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Abstract. This work presents the importance of polarimetric
variables as an additional data source for nowcasting thun-
derstorm hazards using an existing neural network archi-
tecture with recurrent-convolutional layers. The model can
be trained to predict different target variables, which en-
ables nowcasting of hail, lightning, and heavy rainfall for
lead times up to 60 min with a 5 min resolution, in partic-
ular. The exceedance probabilities of Swiss thunderstorm
warning thresholds are predicted. This study is based on ob-
servations from the Swiss operational radar network, which
consists of five operational polarimetric C-band radars. The
study area of the Alpine region is topographically complex
and has a comparatively very high thunderstorm activity. Dif-
ferent model runs using combinations of single- and dual-
polarimetric radar observations and radar quality indices are
compared to the reference run using only single-polarimetric
observations. Two case studies illustrate the performance dif-
ference when using all predictors compared to the reference
model. The importance of the predictors is quantified by in-
vestigating the final training loss of the model, with skill
scores such as critical success index (CSI), precision, re-
call, precision–recall area under the curve, and the Shapley
value. Results indicate that single-polarization radar data are
the most important data source. Adding polarimetric obser-
vations improves the model performance compared to ref-
erence model in term of the training loss for all three tar-
get variables. Adding quality indices does so, too. Including
both polarimetric variables and quality indices at the same
time improves the accuracy of nowcasting heavy precipita-
tion and lightning, with the largest improvement found for
heavy precipitation. No improvement could be achieved for
nowcasting of the probability of hail in this way.

1 Introduction

Severe convective weather events, such as hail, lightning, and
heavy precipitation, are likely to increase across Europe dur-
ing this century (Rädler et al., 2019; Raupach et al., 2021;
Taszarek et al., 2021). The heavy rainfall associated with
these convective storms can turn into flash floods and land
slides and, consequently, be a great threat to human lives
(Holle, 2008; Lynn and Yair, 2010). Additionally, a consid-
erable part of the total weather-related economic losses are
caused by severe convective weather (Hoeppe, 2016). There-
fore, accurate short-term predictions of convective events are
of interest, as they allow issuing warnings in order to reduce
societal and economic impact.

Stratiform precipitation typically has larger spatial scales
and last longer than severe convection. Numerical weather
prediction (NWP) models are particularly suited for this pur-
pose. On the other hand, simulating severe convection with
its short time and spatial scales, for which the exploitation
of the most recent observations is essential, is very challeng-
ing. Accordingly, many weather services aim for rapid up-
date cycles, i.e. an hourly instead of the former 3 h update
cycle. Due to the computational demand of the assimilation
and prediction, more frequent update cycles than hourly are
currently not feasible. The results of NWP models are typi-
cally available after several tens of minutes (e.g. a COSMO-
1E run requires 50 min runtime). NWP analysis is a com-
bination of previous model predictions and the latest avail-
able observations, and the assimilation creates a physically
consistent state of the atmosphere, which typically deviates
slightly from the latest observations. Meanwhile, nowcasting
algorithms aim to provide their output within tens of sec-
onds up to a minute (Pierce et al., 2012). They typically do
not strive for a physically consistent representation of the at-
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mosphere but do make use of the latest observations, which
results in higher performance on the very short and short
timescales (i.e. 1 h) and smaller scales (Simonin et al., 2017)
(but inferior performance on longer lead times). As localized
warnings are often issued for the very short term time range,
nowcasting plays a crucial role in warning systems for severe
convection.

Weather radars are often utilized for nowcasting purposes
as they provide near-real-time input data with a high reso-
lution and broad spatial coverage. Conventional nowcasting
techniques typically extrapolate the latest observations from
weather radars in time, based on either estimation of the mo-
tion field such as used in Pysteps (Pulkkinen et al., 2019),
NowPrecip (Sideris et al., 2020), or rainymotion (Ayzel et al.,
2019), or identifying and tracking individual storms, e.g.
the Thunderstorms Radar Tracking algorithm (TRT; Hering
et al., 2004) or Thunderstorm Identification, Tracking, Anal-
ysis, and Nowcasting (TITAN; Dixon and Wiener, 1993).
However, these methods often have difficulties taking the life
cycle of convective cells with growth and dissipation pro-
cesses into account and consequently result in relatively short
skilful lead times for convective weather (Imhoff et al., 2020;
Foresti et al., 2016; Wilson et al., 1998).

