Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
School of Geography and water@leeds, University of Leeds, Leeds, UK
Duncan J. Quincey
School of Geography and water@leeds, University of Leeds, Leeds, UK
Mark W. Smith
School of Geography and water@leeds, University of Leeds, Leeds, UK
Related authors
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Anya Schlich-Davies, Ann Rowan, Andrew Ross, Duncan Quincey, and Vivi Pedersen
EGUsphere, https://doi.org/10.31223/X5SH7C, https://doi.org/10.31223/X5SH7C, 2025
Short summary
Short summary
Glaciers in the Himalaya are rapidly losing ice in response to climate change. We use a representation of mesoscale meteorological variables to force a climate-glacier model that represents important surface processes such as sublimation, avalanching, and the evolution of supraglacial debris. We find that warming air temperatures increase annual precipitation sufficiently to offset half of glacier volume loss by the end of the century compared with simulations forced only by temperature change.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Christopher D. Stringer, Jonathan L. Carrivick, Duncan J. Quincey, and Daniel Nývlt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-250, https://doi.org/10.5194/essd-2022-250, 2022
Revised manuscript not accepted
Short summary
Short summary
Glaciers in Antarctica have been decreasing in size at a fast rate, leading to the expansion of proglacial areas, with wide-ranging ecological implications. Several global land-cover maps exist, but they do not include Antarctica. We map land cover types across West Antarctica and the McMurdo Dry Valleys to a high degree of accuracy (77.0 %). We highlight the spatial variation in land cover and emphasise the need for more field data.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Cited articles
Aggarwal, S., Mishra, P. K., Sumakar, K. V. S., and Chaturvedi, P.: Landslide
Monitoring System Implementing IOT Using Video Camera, in: 2018 3rd
International Conference for Convergence in Technology (I2CT), 1–4,
https://doi.org/10.1109/I2CT.2018.8529424, 2018.
Anandakrishnan, S., Bilén, S. G., Urbina, J. V., Bock, R. G., Burkett, P. G.,
and Portelli, J. P: The geoPebble System: Design and Implementation of a
Wireless Sensor Network of GPS-Enabled Seismic Sensors for the Study of
Glaciers and Ice Sheets, Geosci., 12, 17,
https://doi.org/10.3390/geosciences12010017, 2022.
Armstrong, L., Lacelle, D., Fraser, R. H., Kokelj, S., and Knudby, A.: Thaw
slump activity measured using stationary cameras in time-lapse and
Structure-from-Motion photogrammetry, Arctic Sci., 4, 827–845,
https://doi.org/10.1139/as-2018-0016, 2018.
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele,
S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A
multi-scale, high-resolution mapping tool for structural geology and
paleoseismology, J. Struct. Geol., 69, 163–178,
https://doi.org/10.1016/j.jsg.2014.10.007, 2014.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers. Earth-Sci. Rev., 82, 143–179,
https://doi.org/10.1016/j.earscirev.2007.02.002, 2007.
Bhardwaj, A., Sam, L., Akanksha, Martín-Torres, F. J., and Kumar, R.:
UAVs as remote sensing platform in glaciology: Present applications and
future prospects, Remote Sens. Environ., 175, 196–204,
https://doi.org/10.1016/j.rse.2015.12.029, 2016.
Blanch, X., Abellan, A., and Guinau, M. Point Cloud Stacking: A Workflow to
Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras, Remote Sens.,
12, 1240, https://doi.org/10.3390/rs12081240, 2020.
Brecher, H. H. and Thompson, L. G.: Measurement of the retreat of Qori Kalis
glacier in the tropical Andes of Peru by terrestrial photogrammetry,
Photogramm. Eng. Rem. S., 59, 371–379, 1993.
Bunce, C., Nienow, P., Sole, A., Cowton, T., and Davison, B.: Influence of
glacier runoff and near-terminus subglacial hydrology on frontal ablation at
a large Greenlandic tidewater glacier, J. Glaciol., 67, 343–352,
https://doi.org/10.1017/jog.2020.109, 2021.
Carvallo, R., Llanos, P., Noceti, R., and Casassa, G.: Real-time transmission
of time-lapse imagery of glaciers in the southern Andes, in: 2017 First IEEE
International Symposium of Geoscience and Remote Sensing (GRSS-CHILE),
1–3, https://doi.org/10.1109/GRSS-CHILE.2017.7996019, 2017.
Chakraborty, S., Das, S., Rai, N., Patra, A., Dhar, A., Sadhu, A., Gautam,
B., Verma, P., Singh, A., Sherpa, C., and Karn, L.: Development of UAV Based
Glacial Lake Outburst Monitoring System, in: IGARSS 2019–2019 IEEE
International Geoscience and Remote Sensing Symposium., 9372–9375,
https://doi.org/10.1109/IGARSS.2019.8900454, 2019.
