Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-133-2024
https://doi.org/10.5194/nhess-24-133-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning

Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann

Related authors

Torrential rainfall in Valencia (Spain) recorded by personal weather stations preceding and during the 29 October 2024 floods
Nathalie Rombeek, Markus Hrachowitz, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1502,https://doi.org/10.5194/egusphere-2025-1502, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Evaluation of high-intensity rainfall observations from personal weather stations in the Netherlands
Nathalie Rombeek, Markus Hrachowitz, Arjan Droste, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3207,https://doi.org/10.5194/egusphere-2024-3207, 2024
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Das Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci., 25, 1481–1499, https://doi.org/10.5194/nhess-25-1481-2025,https://doi.org/10.5194/nhess-25-1481-2025, 2025
Short summary
Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025,https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Satellite-based data for agricultural index insurance: a systematic quantitative literature review
Thuy T. Nguyen, Shahbaz Mushtaq, Jarrod Kath, Thong Nguyen-Huy, and Louis Reymondin
Nat. Hazards Earth Syst. Sci., 25, 913–927, https://doi.org/10.5194/nhess-25-913-2025,https://doi.org/10.5194/nhess-25-913-2025, 2025
Short summary
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to the Kathmandu Valley, Nepal
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025,https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
An automated approach for developing geohazard inventories using news: Integrating NLP, machine learning, and mapping
Aydoğan Avcıoğlu, Ogün Demir, and Tolga Görüm
EGUsphere, https://doi.org/10.5194/egusphere-2025-7,https://doi.org/10.5194/egusphere-2025-7, 2025
Short summary

Cited articles

Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019. a
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Ciach, G. J. and Krajewski, W. F.: On the estimation of radar rainfall error variance, Adv. Water Resour., 22, 585–595, 1999. a
Dixon, M. and Wiener, G.: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting – A radar-based methodology, J. Atmos. Ocean. Tech., 10, 785–797, 1993. a
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework, Meteorological Applications: A journal of forecasting, practical applications, Training Techniques and Modelling, 15, 51–64, 2008. a
Download
Short summary
Severe weather such as hail, lightning, and heavy rainfall can be hazardous to humans and property. Dual-polarization weather radars provide crucial information to forecast these events by detecting precipitation types. This study analyses the importance of dual-polarization data for predicting severe weather for 60 min using an existing deep learning model. The results indicate that including these variables improves the accuracy of predicting heavy rainfall and lightning.
Share
Altmetrics
Final-revised paper
Preprint