Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3129-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3129-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forearc crustal faults as tsunami sources in the upper plate of the Lesser Antilles subduction zone: the case study of the Morne Piton fault system
Melody Philippon
CORRESPONDING AUTHOR
Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, Pointe-à-Pitre, French West Indies, France
Jean Roger
Earth and Structure Processes Department, GNS Science, Lower Hutt, New Zealand
Jean-Frédéric Lebrun
Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, Pointe-à-Pitre, French West Indies, France
Isabelle Thinon
BRGM – French geological survey, 3 avenue Claude Guillemin, 45060 Orléans, France
Océane Foix
Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, Montpellier, France
Stéphane Mazzotti
Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, Montpellier, France
Marc-André Gutscher
Geo-Ocean, Univ. Brest, CNRS, Ifremer, Brest, France
Leny Montheil
Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, Montpellier, France
Jean-Jacques Cornée
Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, Montpellier, France
Related authors
No articles found.
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
Earth Surf. Dynam., 13, 629–645, https://doi.org/10.5194/esurf-13-629-2025, https://doi.org/10.5194/esurf-13-629-2025, 2025
Short summary
Short summary
The Armorican region (NW France) is marked by several old coastal and marine markers that are today located several tens of meters above sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g., mantle dynamics). In this study, we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Océane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci., 25, 1881–1900, https://doi.org/10.5194/nhess-25-1881-2025, https://doi.org/10.5194/nhess-25-1881-2025, 2025
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge, and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, the inclusion of volcanic seismicity, and a complete revision of the subduction interface zoning.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
Cited articles
Accary, F. and Roger, J.: Tsunami catalog and vulnerability of Martinique (Lesser Antilles, France), Science of Tsunami Hazards, 29, 3, ISSN 8755-6839 (Print), 2168-6009 (Online), 2010.
Ajvazi, B. and Czimber, K.: A comparative analysis of different DEM interpolation methods in GIS: case study of Rahovec, Kosovo, Geodesy and Cartography, 45, 43–48, https://doi.org/10.3846/gac.2019.7921, 2019.
Álvarez-Gómez, J. A., Gutiérrez, O. Q. G., Aniel-Quiroga, Í., and González, M.: Tsunamigenic potential of outer-rise normal faults at the Middle America trench in Central America, Tectonophysics, 574, 133–143, https://doi.org/10.1016/j.tecto.2012.08.014, 2012.
Arun, P. V.: A comparative analysis of different DEM interpolation methods, The Egyptian Journal of Remote Sensing and Space Science, 16, 133–139, https://doi.org/10.1016/j.ejrs.2013.09.001, 2013.
Barkan, R. and ten Brink, U.: Tsunami simulations of the 1867 virgin island earthquake: Constraints on epicenter location and fault parameterstsunami simulations of the 1867 virgin island earthquake: Constraints on epicenter location, B. Seismol. Soc. Am., 100, 995–1009, https://doi.org/10.1785/0120090211, 2010.
Bazin, S., Feuillet, N., Duclos, C., Crawford, W., Nercessian, A., Bengoubou-Valerius, M., Beauducel, F., and Singh, S. C.: The 2004–2005 Les Saintes (French West Indies) seismic aftershock sequence observed with ocean bottom seismometers, Tectonophysics, 489, 91–103, https://doi.org/10.1016/j.tecto.2010.04.005, 2010.
Beck, C., Reyss, J.-L., Leclerc, F., Moreno, E., Feuillet, N., Barrier, L., Beauducel, F., Boudon, G., Clément, V., Deplus, C., Gallou, N., Lebrun, J.-F., Le Friant, A., Nercessian, A., Paterne, M., Pichot, T., and Vidal, C.: Identification of deep subaqueous co-seismic scarps through specific coeval sedimentation in Lesser Antilles: implication for seismic hazard, Nat. Hazards Earth Syst. Sci., 12, 1755–1767, https://doi.org/10.5194/nhess-12-1755-2012, 2012.
Bengoubou-Valerius, M., Bazin, S., Bertil, D., Beauducel, F., and Bosson, A.: CDSA: a new seismological data center for the French Lesser Antilles, Seismol. Res. Lett., 79, 90–102, 2008.
Bernard, P. and Lambert, J.: Subduction and seismic hazard in the northern Lesser Antilles: Revision of the historical seismicity, B. Seismol. Soc. Am., 78, 1965–1983, 1988.
Bernardes, T., Gontijo, I., Andrade, H., Vieira, T. G. C., and Alves, H. M. R.: Digital Terrain Models Derived from SRTM Data and Kriging, in: Innovations in 3D Geo Information Systems, Lec. Not. Geo. Carto., edited by: Abdul-Rahman, A., Zlatanova S., and Coors V., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-36998-1_51, 2006.
Bie, L., Rietbrock, A., Hicks, S., Allen, R., Blundy, J., Clouard, V., Collier, J., Davidson, J., Garth, T., Goes, S., Harmon, N., Henstock; T., van Huenen, J., Kendall, M., Krüger, F., Lynch, L., Macpherson, C., Robertson, R., Tait, S., Wilknison, J., and Wilson, M.: Along-arc heterogeneity in local seismicity across the Lesser Antilles subduction zone from a dense ocean-bottom seismometer network, Seismol. Res. Lett., 91, 237–247, https://doi.org/10.1785/0220190147, 2020.