Chandler, B. M. P., Evans, D. J. A., Chandler, S. J. P., Ewertowski, M. W., Lovell,
H., Roberts, D. H., Schaefer, M., and Tomczyk, A. M.: The glacial landsystem of
Fjallsjökull, Iceland: Spatial and temporal evolution of process-form
regimes at an active temperate glacier, Geomorphology, 361, 107192,
https://doi.org/10.1016/j.geomorph.2020.107192, 2020.
Chudley, T. R., Christoffersen, P., Doyle, S. H., Abellan, A., and Snooke, N.: High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control, The Cryosphere, 13, 955–968, https://doi.org/10.5194/tc-13-955-2019, 2019.
Danielson, B. and Sharp, M.: Development and application of a time-lapse
photograph analysis method to investigate the link between tidewater glacier
flow variations and supraglacial lake drainage events, J. Glaciol., 59,
287–302, https://doi.org/10.3189/2013JoG12J108, 2013.
Dell, R., Carr, R., Phillips, E., and Russell, A. J.: Response of glacier flow
and structure to proglacial lake development and climate at
Fjallsjökull, south-east Iceland, J. Glaciol., 65, 321–336,
https://doi.org/10.1017/jog.2019.18, 2019.
Eastwood, J., Sims-Waterhouse, D., Weir, R., Piano, S., and Leach, R.,K.:
Autonomous close-range photogrammetry using machine learning, in: Proc.
ISMTII2019, Niigata, Japan, 1–6 pp., 2019.
Eastwood, J., Zhang, H., Isa, M., Sims-Waterhouse, D., Leach, R., and Piano,
S.: Smart photogrammetry for three-dimensional shape measurement, in: Optics
and Photonics for Advanced Dimensional Metrology, SPIE Photonics
Europe, 43–52, https://doi.org/10.1117/12.2556462, 2020.
Eltner, A., Kaiser, A., Abellan, A., and Schindewolf, M.: Time lapse
structure-from-motion photogrammetry for continuous geomorphic monitoring:
Time-lapse photogrammetry for continuous geomorphic monitoring, Earth Surf.
Proc. Land., 42, 2240–2253, https://doi.org/10.1002/esp.4178, 2017.
Emmer, A., Merkl, S., and Mergili, M.: Spatiotemporal patterns of
high-mountain lakes and related hazards in western Austria, Geomorphology,
246, 602–616, https://doi.org/10.1016/j.geomorph.2015.06.032, 2015.
Esposito, G., Salvini, R., Matano, F., Sacchi, M., Danzi, M., Somma, R., and
Troise, C.: Multitemporal monitoring of coastal landslide through
SfM-derived point cloud comparison, Photogramm. Rec., 32, 459–479,
https://doi.org/10.1111/phor.12218, 2017.
Fallourd, R., Vernier, F., Friedt, J.-M., Martin, G., Trouvé, E.,
Moreau, L., and Nicolas, J.-M.: Monitoring temperate glacier with high
resolution automated digital cameras – Application to the Argentière
glacier, ISPRS Commission III Symposium, Paris, France, 19–23 pp., 2010.
Ferdoush, S. and Li, X.: Wireless Sensor Network System Design Using
Raspberry Pi and Arduino for Environmental Monitoring Applications, Proc.
Comput. Sci., 34, 103–110, https://doi.org/10.1016/j.procs.2014.07.059,
2014.
Fugazza, D., Scaioni, M., Corti, M., D'Agata, C., Azzoni, R. S., Cernuschi, M., Smiraglia, C., and Diolaiuti, G. A.: Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards, Nat. Hazards Earth Syst. Sci., 18, 1055–1071, https://doi.org/10.5194/nhess-18-1055-2018, 2018.
Giordan, D., Allasia, P., Dematteis, N., Dell'Anese, F., Vagliasindi, M., and
Motta, E.: A Low-Cost Optical Remote Sensing Application for Glacier
Deformation Monitoring in an Alpine Environment, Sensors, 16, 1750,
https://doi.org/10.3390/s16101750, 2016.
Giordan, D., Dematteis, N., Allasia, P., and Motta, E.: Classification and
kinematics of the Planpincieux Glacier break-offs using photographic
time-lapse analysis, J. Glaciol., 1–15,
https://doi.org/10.1017/jog.2019.99, 2020.
Haemmig, C., Huss, M., Keusen, H., Hess, J., Wegmüller, U., Ao, Z., and
Kulubayi, W.: Hazard assessment of glacial lake outburst floods from Kyagar
glacier, Karakoram mountains, China, Ann. Glaciol., 55, 34–44,
https://doi.org/10.3189/2014AoG66A001, 2014.