In recent years, there have been significant advances in us-
ing deep learning for generating nowcasts of heavy precipi-
tation using radar as input, e.g. Guastavino et al. (2022), Han
et al. (2021), Ritvanen et al. (2023), and Yin et al. (2021),
or in the case of Leinonen et al. (2023) including multiple
data sources. In addition, radar is also exploited as a pre-
dictor for nowcasting lightning, for example, by Leinonen
et al. (2022b) and Zhou et al. (2020). However, these stud-
ies primarily focus on single-polarization radar observations
(e.g. precipitation rates based on horizontal reflectivity or the
reflectivity itself) and do not utilize polarimetry explicitly,
despite the fact that polarimetry can provide further infor-
mation about the micro-physical properties of hydrometeors.
Hence, adding polarimetric radar variables explicitly helps
considerably to reduce ambiguities concerning the hydrome-
teor classes and drop size distributions.

Dual-polarization radars have two orthogonally polar-
ized beams, making it possible to derive additional prop-
erties such as particle shape and to some extent the size,
which are useful for meteorological applications (Fabry,
2018; Kumjian, 2013b). Hydrometeor classification algo-
rithms such as those developed by Besic et al. (2016) and
Vivekanandan et al. (1999) use this extra information to
identify different hydrometeors. Other studies showed the
potential of polarimetric variables for providing informa-
tion on other convective hazards, such as hail and lightning
(Figueras i Ventura et al., 2019; Lund et al., 2009) or the
evolution of convective storms (Snyder et al., 2015). How-
ever, interpretation of polarimetric signatures for convective
weather forecasts remains challenging (Kumjian, 2013a, b)
and requires more advanced data processing techniques such
as machine learning.

This research investigates the additional value of polari-
metric variables for nowcasting severe convective weather,
which includes hail, lightning, and severe precipitation. Data
source importance is explored by performing both a quali-
tative and quantitative analysis (i.e. focal loss or cross en-
tropy, Shapley values, critical success index, and fractions
skill score). We use the recurrent-convolutional deep learn-
ing model from Leinonen et al. (2023), as it is able to utilize
multiple data sources and predict, with a slight modification,
multiple extreme events.

One of the first successful attempts to incorporate polari-
metric variables for nowcasting convective precipitation us-
ing deep learning was realized by Pan et al. (2021). However,
that study exploits only observations in 3 km altitude, i.e. the
Constant Altitude Plan Projection Indicator (CAPPI). In this
study, we exploit relevant hydrometeors and their character-
istics from multiple altitudes. In addition, we investigate the
potential to nowcast not only precipitation, but also hail and
lightning, by utilizing polarimetric variables.

This paper introduces the data used for training in Sect. 2,
while Sect. 3 describes the model architecture. Results are
described and discussed in Sect. 4, and Sect. 5 concludes the
article.

2 Data

For training purposes, the “precipitation radar” dataset from
Leinonen et al. (2022b) was used (here named “Single-pol
Radar”), which is described in more detail in the corre-
sponding paragraph below. The training dataset was extended
with polarimetric variables retrieved from the Swiss opera-
tional radar network and quality indices from Feldmann et al.
(2021). The data were collected from April to September
2020. The creation of training samples is described in more
detail in Sect. 3.1.

2.1 Operational radar network

The study area is completely covered by the Swiss oper-
ational radar network, which consists of five operational
polarimetric C-band radars (Germann et al., 2022). Opera-
tionally available products have a resolution of 500 m, com-
prising 20 elevation scans from −0.2 to 40◦ within 5 min
per radar. The maximum observation range of a single
radar is 246 km. In total, the study area covers more than
400 000 km2.

A sophisticated data-processing chain including bias cor-
rection, removal of ground clutter and non-weather echoes,
visibility correction, and vertical profile correction (Germann
et al., 2006) retrieves a high-quality, radar-based precipita-
tion estimate at the surface (RZC). The final radar products
that are used as input for the deep learning algorithm have a
resolution of 1 km.