Biggs, J. and Wright, T. J.: How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade, Nat. Commun., 11, 1–4, https://doi.org/10.1038/s41467-020-17587-6, 2020.
Bilek, S. L.: Invited review paper: Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity, Tectonophysics, 495, 2–14, https://doi.org/10.1016/j.tecto.2009.02.037, 2010.
Boucard, M., Marcaillou, B., Lebrun, J. F., Laurencin, M., Klingelhoefer, F., Laigle, M., Lallemand, S., Schenini, L., Graindorge, D., Cornee, J. J., Münch, P., and Philippon, M.: Paleogene V-shaped basins and Neogene subsidence of the Northern Lesser Antilles Forearc, Tectonics, 40, e2020TC006524, https://doi.org/10.1029/2020TC006524, 2021.
Bouysse, P. and Mascle, A.: Sedimentary Basins and Petroleum Plays Around the French Antilles, in: Hydrocarbon and Petroleum Geology of France, edited by: Mascle, A., Spe. Pub. EAPG, vol. 4, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-78849-9_32, 1994.
Bouysse, P., Garrabé, F., Mauboussin, T., Andreieff, P., Battistini, R., Carlier, P., Hinschberger, F., and Rodet, J.: Carte géologique du département de la Guadeloupe, Notice explicative: Marie-Galante et îlets de la Petite-Terre, scale 1:50,000. – BRGM, Orléans, France, 1993.
Chadha, R. K., Latha, G., Yeh, H., Peterson, C., and Katada, T.: The tsunami of the great Sumatra earthquake of M9.0 on 26 December 2004 – Impact on the east coast of India, Curr. Sci.-India, 88, 1297–1301, 2005.
Chen, J. M., Liang, D., and Tang, H.: Interaction between tsunami waves and isolated conical islands, J. Coastal Res., 28, 1270–1278, 2012.
Colon Useche, S., Clouard, V., Ioualalen, M., Audemard, F., and Monfret, T.: Simulation of tsunami inundation for the island of Martinique to nearby large earthquakes, B. Seismol. Soc. Am., 113, 252–267, https://doi.org/10.1785/0120220093, 2023.
Cordrie, L., Gailler, A., Escartín, J., Feuillet, N., and Heinrich, P.: Simulation of the 2004 tsunami of Les Saintes in Guadeloupe (Lesser Antilles) using new source constraints, Nat. Hazards, 103, 2103–2129, https://doi.org/10.1007/s11069-020-04073-x, 2020.
Cornée, J. J., Leticée, J. L., Münch, P., Quillevere, F., Lebrun, J. F., Moissette, P., Braga, C., Melinte-Dobrinescu, M., De Min, L., Oudet, J., and Randrianasolo, A.: Sedimentology, palaeoenvironments and biostratigraphy of the Pliocene–Pleistocene carbonate platform of Grande-Terre (Guadeloupe, Lesser Antilles forearc), Sedimentology, 59, 1426–1451, https://doi.org/10.1111/j.1365-3091.2011.01311.x, 2012.
Cornée, J. J., Münch, P., Philippon, M., Boudagher-Fadel, M., Quillévéré, F., Melinte-Dobrinescu, M., Lebrun, J. F., Meyer, S., Montheil, L., Lallemand, S., Marcailou, B., Laurencin, M., Legndre, L., Garrocq, C., Boucard, M., Beslier, M. O., Laigle, M., Schenini, L., Fabre, P. H., and Marivaux, L.: Lost islands in the northern Lesser Antilles: possible milestones in the Cenozoic dispersal of terrestrial organisms between South-America and the Greater Antilles, Earth-Sci. Rev., 217, 103617, https://doi.org/10.1016/j.earscirev.2021.103617, 2021.
Cornée, J. J., De Min, L., Lebrun, J. F., Quillévéré, F., Melinte-Dobrinescu, M., BouDagher-Fadel, M., Montheil, L., Marcaillou, B., Thinon, I., and Philippon M.: Paleogeographic evolution and vertical motion of the central Lesser Antilles forearc since the Early Miocene: A potential driver for land fauna dispersals between the Americas, Mar. Petrol. Geol., 152, 106264, https://doi.org/10.1016/j.marpetgeo.2023.106264, 2023.
Dao, M. H. and Tkalich, P.: Tsunami propagation modelling – a sensitivity study, Nat. Hazards Earth Syst. Sci., 7, 741–754, https://doi.org/10.5194/nhess-7-741-2007, 2007.
Delpey, M., Lastiri, X., Abadie, S., Roeber, V., Maron, P., Liria, P., and Mader, J.: Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast, Renew. Energ., 178, 79–95, https://doi.org/10.1016/j.renene.2021.05.167, 2021.
DeMets, C., Jansma, P. E., Mattioli, G. S., Dixon, T. H., Farina, F., Bilham, R., Calais., E., and Mann, P.: GPS geodetic constraints on Caribbean-North America plate motion, Geophys. Res. Lett., 27, 437–440, https://doi.org/10.1029/1999GL005436, 2000.