Hart, J. K. and Martinez, K.: Environmental Sensor Networks: A revolution in
the earth system science?, Earth-Sci. Rev., 78, 177–191,
https://doi.org/10.1016/j.earscirev.2006.05.001, 2006.
Holmes, F. A., Kirchner, N., Prakash, A., Stranne, C., Dijkstra, S., and
Jakobsson, M.: Calving at Ryder Glacier, Northern Greenland, JGR Earth
Surf., 126, e2020JF005872, https://doi.org/10.1029/2020JF005872, 2021.
How, P., Schild, K. M., Benn, D. I., Noormets, R., Kirchner, N., Luckman, A.,
Vallot, D., Hulton, N. R. J., and Borstad, C.: Calving controlled by
melt-under-cutting: detailed calving styles revealed through time-lapse
observations, Ann. Glaciol., 60, 20–31,
https://doi.org/10.1017/aog.2018.28, 2019.
How, P., Hulton, N. R. J., Buie, L., and Benn, D. I.: PyTrx: A Python-Based
Monoscopic Terrestrial Photogrammetry Toolset for Glaciology, Front Earth
Sci., 8, 21, https://doi.org/10.3389/feart.2020.00021, 2020.
Howarth, P. J. and Price, R. J.: The Proglacial Lakes of
Breidamerkurjökull and Fjallsjökull, Iceland, Geogr. J., 135,
573, https://doi.org/10.2307/1795105, 1969.
Huggel, C., Cochachin, A., Drenkhan, F., Fluixa-Sanmartin, J., Frey, H.,
Garcia Hernandez, J., Jurt, C., Muñoz Asmat, R., Price, K., and
Vicuña, L.: Glacier Lake 513, Peru: Lessons for early warning service
development, WMO Bulletin. 69, 45–52, 2020.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces
and topography with a camera: Accuracy and geoscience application: 3D
Surfaces and Topography with a camera, J. Geophys. Res-Earth., 117, F3,
https://doi.org/10.1029/2011JF002289, 2012.
James, M. R., Robson, S., and Smith, M.W.: 3-D uncertainty-based topographic
change detection with structure-from-motion photogrammetry: precision maps
for ground control and directly georeferenced surveys, Earth Surf. Proc.
Land., 42, 1769–1788, https://doi.org/10.1002/esp.4125, 2017.
James, T. D., Murray, T., Selmes, N., Scharrer, K., and O'Leary, M.: Buoyant
flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat.
Geosci., 7, 593–596, https://doi.org/10.1038/ngeo2204, 2014.
Jawak, S. D., Kulkarni, K., and Luis, A. J.: A Review on Extraction of Lakes
from Remotely Sensed Optical Satellite Data with a Special Focus on
Cryospheric Lakes, Adv. Rem. Sens., 04, 196,
https://doi.org/10.4236/ars.2015.43016, 2015.
Jouvet, G., Weidmann, Y., Seguinot, J., Funk, M., Abe, T., Sakakibara, D., Seddik, H., and Sugiyama, S.: Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry, The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017, 2017.
Kääb, A.: Photogrammetry for early recognition of high mountain
hazards: New techniques and applications, Phys. Chem. Earth Pt. B., 25,
765–770, https://doi.org/10.1016/S1464-1909(00)00099-X, 2000.
Kaufmann, V.: The evolution of rock glacier monitoring using terrestrial
photogrammetry: the example of Äußeres Hochebenkar rock glacier
(Austria), Aust. J. Earth Sci., 105, 63–77, 2012.
Kienholz, C., Amundson, J. M., Motyka, R. J., Jackson, R. H., Mickett, J. B.,
Sutherland, D. A., Nash, J. D., Winters, D. S., Dryer, W. P., and Truffer, M:
Tracking icebergs with time-lapse photography and sparse optical flow,
LeConte Bay, Alaska, 2016–2017, J. Glaciol., 65, 195–211,
https://doi.org/10.1017/jog.2018.105, 2019.
Kneib, M., Miles, E. S., Buri, P., Fugger, S., McCarthy, M., Shaw, T. E., Chuanxi, Z., Truffer, M., Westoby, M. J., Yang, W., and Pellicciotti, F.: Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry, The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, 2022.
Kromer, R., Walton, G., Gray, B., Lato, M., and Group, R.: Development and
Optimization of an Automated Fixed-Location Time Lapse Photogrammetric Rock
Slope Monitoring System, Remote Sens., 11, 1890,
https://doi.org/10.3390/rs11161890, 2019.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (N-Z), ISPRS Photogramm, 82, 10–26,
https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Lewińska, P., Głowacki, O., Moskalik, M., and Smith, W.A.P.: Evaluation
of structure-from-motion for analysis of small-scale glacier dynamics,
Measurement, 168, 108327, https://doi.org/10.1016/j.measurement.2020.108327,
2021.