Nat. Hazards Earth Syst. Sci., 24, 133–144, 2024 https://doi.org/10.5194/nhess-24-133-2024



N. Rombeek et al.: Radar polarimetry for nowcasting thunderstorm hazards 135

2.2 Data sources and processing

The model was trained based on all possible combinations of
the three data sources below:

1. Single-pol radar (R) data were retrieved from the Swiss
operational weather radar network (Germann et al.,
2022). The considered variables in this source are the
rain rate at the surface, column maximum echo intensity
and altitude, echo top height at radar reflectivity thresh-
olds of 20 and 45 dBZ, and the vertically integrated
water content. This source was used and described in
more detail in Leinonen et al. (2022b). Note that dual-
polarization data were used for clutter suppression in
the processing chain of the Swiss operational weather
radar network.

2. Polarimetric variables (P ) were also obtained from the
Swiss operational radar network. The considered polari-
metric variables in this research are the reflectivity fac-
tor at vertical polarization (ZV), differential reflectivity
(Zdr), co-polar cross-correlation coefficient (ρhv), and
specific differential phase (Kdp).

Zdr is an indicator of shape, with positive values indi-
cating targets larger in the horizontal than the vertical
dimension. Such targets include large raindrops, which
are flattened by aerodynamic forces while falling, but
not solid hailstones, which tend to be round and there-
fore have values close to 0 (Seliga and Bringi, 1976).

Kdp is an indication of concentration and shape and
is used as a measure for rain intensity (Sachidananda
and Zrnic, 1986). Positive values can be an indicator of
heavy rain, while negative values mean that targets are
more elongated vertically than horizontally (e.g. grau-
pel), and values close to zero indicate nearly round or
randomly oriented particles (Rinehart, 2010). One ad-
vantage ofKdp over Zdr is that it is unaffected by differ-
ential attenuation.

ρhv indicates homogeneity, with smaller values indicat-
ing more heterogeneity among the shape, size, and ori-
entation of the detected particles (Fabry, 2018).

To reduce the dimensionality and estimate values at the
ground level, the polarimetric variables at various alti-
tudes are aggregated following the method of Wolfens-
berger et al. (2021), a weighted sum taking both static
radar visibility and height above the ground level of
each point into account. Radar visibility is determined
by the fraction of the radar beam that is not blocked
due to partial and total beam shielding by the complex
mountainous terrain. The weight is determined using a
linear relationship with visibility and an exponential re-
lationship with height:

w(h)= exp
(
β

h

1000

)
VIS
100

. (1)

Here, h represents the height above the ground of the
observation in metres, β (m−1) is the slope of the expo-
nent, and VIS is the visibility (%). A sensitivity study
showed that a value of −0.5 for β is best suited for pre-
cipitation retrieval (Wolfensberger et al., 2021); conse-
quently, the same value is used here. First, the polari-
metric data were transformed by normalizing the stan-
dard deviation and by shifting the mean to 1. Second,
to reduce presence of noise, fields were compared with
RZC and set to zero where RZC does not contain pre-
cipitation.

3. Quality indices (Q) were obtained from Feldmann et al.
(2021). Quality of radar observations in mountainous
terrain fluctuates over elevations and is influenced by
the scanning strategy. Especially at low levels, visibil-
ity is reduced as a consequence of radar beam blockage.
The quality of the observations at every location is in-
fluenced by multiple properties. The quality index com-
bines the following factors into a single index: visibility,
minimum altitude of observation, maximum altitude of
observation, and numerical noise.

2.3 Targets

The same target variables from Leinonen et al. (2023) and
Leinonen et al. (2022b) are derived:

Lightning occurrence is obtained from the observations by
the EUCLID lightning network (Schulz et al., 2016; Poel-
man et al., 2016), delivered to MeteoSwiss by Météorage.
The point data were transformed to a gridded binary map,
with 1 indicating lightning activity within a radius of 8 km
and in the last 10 min and 0 otherwise. This definition is used
in safety procedures at airports for takeoff and landing oper-
ations and based on the regulations of the European Union
(2017) and International Civil Aviation Organization (2018).
In this way, the result of our machine learning algorithm can
be directly applied for METAR trend reports without any ad-
justment of the temporal and spatial resolution.

Probability of hail (POH) is the probability of hail reach-
ing the ground. This a product from the operational Me-
teoSwiss radar network, using the formula from Foote et al.
(2005) based on Waldvogel et al. (1979). It utilizes the dif-
ference between the 45 dBZ echo top level and the freezing
level.