De Min, L., Lebrun, J. F., Cornée, J. J., Münch, P., Léticée, J. L., Quillévéré, F., Melinte-Dobrinescu, M., Randrianasolo, A., Marcaillou, B., and Zami, F.: Tectonic and sedimentary architecture of the Karukéra spur: A record of the Lesser Antilles fore-arc deformations since the Neogene, Mar. Geol., 363, 15–37, https://doi.org/10.1016/j.margeo.2015.02.007, 2015.
Deplus, C.: AGUADOMAR cruise, RV L'Atalante , French Oceanographic Cruises [data set], https://doi.org/10.17600/98010120, 1998.
Deplus, C., Le Friant, A., Boudon, G., Komorowski, J. C., Villemant, B., Harford, C., Ségoufin, J., and Cheminée, J. L.: Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc, Earth Planet. Sc. Lett., 192, 145–157, 2001.
Dix, C. H.: Seismic Velocities from Surface Measurements, Geophysics, 20, 68–86, https://doi.org/10.1190/1.1438126, 1955.
do Carmo, J. S. A.: Dominant processes that amplify the swell towards the coast: the Nazaré Canyon and the giant waves, Research, Society and Development, 11, e578111133804, https://doi.org/10.33448/rsd-v11i11.33804, 2022.
Escartín, J., Leclerc, F., Olive, J. A., Mevel, C., Cannat, M., Petersen, S., Augustin, N., Feuillet, N., Deplus, C., Bezos, A., Bonnemains, D., Chavagnac, V., Choi, Y., Godard, M., Haaga, K., Hamelin, C., Ildefonse, B., Jamieson, J. W., John, B. E., Leleu, T., MacLead, C. J., Massot-Campos, M., Nomikou, P., Paquet, M., Tominaga, M., Triebe, L., Campos, R., Gracias, N., Garcia, R., Andreani, M., and Vilaseca, G.: First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history, Earth Planet. Sc. Lett., 450, 96–107, https://doi.org/10.1016/j.epsl.2016.06.024, 2016.
Escartín, J., Leclerc, F., Nathalie, F., Le Friant, A., Billant, J., Olive, J. A. L., Henri, M., Andreani, M., Arnaubec, A., Dano, A., Delorme, A., Deplus, C., Fournasson, M. L., Gini, C., Gracias, N., Hamelin, C., Istenic, K., Komorowski, J. C., Marchand C., Mevel, C., Onstad, S., Quidelleur, X., and Garcia, R.: Mapping the Mw6.3 2004 Les Saintes earthquake seafloor rupture with deep-sea vehicles: Length, displacement, nature, and links between coseismic deformation and erosion/sedimentation, in: AGU Fall Meeting Abstracts, Vol. 2018, EP51D-1851, https://ui.adsabs.harvard.edu/abs/2018AGUFMEP51D1851E/abstract (last access: September 2024), 2018.
Feuillet, N.: Sismotectonique des Petites Antilles: Liaison entre activité sismique et volcanique, Doctoral dissertation, Paris 7, https://theses.fr/2000PA077079 (last access: September 2024), 2000.
Feuillet, N., Manighetti, I., and Tapponnier, P.: Extension active perpendiculaire à la subduction dans l'arc des Petites Antilles (Guadeloupe, Antilles françaises), CR Acad. Sci. II A, 333, 583–590, 2001.
Feuillet, N., Manighetti, I., Tapponnier, P., and Jacques, E.: Arc parallel extension and localization of volcanic complexes in Guadeloupe, Lesser Antilles, J. Geophys. Res.-Sol. Ea., 107, 2331, https://doi.org/10.1029/2001JB000308, 2002.
Feuillet, N., Tapponnier, P., Manighetti, I., Villemant, B., and King, G. C. P.: Differential uplift and tilt of Pleistocene reef platforms and Quaternary slip rate on the Morne-Piton normal fault (Guadeloupe, French West Indies), J. Geophys. Res.-Sol. Ea, 109, B02404, https://doi.org/10.1029/2003JB002496, 2004.
Feuillet, N., Leclerc, F., Tapponnier, P., Beauducel, F., Boudon, G., Le Friant, A., Deplus, C., Lebrun, J. F., Nercessian, A., Saurel, J. M., and Clément, V.: Active faulting induced by slip partitioning in Montserrat and link with volcanic activity: New insights from the 2009 GWADASEIS marine cruise data, Geophys. Res. Lett., 37, L00E15, https://doi.org/10.1029/2010GL042556, 2010.
Feuillet, N., Beauducel, F., and Tapponnier, P.: Tectonic context of moderate to large historical earthquakes in the Lesser Antilles and mechanical coupling with volcanoes, J. Geophys. Res.-Sol. Ea, 116, B10308, https://doi.org/10.1029/2011JB008443, 2011.
Fujita, M., Ishikawa, T., Mochizuki, M., Sato, M., Toyama, S. I., Katayama, M., Kawai, K., Mastumoto, Y., Yabuki, T., Asada, A., and Colombo, O. L.: GPS/Acoustic seafloor geodetic observation: method of data analysis and its application, Earth Planets Space, 58, 265–275, https://doi.org/10.1186/BF03351923, 2006.
Garrabe, F. and Andreieff P.: Notice explicative de la feuille de la Grande-Terre- Carte géologique au 1/50 000, Département de la Guadeloupe, BRGM, 1988.