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015.
Luetzenburg, G., Kroon, A., and Bjørk, A. A.: Evaluation of the Apple
iPhone 12 Pro LiDAR for an Application in Geosciences, Sci. Rep., 11,
22221, https://doi.org/10.1038/s41598-021-01763-9 , 2021.
Lüthi, M. P. and Vieli, A.: Multi-method observation and analysis of a tsunami caused by glacier calving, The Cryosphere, 10, 995–1002, https://doi.org/10.5194/tc-10-995-2016, 2016.
Mallalieu, J., Carrivick, J. L., Quincey, D. J., Smith, M. W., and James,
W. H. M.: An integrated Structure-from-Motion and time-lapse technique for
quantifying ice-margin dynamics, J. Glaciol., 63, 937–949,
https://doi.org/10.1017/jog.2017.48, 2017.
Mallalieu, J., Carrivick, J. L., Quincey, D. J., and Smith, M. W.: Calving
Seasonality Associated With Melt-Undercutting and Lake Ice Cover, Geophys.
Res. Lett., 47, e2019GL086561, https://doi.org/10.1029/2019GL086561, 2020.
Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D.: Attribution of
global glacier mass loss to anthropogenic and natural causes, Science,
345, 919–921, https://doi.org/10.1126/science.1254702, 2014.
Medrzycka, D., Benn, D. I., Box, J. E., Copland, L., and Balog, J.: Calving
behavior at Rink Isbrae, West Greenland, from time-lapse photos, Arct.
Antarct. Alp. Res., 48, 263–277,
https://doi.org/10.1657/AAAR0015-059, 2016.
Messerli, A. and Grinsted, A.: Image georectification and feature tracking toolbox: ImGRAFT, Geosci. Instrum. Method. Data Syst., 4, 23–34, https://doi.org/10.5194/gi-4-23-2015, 2015.
Micheletti, N., Chandler, J. H., and Lane, S. N.: Investigating the
geomorphological potential of freely available and accessible
structure-from-motion photogrammetry using a smartphone, Earth Surf. Proc.
Land., 40, 473–486, https://doi.org/10.1002/esp.3648, 2015.
Minowa, M., Podolskiy, E. A., Sugiyama, S., Sakakibara, D., and Skvarca, P.:
Glacier calving observed with time-lapse imagery and tsunami waves at
Glaciar Perito Moreno, Patagonia, J. Glaciol., 64, 362–376,
https://doi.org/10.1017/jog.2018.28, 2018.
Mosbrucker, A. R., Major, J. J., Spicer, K. R., and Pitlick, J.: Camera system
considerations for geomorphic applications of SfM photogrammetry, Earth
Surf. Proc. Land., 42, 969–986, https://doi.org/10.1002/esp.4066, 2017.
Mulsow, C., Koschitzki, R., and Maas, H.-G.: Photogrammetric monitoring of
glacier margin lakes, Geomat. Nat. Haz. Risk, 6, 861–879,
https://doi.org/10.1080/19475705.2014.939232, 2015.
Nota, E. W., Nijland, W., and de Haas, T.: Improving UAV-SfM time-series
accuracy by co-alignment and contributions of ground control or RTK
positioning, Int. J. Appl. Earth Obs., 109, 102772,
https://doi.org/10.1016/j.jag.2022.102772, 2022.
O'Connor, J., Smith, M., and James, M.R.: Cameras and settings for aerial
surveys in the geosciences: optimizing image data, Prog. Phys. Geog., 41,
325–344, https://doi.org/10.1177/0309133317703092, 2017.
Pagnutti, M. A., Ryan, R. E., V, G. J. C., Gold, M. J., Harlan, R., Leggett, E.,
and Pagnutti, J. F.: Laying the foundation to use Raspberry Pi 3 V2 camera
module imagery for scientific and engineering purposes, J. Electron.
Imaging, 26, 013014, https://doi.org/10.1117/1.JEI.26.1.013014, 2017.
Pętlicki, M., Ciepły, M., Jania, J. A., Promińska, A., and Kinnard,
C.: Calving of a tidewater glacier driven by melting at the waterline, J.
Glaciol., 61, 851–863, https://doi.org/10.3189/2015JoG15J062, 2015.
Piermattei, L., Carturan, L., and Guarnieri, A.: Use of terrestrial
photogrammetry based on structure-from-motion for mass balance estimation of
a small glacier in the Italian alps, Earth Surf. Proc. