
Toda, S., Stein, R. S., Richards-Dinger, K., and Bozkurt, S. B.: Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, J. Geophys. Res.-Solid, 110, B05S16, https://doi.org/10.1029/2004JB003415, 2005. a
Wadge, G., Young, P. A., and Mckendrick, I. J.: Mapping lava flow hazards using computer simulation, J. Geophys. Res., 99, 489–504, https://doi.org/10.1029/93JB01561, 1994. a, b, c
Walter, T. R., Acocella, V., Neri, M., and Amelung, F.: Feedback processes between magmatic events and flank movement at Mount Etna (Italy) during the 2002–2003 eruption, J. Geophys. Res.-Solid, 110, B10205, https://doi.org/10.1029/2005JB003688, 2005. a, b
Short summary
In this paper we propose a probability map that shows where most likely future flank eruptions will occur at Etna volcano (in Sicily, Italy). The map updates previous studies since it is based on a much longer record of past flank eruption fissures that opened in the last 4000 years on Etna. We also propose sensitivity tests to evaluate how much the assumptions made change the final probability evaluation.
In this paper we propose a probability map that shows where most likely future flank eruptions...
Altmetrics
Final-revised paper
Preprint