GEBCO Compilation Group: GEBCO 2021 Grid, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.
Geli, L., Çağatay, N., Gasperini, L., Favali, P., Henry, P., and Çifçi, G.: ESONET WP4-Demonstration Missions. MARMARA-DM final report, https://archimer.ifremer.fr/doc/00032/14324/ (last access: October 2022), 2011.
Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., Gutierrez-Pastor, J., Eriksson, A. T., Gracia, E., Dunhill, G., Enkin, R. J., Dallimore, A., and Vallier, T.: Turbidite event history – Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone, No. 1661-F, US Geological Survey, https://doi.org/10.3133/pp1661F, 2012.
Gonzalez, O. L., Clouard, V., and Zahradnik, J.: Moment tensor solutions along the central Lesser Antilles using regional broadband stations, Tectonophysics, 717, 214–225, https://doi.org/10.1016/j.tecto.2017.06.024, 2017.
Gusman, A. R., Supendi, P., Nugraha, A. D., Power, W., Latief, H., Sunendar, H., Widiyantoro, S., Daryono, Wiyono, S. H., Hakim, A., Muhari, A., Wang, X., Burbidge, D., Palgunadi, K., Hamling, I., and Daryono, M. R.: Source model for the tsunami inside Palu Bay following the 2018 Palu earthquake, Indonesia, Geophys. Res. Lett., 46, 8721–8730, https://doi.org/10.1029/2019GL082717, 2019.
Gusman, A. R., Roger, J., Power, W., Fry, B., and Kaneko, Y.: The 2021 Loyalty Islands earthquake (Mw 7.7): Tsunami waveform inversion and implications for tsunami forecasting for New Zealand. Earth and Space Science, e2022EA002346, https://doi.org/10.1029/2022EA002346, 2022.
Gutscher, M. A., Roger, J., Baptista, M. A., Miranda, J. M., and Tinti, S.: Source of the 1693 Catania earthquake and tsunami (southern Italy): New evidence from tsunami modeling of a locked subduction fault plane, Geophys. Res. Lett., 33, L08309, https://doi.org/10.1029/2005GL025442,, 2006.
Gutscher, M. A., Royer, J. Y., Graindorge, D., Murphy, S., Klingelhoefer, F., Aiken, C., Cattaneo, A., Barreca, G., Quetel, L., Riccobene, G., Petersen, F., Urlaub, M., Krastel, S., Gross, F., Kopp, H., Margheriti, L., and Beranzoli, L.: Fiber optic monitoring of active faults at the seafloor: I the FOCUS project, Photoniques Special EOS Issue, 32–37, https://doi.org/10.1051/photon/2019S432, 2019.
Gutscher, M.-A., Quetel, L., Cappelli, G., Quillin, J.-G., Nativelle, C., Lebrun, J.-F., and Philippon, M.: Monitoring a commercially operating submarine telecom cable network in the Guadeloupe archipelago (Lesser Antilles) using Brillouin Optical Time Domain Reflectometry (BOTDR), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8569, https://doi.org/10.5194/egusphere-egu23-8569, 2023.
Hirata, K., Aoyagi, M., Mikada, H., Kawaguchi, K., Kaiho, Y., Iwase, R., Morita, S., Fujisawa, I., Sugioka, H., Mitsuzawa, K., Suyehiro, K., and Fujiwara, N.: Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone, IEEE J. Oceanic Eng., 27, 170–181, https://doi.org/10.1109/JOE.2002.1002471, 2002.
Hirn, A.: SISMANTILLES 1 cruise, RV Nadir, French Oceanographic Cruises [data set], https://doi.org/10.17600/1080060, 2001.
International Seismological Centre: ISC-GEM Earthquake Catalogue, https://doi.org/10.31905/d808b825, 2023.
IOC-UNESCO: Experts Meeting on Sources of Tsunamis in the Lesser Antilles Fort-de-France, Martinique (France) 18–20 March 2019, Workshop Reports, (291), 55 pp., Open Access version, https://archimer.ifremer.fr/doc/00665/77736/ (last access: October 2022), 2020.
Kido, M., Fujimoto, H., Miura, S., Osada, Y., Tsuka, K., and Tabei, T.: Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys, Earth Planets Space, 58, 911–915, https://doi.org/10.1186/BF03351996, 2006.
Kopp, H., Weinzierl, W., Becel, A., Charvis, P., Evain, M., Flueh, E. R., Gailler, A., Galve, A., Hirn, A., Kandilarov, D., Klaeschen, D., Laigle, M., Papenberg, C., Planert, L., and Roux, E.: Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust, Earth Planet. Sc. Lett., 304, 121–134, https://doi.org/10.1016/j.epsl.2011.01.024, 2011.
Laigle, M., Lebrun, J.-F., and Hirn, A.: SISMANTILLES 2 cruise, RV L'Atalante, French Oceanographic Cruises [data set], https://doi.org/10.17600/7010020, 2007.
Lander, J. F. and Whiteside, L. S.: Caribbean tsunamis: an initial history, In Caribbean Tsunami Workshop, Kingstone, Jamaïca, June, 11–13, https://www.proyecto1867.com/uploads/8/6/3/9/86396506/lander__1997_.pdf (last access: August 2024), 1997.