CombiPrecip is an operational product of MeteoSwiss
for precipitation combining real-time radar and rain-gauge
observations to adjust the biases often observed in radar
measurements (Sideris et al., 2014a, b). The CombiPrecip
product is converted into a probability distribution. Combi-
Precip estimations are considered the expected precipitation
E[R]. The standard deviation is approximated as SD[R] =
0.33E[R] by separating the error due to the lack of rain gauge
representation from the uncertainty in the radar measure-
ment, using the method from Ciach and Krajewski (1999).
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The probability distribution is transformed to probabilis-
tic estimates for four precipitation classes, based on warn-
ing levels of MeteoSwiss. The thresholds are R0 = 0, R1 =

10 mm, R2 = 30 mm, and R3 = 50 mm precipitation aggre-
gated over 60 min at a 1 km2 grid point. Probabilities qc are
assigned to each class c ∈ [0,3] as

qc =

Rc+1∫
Rc

p(R)dR, (2)

where p is a lognormal probability distribution function.
Note that the machine learning model can be adapted to cal-
culate a larger number of thresholds. In this publications, we
concentrate on these four thresholds representing the warn-
ing levels of MeteoSwiss.

3 Methods

3.1 Event selection

The radar-derived rainfall rate was used to select training
samples where convective activity was likely to happen. Re-
gions with 10 neighbouring pixels that exceeded 10 mm h−1

were located, and at every time step for ±2 h a box of
256×256 km2 was added to the identified region. Duplicated
regions were removed by dividing the study area into tiles of
32×32 km2 and storing only unique tiles that do not overlap
in time and space simultaneously. This resulted in a total of
30641 different starting times for the training sequences. In
total 1021447 different samples could be created in this way
(not including the further diversity added by data augmenta-
tion). Around 10 % of the total training samples was used for
validation, another 10 % for testing, and the rest for training.
Entire days were randomly selected for either the validation,
testing, or training set to minimize the correlation between
the datasets. The event selection process is identical to that
of Leinonen et al. (2022b); a more detailed description of the
selection procedure can be found in that article.

3.2 Neural network

The recurrent-convolutional deep learning model from
Leinonen et al. (2023) is used, adding the newly intro-
duced sources described in Sect. 2.2. The recurrent connec-
tions model the temporal evolution, while the convolutional
connections model the spatial structure. This model has an
encoder–forecaster framework, in which the encoder pro-
duces a deep representation of the atmospheric state, which
is decoded into a prediction by the forecaster. It has a generic
architecture, making it possible to predict lightning, POH,
and heavy precipitation by only changing the target. The
main difference between the predicted thunderstorm hazards
is that the output of heavy precipitation is accumulated over
1 h for predefined warning levels, whereas hail and lightning

are produced at a 5 min resolution for 12 time steps (1 h). In
order to make the results comparable with (Leinonen et al.,
2023), a maximum lead time of 60 min is selected here. For a
more detailed description of the model we refer to the publi-
cations of Leinonen et al. (2022b) and Leinonen et al. (2023).

Hail and precipitation targets have a probabilistic output,
and for that reason cross entropy (CE; Goodfellow et al.,
2016) was used as a loss function. CE measures the differ-
ence in the probability distributions between the true distri-
bution and predicted distribution of the target classes. To be
consistent with Leinonen et al. (2023), the focal loss (Lin
et al., 2017) is used for lightning. The focal loss is an adapta-
tion of the CE and focuses more on the pixels whose classi-
fication is more uncertain (pt < 0.5), in which pt is the pre-
dicted probability of the target.

In order to estimate the influence of the random weight
initialization on the consistency of the model, we trained the
model with each possible combination of data sources three
times. As the sample size is rather small, we used the unbi-
ased sample standard deviation for calculating the standard
deviation between these runs.

In order to have variation in the training process and re-
duce overlap, during each epoch one training sample is ran-
domly selected for each starting time. For the validation set,
a fixed set of samples was used to compute the validation
loss after each epoch in order to avoid coincidental improve-
ment in the loss. The number of epochs was not fixed; in-
stead, an early stopping strategy was employed. The learn-
ing rate is divided by 5 when the loss in the validation set
has not improved for three consecutive epochs, and the train-
ing ends when the loss in the validation set did not improve
for six consecutive epochs. The weights corresponding to the
best validation loss are saved in the end. On average training
stopped after 20–30 epochs, for which 1 epoch took around
18 min of time on a computing cluster node with eight Nvidia
V100 GPUs.