Lander, J. F., Whiteside, L. S., and Lockridge, P. A.: Two decades of global tsunamis, Science of Tsunami Hazards, 21, 1, https://www.ngdc.noaa.gov/hazard/data/publications/ref1315_lander.pdf (last access: September 2024), 2003.
Lardeaux, J. M., Münch, P., Corsini, M., Cornée, J. J., Verati, C., Lebrun, J. F., Guillevere, F., Melinte-Dobrinescu, M., Leticee, J. L., Fietzke, J., Mazabraud, Y., Cordrey, F., and Randrianasolo, A.: La Désirade island (Guadeloupe, French West Indies): a key target for deciphering the role of reactivated tectonic structures in Lesser Antilles arc building, B. Soc. Géol. Fr., 184, 21–34, https://doi.org/10.2113/gssgfbull.184.1-2.21, 2013.
Lebrun, J.-F.: KASHALLOW 2 cruise, RV Le Suroît, French Oceanographic Cruises [data set], https://doi.org/10.17600/9020010, 2009.
Lebrun, J.-F., Cornée, J.-J., Münch, P., Guennoc, P., Thinon, I., Begot, J., Mazabraud, Y., Fournier, F., Feuillet, N., and Randrianasolo, A.: La Mission KaShallow 1 – N/O Antéa – 26 avril – 05 Mai – Sismique réflexion haute résolution dans le bassin de Marie-Galante – Avant-arc des Petites Antilles, Rapport de l'Université des Antilles et de la Guyane, 2008.
Leclerc, F., Feuillet, N., and Deplus, C.: Interactions between active faulting, volcanism, and sedimentary processes at an island arc: Insights from Les Saintes channel, Lesser Antilles arc, Geochem. Geophy. Geosy., 17, 2781–2802, https://doi.org/10.1002/2016GC006337, 2016.
Le Friant, A., Heinrich, P., and Boudon, G.: Field survey and numerical simulation of the 21 November 2004 tsunami at Les Saintes (Lesser Antilles), Geophy. Res. Lett., 35, L12308, https://doi.org/10.1029/2008GL034051, 2008.
Le Friant, A., Boudon, G., Arnulf, A., and Robertson, R. E.: Debris avalanche deposits offshore St. Vincent (West Indies): impact of flank-collapse events on the morphological evolution of the island, J. Volcanol. Geoth. Res., 179, 1–10, 2009.
Le Friant, A., Ishizuka, O., Stroncik, N. A., and the Expedition 340 Scientists: Site U1395, Proceedings of the IODP, https://doi.org/10.2204/iodp.proc.340.105.2013, 2013.
Le Friant, A., Lebas, E., Brunet, M., Lafuerza, S., Hornbach, M., Coussens, M., Watt, S., Cassidy, M., Talling, P. J., and IODP 340 Expedition Science Party: Submarine landslides around volcanic islands: A review of what can be learned from the Lesser Antilles Arc, in: Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles, edited by: Ogata, K., Festa, A., and Pini, G. A., 277–297, https://doi.org/10.1002/9781119500513.ch17, 2019.
Legendre, L., Philippon, M., Münch, P., Leticee, J. L., Noury, M., Maincent, G., Cornee, J. J., Caravati, A., Lebrun, J. F., and Mazabraud, Y.: Trench bending initiation: Upper plate strain pattern and volcanism. insights from the Lesser Antilles arc, St. Barthelemy island, French West Indies, Tectonics, 37, 2777–2797, 2018.
Lehu, R., Lallemand, S., Ratzov, G., Babonneau, N., Hsu, S. K., Lin, A. T., and Dezileau, L.: An attempt to reconstruct 2700 years of seismicity using deep-sea turbidites offshore eastern Taiwan, Tectonophysics, 692, 309–324, https://doi.org/10.1016/j.tecto.2016.04.030, 2016.
Leonard, M.: Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release, B. Seismol. Soc. Am., 100, 1971–1988, 2010.
Leticée, J. L., Cornee, J. J., Münch, P., Fietzke, J., Philippon, M., Lebrun, J. F., De Min, L., and Randrianasolo, A.: Decreasing uplift rates and Pleistocene marine terraces settlement in the central lesser Antilles fore-arc (La Désirade Island, 16° N), Quatern. Int., 508, 43–59, https://doi.org/10.1016/j.quaint.2018.10.030, 2019.
Leslie, S. C. and Mann, P.: Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea, Earth Planet. Sci. Lett., 449, 382–394, 2016.
Lewis, K. B.: Quaternary sedimentation on the Hikurangi oblique-subduction and transform margin, New Zealand, Sedimentation in oblique-slip mobile zones, Wiley, 171–189, https://doi.org/10.1002/9781444303735.ch10, 1980.
Liu, P. L. F., Woo, S. B., and Cho, Y. S.: Computer programs for tsunami propagation and inundation, Ithaca (NY), Cornell University, Technical Report, https://tsunamiportal.nacse.org/documentation/COMCOT_tech.pdf (last access: August 2024), 1998.
Mallet, R.: Catalogue of Recorded Earthquakes from 1606 B.C. to A.D. 1850, Part I,1606 B.C. to 1755 A.D., Report of the 22nd Meeting of the British Association for the Advancement of Science, held in Belfast, Sept. 1852, John Murray, London, 177 pp., 1853.
Mallet R.: Catalogue of Recorded Earthquakes from 1606 B.C. to A.D. 1850, Part II, 1755 A.D. to 1784 A.D., Report of the 23Td meeting of the British Association for the Advancement of Science, held in Hull, September 1853, John Murray, London, 118–212, 1854.
Mallet R.: Catalogue of Recorded Earthquakes from 1606 B.C. to A.D. 1850, Part III, 1784 A.D. to 1842 A.D., Report of the 24th Meeting of the British Association for the Advancement of Science, John Murray, London, 326 pp., http://storing.ingv.it/cfti/cfti5/pdf_T/000090-060028_T.pdf (last access: September 2024), 1855.
Martins, I., Vitorino, J., and Almeida, S.: The Nazare Canyon observatory (W Portugal) real-time monitoring of a large submarine canyon, in: OCEANS'10 IEEE SYDNEY, Sydney, NSW, Australia, 2010, https://doi.org/10.1109/OCEANSSYD.2010.5603854, 2010.
Martínez-Loriente, S., Sallarès, V., and Gràcia, E.: The Horseshoe Abyssal plain Thrust could be the source of the 1755 Lisbon earthquake and tsunami, Commun. Earth Environ., 2, 145, https://doi.org/10.1038/s43247-021-00216-5, 2021.
Massin, F., Clouard, V., Vorobieva, I., Beauducel, F., Saurel, J. M., Satriano, C., Bouin, M. P., and Bertil, D.: Automatic picking and probabilistic location for earthquake assessment in the lesser antilles subduction zone (1972–2012), C. R. Geosci., 353, 187–209, https://doi.org/10.5802/crgeos.81, 2021.
McCalpin, J. P.: Paleoseismology, Academic Press, London, p. 583, ISBN-10: 0123735769, 1996.
Münch, P., Lebrun, J. F., Cornée, J. J., Thinon, I., Guennoc, P., Marcaillou, B. J., Begot, J., Bertrand, G., Bes De Berc, S., Biscarrat, K., Claud, C., De Min, L., Fournier, F., Gailler, L., Grandorge, D., Leticee, J. L., Marie, L., Mazabraud, Y., Melinte-Dobrinescu, M., Moisette, P., Quilevere, F., Verati, C., and Randrianasolo, A.: Pliocene to Pleistocene carbonate systems of the Guadeloupe archipelago, French Lesser Antilles: a land and sea study (the KaShallow project), B. Soc. Géol. Fr., 184, 99–110, https://doi.org/10.2113/gssgfbull.184.1-2.99, 2013.
Münch, P., Cornee, J. J., Lebrun, J. F., Quillevere, F., Verati, C., Melinte-Dobrinescu, M., Demory, B., Smith, F., Jourdan, J. M., Lardeaux, J. M., De Min, L., Leticee, J. L., and Randrianasolo, A.: Pliocene to Pleistocene vertical movements in the forearc of the Lesser Antilles subduction: insights from chronostratigraphy of shallow-water carbonate platforms (Guadeloupe archipelago), J. Geol. Soc. London, 171, 329–341, https://doi.org/10.1144/jgs2013-005, 2014.
NOAA: National Geophysical Data Center/World Data Service, NOAA [data set], https://doi.org/10.7289/V5PN93H7, 2024.
NASA Shuttle Radar Topography Mission (SRTM): Shuttle Radar Topography Mission (SRTM) Global, OpenTopography [data set], https://doi.org/10.5069/G9445JDF, 2013.
Nikolkina, I., Zahibo, N., and Pelinovsky, E.: Tsunami in Guadeloupe (Caribbean Sea), The Open Oceanography Journal, 4, 44–49, https://doi.org/10.2174/1874252101004010044, 2010.
Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, B. Seismol. Soc. Am., 75, 1135–1154, https://doi.org/10.1785/BSSA0750041135, 1985.
O'loughlin, K. F. and Lander, J. F.: Caribbean tsunamis: a 500-year history from 1498–1998, 20, Springer Science & Business Media, ISBN 1-4020-1717-0, 2003.
Padron, C., Klingelhoefer, F., Marcaillou, B., Lebrun, J. F., Lallemand, S., Garrocq, C., Laigle, M., Roest, W. R., Beslier, M. O., Schenini, L., Graindorge, D., Gay, A., Audemard, F., Munch., P., and GARANTI Cruise Team.: Deep structure of the Grenada Basin from wide-angle seismic, bathymetric and gravity data, J. Geophys. Res.-Sol. Ea., 126, e2020JB020472. https://doi.org/10.1029/2020JB020472, 2021.
Paris, R., Sabatier, P., Biguenet, M., Bougouin, A., André, G., and Roger, J.: A tsunami deposit at Anse Meunier, Martinique Island: evidence of the 1755 CE Lisbon tsunami and implication for hazard assessment, Mar. Geol., 439, 106561, https://doi.org/10.1016/j.margeo.2021.106561, 2021.
Petersen, F., Kopp, H., Lange, D., Hannemann, K., and Urlaub, M.: Measuring tectonic seafloor deformation and strain-build up with acoustic direct-path ranging, J. Geodyn., 124, 14–24, https://doi.org/10.1016/j.jog.2019.01.002, 2019.