Contrary to the training time, it takes only 8 s to nowcast
one hazard with 12 time steps on a machine with 4 CPUs
(Intel(R) Xeon(R) Gold 6142 CPU at 2.60 GHz), requiring
16 GB of RAM.

3.3 Importance of data sources

The importance from individual data sources can be assessed
using the Shapley value (Shapley, 1951) as a quantitative in-
dicator of the total importance of each data source. The total
contribution among the predictors is distributed by assigning
a value that represents their marginal contribution. For more
information on calculating the Shapley value, we refer to the
description of Molnar (2022) (chap. 9.5). We normalize the
sum of the values of the individual components to add up to
1, with higher values indicating higher importance.
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3.4 Model evaluation

Before calculating different metrics to evaluate the models,
the target variables for hail and precipitation were trans-
formed to binary fields. For hail a threshold of 0.5 was se-
lected, meaning that a POH≥ 50% is considered hail and set
to 1, otherwise 0. For precipitation the skill score per class is
analysed by summing all probabilities in and above the se-
lected class. Second, a threshold of 0.5 is used, with setting
probabilities ≥ 0.5 to 1.

The models are evaluated based on the critical success in-
dex (CSI), precision recall (PR) curve, and the fractions skill
score (FSS). The CSI and PR curve are based on contingency
tables, containing true positives (TPs), false positives (FPs),
false negatives (FNs), and true negatives (TNs).

CSI indicates the number of events that were correctly pre-
dicted:

CSI=
TP

TP+FP+FN
. (3)

When there is an imbalance between two classes (no event
and event), the PR curve is a useful tool for interpretation
of probabilistic forecasts. Precision indicates how good the
model is at predicting an event:

Precision=
TP

TP+FP
. (4)

Recall gives the fraction of events that were predicted:

Recall=
TP

TP+FN
. (5)

The PR curve is obtained by computing both precision and
recall at all threshold levels ranging from 0 to 1. The infor-
mation of the PR curve can be summarized by the area under
the curve (AUC). A larger AUC indicates a better-performing
model over the whole range of thresholds.

The FSS is a measure for neighbourhood verification,
which measures the skill of the forecast in predicting the oc-
currence of an event at a selected spatial scale (Roberts and
Lean, 2008). The FSS is the mean-square error of the ob-
served and forecast fractions for a neighbourhood of length
n, relative to a low-skill reference forecast. Values range be-
tween 0 and 1, with higher values indicating a more skilled
forecast.

4 Results and discussion

4.1 Example cases

This section presents examples that illustrate the difference
of adding polarimetric variables on top of single-polarization
radar data for hazard prediction purposes. However, unlike
for lightning and heavy precipitation, no significant differ-
ences were observed in the hail prediction; consequently no
example is provided here.

Figure 1 serves as an example of the model output for
lightning for several time steps. This event took place on
10 July 2020, which was characterized by a low-pressure
system over Scandinavia that steered a cold front towards
Switzerland. Ahead of this front, very warm and humid air
flowed from southwest towards the Alps. The gradual hu-
midification of the various layers of the atmosphere and the
inflow of more unstable air first activated the diurnal cy-
cle of showers and thunderstorms in the Alps and then the
pre-frontal thunderstorm activity, particularly in southern and
western Switzerland.

Both data source combinations (R: single-pol radar and
RPQ: single-pol radar, polarimetric variables and quality in-
dices) are able to accurately predict the location of the light-
ning (see Fig. 1). However, the difference is in the certainty
of the predicted lightning over all lead times, with higher
probabilities seen in RPQ. Locations where RPQ is more
certain compared to R are also at locations with higher Kdp
values.

In Fig. 2 an example for the prediction of rain exceeding
10 mm is shown. This event took place on 7 June 2020 and
was characterized by a low-pressure area that was very pro-
nounced throughout the depth of the troposphere, moving
southward over the North Sea. A related cold front was lo-
cated over the northern side of the Alps. Ahead of this front,
a southwesterly flow conveyed very humid and unstable air
toward the Alps; behind, the cold-front colder polar maritime
air moved from the northwest to the southeast. There was a
strong air mass gradient with very pronounced instability in
the Alps.

Figure 2 shows that both R and RPQ are able to accu-
rately predict the location of the rainfall. However, compared
to R, RPQ is more certain about the precipitation in the
lower area of the rainfall field, which corresponds with the
observed probability. These locations also have higher Kdp
values, which can be an indication of heavy rain.

Overall, we see similar spatial patterns in the predictions
for lightning and precipitation when using RPQ compared
to R, but RPQ tends to give higher confidence in the predic-
tions.

4.2 Predictor importance

The average loss and the unbiased sample standard devia-
tion, derived from the test dataset, are shown in Fig. 3a for
lightning, indicating that incorporating polarimetric variables
with the single-pol radar source improves the overall out-
come. While including all sources (RPQ) for the lightning
model results in the highest skill, it is within the spread of
RP or RQ, indicating that multiple runs are necessary to
verify the robustness of the results, avoiding that coinciden-
tal convergence resulted in slightly better or worse results.

Figure 3b indicates that although incorporating either po-
larimetric variables or quality indices on top of the single-pol
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Figure 1. Results of the lightning prediction on 10 July 2020, 19:10 UTC. On the left three input variables are shown (rain rate, Kdp and
Zdr), and on the right the observed lightning occurrence and the predicted lightning probability according to the input sources RPQ and R
at different lead times (indicated at the top of each column) are shown.

Figure 2. Same as Fig. 1, but for heavy precipitation on 7 June 2020,
08:50 UTC. Only one output is shown as the precipitation is pre-
dicted as the accumulation over the next 60 min.

radar source improves the performance for hail, surprisingly
this does not hold when including all three predictor sources.

From the losses for heavy precipitation (Fig. 3c), it is evi-
dent that incorporating polarimetric variables benefits the re-
sults and produces the most significant improvement com-
pared to lightning and hail. While the patterns of the stan-
dard deviation are somewhat similar to that of lightning, the
average losses between the model combinations lie further
apart.

For lightning, the performance marginally improves from
0.335 (using single-polarization radar and quality index) to
0.333 when using all data sources. However, the difference
is similar to the standard deviation of the losses of the three

training runs. For hail, the standard deviations of the losses
are even higher than for lightning (Fig. 3a) and for rain
(Fig. 3c). An increase of the loss from 0.463 using single-
polarization radar and quality index to 0.468 when using all
three data sources is within the standard deviations of 0.005
or 0.009, respectively.

A reason for the larger spread of the hail results might be
the indirect retrieval method of the POH. While the precip-
itation radar and lightning sensors are designed for a direct
observation of precipitation and lightning, the hail retrieval
is a parameterization based on the vertical extent of the up-
draught core, i.e. a macroscopic property of the storm. There-
fore, the POH observations – used as reference – might be
less precise in comparison to precipitation and lightning ob-
servations and, in consequence, could cause higher variation
of the training performance.

As a final remark, the performance of a machine learning
algorithm does not always improve when adding more pre-
dictors. In the case of highly correlated or redundant predic-
tors, no additional information content is added. However, a
larger number of weights must be trained, which typically re-
quires a larger training dataset. Furthermore, a more complex
algorithm is more prone to overfitting.

4.3 Shapley values

Another method to quantify the importance of the data
sources is by computing the Shapley score. This was cal-
culated for the model runs with the optimal loss score (i.e.
the model with the lowest loss out of three runs). The Shap-
ley values for all thunderstorm hazards indicate the same:
that single-polarization radar is the most important source,
followed by polarimetric variables (Table 1). The single-
polarization radar source is relatively more dominant for hail
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Figure 3. The average loss in the test dataset for the prediction of (a) lightning, (b) hail, and (c) heavy precipitation using different combi-
nations of the selected data sources. The mean loss and the spread of the three runs is shown here. Each panel shows a matrix where the data
sources corresponding to each element can be found by combining the row and column labels, with R indicating single-pol radar data, P the
polarimetric variables, and Q quality indices. All loss scores are normalized with the same loss value from Leinonen et al. (2023), such that
the baseline model (model without any input) is set to 1.