Philippon, M. and Corti, G.: Obliquity along plate boundaries, Tectonophysics, 693, 171–182, https://doi.org/10.1016/j.tecto.2016.05.033, 2016.
Prasetya, G., Beavan, J., Wang, X., Reyners, M., Power, W., Wilson, K., and Lukovic, B.: Evaluation of the 15 July 2009 Fjorland, New Zealand tsunami in the source region, Pure Appl. Geophys., 168, 1973–1987, https://doi.org/10.1007/s00024-011-0282-6, 2011.
Roger, J., Allgeyer, S., Hébert, H., Baptista, M. A., Loevenbruck, A., and Schindelé, F.: The 1755 Lisbon tsunami in Guadeloupe Archipelago: source sensitivity and investigation of resonance effects, The Open Oceanography Journal, 4, 58–70, https://doi.org/10.2174/1874252101004010058, 2010.
Roger, J., Baptista, M. A., Sahal, A., Accary, F., Allgeyer, S., and Hébert, H.: The transoceanic 1755 Lisbon tsunami in Martinique, Pure Appl. Geophys., 168, 1015–1031, https://doi.org/10.1007/s00024-010-0216-8, 2011.
Roger, J., Dudon, B., and Zahibo, N.: Tsunami hazard assessment of Guadeloupe Island (F.W.I.) related to a megathrust rupture on the Lesser Antilles subduction interface, Nat. Hazards Earth Syst. Sci., 13, 1169–1183, https://doi.org/10.5194/nhess-13-1169-2013, 2013.
Roger, J., Pelletier, B., and Aucan, J.: Update of the tsunami catalogue of New Caledonia using a decision table based on seismic data and marigraphic records, Nat. Hazards Earth Syst. Sci., 19, 1471–1483, https://doi.org/10.5194/nhess-19-1471-2019, 2019.
Roger, J., Pelletier, B., Gusman, A., Power, W., Wang, X., Burbidge, D., and Duphil, M.: Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment, Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, 2023.
Roger, J. H., Bull, S., Watson, S. J., Mueller, C., Hillman, J. I., Wolter, A., Lamarche, G., Power, W., Lane, E., Woelz, S., and Davidson, S.: A review of approaches for submarine landslide-tsunami hazard identification and assessment, Mar. Petrol. Geol., 162, 106729, https://doi.org/10.1016/j.marpetgeo.2024.106729, 2024.
Ruiz, M., Galve, A., Monfret, T., Sapin, M., Charvis, P., Laigle, M., Evain, M., Hirn, A., Flueh, E., Gallart, K., Diaz, J., Lebrun, J. F., and Lebrun, J. F.: Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks, Tectonophysics, 603, 68–78, https://doi.org/10.1016/j.tecto.2011.08.006, 2013.
Salichon, J., Lemoine, A., and Aochi, H.: Validation of teleseismic inversion of the 2004 Mw6.3 Les Saintes, Lesser Antilles, earthquake by 3D finite-difference forward modelling, B. Seismol. Soc. Am. 99, 3390–3401, https://doi.org/10.1785/0120080315, 2009.
Satake, K. and Tanioka, Y.: Sources of tsunami and tsunamigenic earthquakes in subduction zones, Pure Appl. Geophys., 154, 467–483, https://doi.org/10.1785/0120120306, 1999.
Seibert, C., Feuillet, N., Ratzov, G., Beck, C., and Cattaneo, A.: Seafloor morphology and sediment transfer in the mixed carbonate-siliciclastic environment of the Lesser Antilles forearc along Barbuda to St. Lucia, Mar. Geol., 428, 106242, https://doi.org/10.1016/j.margeo.2020.106242, 2020.
Shom-IGN: Litto3D® – Saint-Barthélemy 2019, Shom-IGN [data set], https://services.data.shom.fr/geonetwork/srv/fre/catalog.search#/metadata/BATHYMETRIE_LITTO3D_GUAD_2016.xml (last access: September 2024), 2019.
Smith, M. S. and Shepherd, J. B.: Tsunami waves generated by volcanic landslides: an assessment of the hazard associated with Kick'em Jenny, Geol. Soc. London, Spe. Pub., 110, 115–123, 1996.
Symithe, S. J., Calais, E., Haase, J. S., Freed, A. M., and Douilly, R.: Coseismic slip distribution of the 2010 M 7.0 Haiti earthquake and resulting stress changes on regional faults, B. Seismol. Soc. Am., 103, 2326–2343, https://doi.org/10.1785/0120120306, 2013.
ten Brink, U., Danforth, W., Polloni, C., Andrews, B., Llanes, P., Smith, S., Parker, E., and Uozumi, T.: New seafloor map of the Puerto Rico trench helps assess earthquake and tsunami hazards, Eos T. Am. Geophys. Un., 85, 349–360, https://doi.org/10.1029/2004EO370001, 2004.
Terrier, M., Combes, P., de Carbon, D., Grellet, B., and Sedan, O.: Failles Actives et Evaluation de L'Alea Sismique: Prise en compte des failles actives dans l'aménagement du territoire aux Antilles (Martinique et Guadeloupe), Partie 1: Identification des systèmes de failles actives dans l'archipel de la Guadeloupe et l'île de la Martinique, Rapport BRGM/RP-51258-FR, 118 pp., 30 figures, 8 tableaux, 4 annexes, http://infoterre.brgm.fr/rapports/RP-51564-FR.pdf (last access: August 2024), 2002.