Table 1. Normalized Shapley values in the test dataset for the in-
put sources (R: single-pol radar, P : polarimetric variables and Q:
quality indices) and the prediction of lightning, hail, and heavy pre-
cipitation.

R P Q

Lightning 0.508 0.481 0.012
Hail 0.537 0.463 0.000
Precipitation 0.508 0.475 0.018

compared to lightning and heavy precipitation. While previ-
ous results (Fig. 3) showed that including Q improves the
results, the Shapley score indicates that the importance of Q
is small. However, the effect ofQ is relatively independent of
R and P , whereas R and P contain redundant information,
and consequently, one does not add that much over the other.
The Shapley value is computed from the marginal contribu-
tions of the predictors and thus does not fully capture this
interdependence of features.

4.4 Performance of the forecasts

To get a more complete understanding of the skill of the
model to predict the different variables, it is also important
to see how it performs using other metrics. In Table 2 the av-
erage PR AUC and unbiased sample standard deviation are

Table 2. Comparison of the average PR AUC and standard deviation
of different model configurations (R: single-pol radar and RPQ:
single-pol radar, polarimetric variables and quality indices) with
the test set. For hail and lightning the average over all lead times
is shown; for precipitation, the score is given for the accumulated
precipitation in 1 h exceeding 10 mm.

PR AUC

R RPQ

Lightning 0.626± 0.001 0.632± 0.003
Hail 0.239± 0.005 0.235± 0.010
Rain 0.466± 0.003 0.482± 0.005

given. These values align with the loss, indicating that for
both lightning and rain the model improves by incorporating
all sources, with the largest improvement seen in precipita-
tion. Meanwhile, for hail theRPQmodel results in a slightly
lower skill when including all sources instead of the single-
polarization radar source alone. In addition, the least consis-
tency is seen in the results of RPQ for hail.

We also investigated the effect of different probability
thresholds and lead time on the skill of the forecasts. In
Fig. 4 the CSI was calculated for different thresholds. For hail
and lightning this was done for lead times of 5, 15, 30, and
60 min. With increasing lead times the skill of the forecasts
decreases. The decrease in skill is more gradual for light-
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Figure 4. Critical success index over the test dataset at different
thresholds for (a) lightning and (b) hail for different lead times and
(c) the accumulated precipitation in 1 h exceeding 10, 30, or 50 mm,
using the source combination RPQ (single-polarization radar, po-
larimetric variables and quality indices). The value behind the lead
time or class in the legend indicates the optimal CSI.

ning, while for hail the values drop quickly, having barely
half of the maximum CSI (indicated value in the legend) af-
ter 15 min compared to 5 min.

For heavy precipitation, CSI was calculated over the accu-
mulated precipitation in 1 h for the three classes. Figure 4c
indicates that more extreme precipitation is more difficult to
predict. The lifetime of precipitation events decreases with
higher rain rates, affecting the skill of the forecasts.

It is also evident that the threshold resulting in the highest
CSI is not fixed over the lead times (for lightning and hail)
or over the classes (for precipitation). Thresholds should be
decided on by the end users, selecting values that fit their
desired criteria.

In Fig. 4b the target variable POH was transformed to
binary fields by considering POH≥ 50% as hail. Selecting
other probabilities to convert POH into a hail event results in
a different skill, as shown in Table 3. The skill of the predic-
tions improves when smaller thresholds are selected; that is,
POH≥ 30% produces the highest skill (Fig. 4b and Table 3).
Lower POH thresholds (i.e. 20 %–50 %) are often related to

Table 3. Optimal critical success index over the test dataset, calcu-
lated for different probability thresholds to transform POH to binary
fields.

CSI

5 min 15 min 30 min 60 min

POH≥ 30% 0.469 0.263 0.148 0.057
POH≥ 50% 0.463 0.265 0.143 0.053
POH≥ 80% 0.420 0.236 0.108 0.037

graupel or soft hail (Löffler-Mang et al., 2011). However, ac-
cording to insurance loss data, a POH threshold of 80 % is
related to severe hail locally (Nisi et al., 2016). These ex-
treme events are less frequent and, therefore, more difficult
to predict.