Teeuw, R., Rust, D., Solana, C., Dewdney, C., and Robertson, R.: Large coastal landslides and tsunami hazard in the Caribbean. Eos T. Am. Geophys. Un., 90, 81–82, 2009.
Thingbaijam, K. K. S., Mai, P. M., and Goda, K.: New Empirical Earthquake Source-Scaling Laws, B. Seismol. Soc. Am., 107, 2225–2246, https://doi.org/10.1785/0120170017, 2017.
Thinon, I. and Bitri, A.: GEOBERYX03 cruise, RV Beryx, Catalogue des campagnes à la mer, Seadatanet webportal (SISM_BGM_FI352003000010) [data set], https://cdi.seadatanet.org/ (last access: September 2024), 2003.
Thinon, I., Bitri, A., Guennoc, P., and Truffert, C.: Levés sismique et magnétique du plateau occidental de l'île de Basse-Terre, Guadeloupe (Campagne Geoberyx03), Apports aÌ la compreìhension du contexte structural du champ geìothermique de Bouillante, BRGM/RP-53152-FR, 77, http://infoterre.brgm.fr/rechercher/search.htm (last access: October 2022), 2004.
Thinon, I., Guennoc, P., Bitri, A., and Truffert C.: Study of the Bouillante Bay (West Basse-Terre Island shelf): contribution of geophysical surveys to the understanding of the structural context of Guadeloupe (French West Indies – Lesser Antilles), B. Soc. Geol. Fr., 181, 51–65, https://doi.org/10.2113/gssgfbull.181.1.51, 2010.
TL/ICMMG: Global Historical Tsunami Database. Institute of Computational Mathematics and Mathematical Geophysics SB RAS Tsunami Laboratory, Novosibirsk, Russia, http://tsun.sscc.ru/gtdb/default.aspx (last access: 1 February 2023), 2023.
Tronin, A. A.: Satellite remote sensing in seismology. A review, Remote Sensing, 2, 124–150, https://doi.org/10.3390/rs2010124, 2009.
USGS: Advanced National Seismic System (ANSS) Comprehensive Catalog, U.S. Geological Survey, USGS [data set], https://doi.org/10.5066/F7MS3QZH, 2017.
van Rijsingen, E. M., Calais, E., Jolivet, R., de Chabalier, J. B., Jara, J., Symithe, S., Robertson, R., and Ryan, G. A.: Inferring interseismic coupling along the lesser antilles arc: A Bayesian approach, J. Geophys. Res.-Sol. Ea., 126, e2020JB020677, https://doi.org/10.1029/2020JB020677, 2021.
Wallace, T. C., Helmberger, D. V., and Ebel, J. E.: A broadband study of the 13 August 1978 Santa Barbara earthquake, B. Seismol. Soc. Am., 71, 1701–1718, https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/71/6/1701/102037/A-broadband-study-of-the-13-August-1978-Santa (last access: September 2024), 1981.
Wang, X.: Numerical modelling of surface and internal waves over shallow and intermediate water, PhD thesis, Cornell University, Ithaca (NY), 245 pp., https://catalog.library.cornell.edu/catalog/6794450 (last access: August 2024), 2008.
Wang, X. and Power, W. L.: COMCOT: a tsunami generation, propagation and run-up model. Lower Hutt (NZ), GNS Science, 121 pp., GNS Science report; 2011/43, https://www.gns.cri.nz/data-and-resources/comcot-a-tsunami-generation-propagation-and-run-up-model/ (last access: August 2024), 2011.
Wang, X., Lukovic, B., Power, W. L., and Mueller, C.: High-resolution inundation modelling with explicit buildings. Lower Hutt (NZ), GNS Science, 27 pp., GNS Science report 2017/13, https://doi.org/10.21420/G2RW2N, 2017.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974–1002, https://doi.org/10.1785/BSSA0840040974, 1994.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy. Geosys., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019 (software available at: https://www.generic-mapping-tools.org, last access: September 2024).
Zahibo, N. and Pelinovsky, E. N.: Evaluation of tsunami risk in the Lesser Antilles, Nat. Hazards Earth Syst. Sci., 1, 221–231, https://doi.org/10.5194/nhess-1-221-2001, 2001.
Zahibo, N., Pelinovsky, E., Kurkin, A., and Kozelkov, A.: Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation, Science of Tsunami Hazards, 21, 202–222, 2003.
Zahibo, N., Pelinovsky, E., Okal, E., Yalçiner, A., Kharif, C., Talipova, T., and Kozelkov, A.: The earthquake and tsunami of November 21, 2004 at Les Saintes, Guadeloupe, Lesser Antilles, Science of Tsunami Hazards, 23, 25–39, 2005.
Zhang, L., Baba, K., Liang, P., Shimizu, H., and Utada, H.: The 2011 Tohoku Tsunami observed by an array of ocean bottom electromagnetometers, Geophys. Res. Lett., 41, 4937–4944, https://doi.org/10.1002/2014GL060850, 2014.
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser...
Altmetrics
Final-revised paper
Preprint