Lower skill for precipitation and hail than for lightning can
be a consequence of the time and space scales of the target
variables. This difference can be enhanced due to the defi-
nition of lightning occurrence that we inherit from Leinonen
et al. (2022b). This was set to the lightning occurrence within
8 km in the last 10 min, which assigns a larger spatial and
temporal footprint to the lightning. Both PR AUC and CSI
are sensitive to any degree of error; i.e. it compares the oc-
currence of an event pixel-wise, resulting in double penal-
ization. Matching exactly high-resolution forecasts with ob-
served small-scale features, such as thunderstorms, is rather
difficult (Ebert, 2008). For that reason the FSS is calculated
over multiple scales (Fig. 5). The differences between FSS
for RPQ and R are marginal, especially for shorter lead
times. RPQ is slightly better for predicting lightning, with
increasing differences for larger lead times (Fig. 5a), which
is in line with the previous results, while for hail we find the
opposite result; i.e. R is slightly more accurate compared to
RPQ and differences decrease at longer lead times (Fig. 5b).
For precipitation RPQ results in a higher skill for warning
levels of 10 and 30 mm, while R is better for warning levels
of 50 mm.

The machine learning model learned from a dataset that
was limited to one convective season. Nevertheless, the train-
ing dataset contained around a million samples. In this paper,
we chose to use the same period as Leinonen et al. (2023) to
make the results comparable. By providing a dataset covering
more convective seasons, it is expected that skill scores of the
different model versions will improve. It is not expected that
the ranking of different model versions with different input
dataset will change, as more events will be available for all
observation types (lightning, single polarimetric radar, and
polarimetric moments).

5 Conclusions

The objective of this work was to evaluate the benefits
from including polarimetric radar observations as an ad-
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Figure 5. Fractions skill score (FSS) over the test dataset at different
lead times for (a) lightning and (b) hail and (c) the accumulated pre-
cipitation in 1 h exceeding 10, 30, or 50 mm, using the source com-
bination RPQ (single-pol radar, polarimetric variables, and quality
indices; solid lines) and R (single-pol radar; dashed lines).

ditional data source for nowcasting thunderstorm hazards,
compared to exploiting single-polarization radar data alone,
as polarimetry provides information about the microphysi-
cal properties of hydrometeors, such as particle shape and
size, consequently reducing ambiguities concerning the hy-
drometeor classes and drop size distribution. Additionally
the benefits of exploiting radar quality indices were inves-
tigated. This work utilizes the convolutional-recurrent neu-
ral network from Leinonen et al. (2022b), which can now-
cast the probability of lightning and hail occurrence up to
60 min with a 5 min resolution, as well as the probability of
one-hourly accumulated precipitation exceeding pre-defined
threshold levels.

The importance of the polarimetric variables (P ) and qual-
ity indices (Q) is investigated by comparing model runs us-
ing extended sets of input variables compared to a reference
run using only the single-polarimetric radar data (R). For
all three hazards, single-pol radar is the most dominant data
source according to the Shapley values. Incorporating polari-
metric variables in addition to single-polarimetric radar data
results in a higher skill for lightning, hail, and heavy pre-

cipitation predictions. In addition, quality indices that take
into account quality properties of the radar reflectivity fields
have a positive impact on the results in most cases. Each
model version was trained three times to test the robustness
of the results. Slightly different final loss values were ob-
tained, and the standard deviation was calculated. The varia-
tions of the loss values caused by different combinations of
input datasets (RP , RQ, and RPQ) have a similar order of
magnitude as the variations by the initial training conditions,
in particular for lightning nowcasting. Differences in mean
loss values should be interpreted with care, and it is impor-
tant to verify the robustness of the results. Among the three
targets, the nowcasting for heavy precipitation improves the
most when polarimetric variables are included. For hail, the
results show that different input combinations are not signifi-
cantly different from each other, but the differences could be
rather caused by random variation within the training. Conse-
quently, we cannot conclude that the polarimetric variables,
in the form used in this study, improve the hail predictions in
a statistically significant way.

Given that the nowcasting performance improves for light-
ning and precipitation, but not for hail, we recommend to in-
vestigate further how information of polarimetric variables,
such as Zdr columns, can be exploited for improving hail
predictions. While it is not expected that the ranking of the
data importance will change, nevertheless, we recommend
to include a larger training period, covering more convective
seasons, in order to improve the skill of the model.
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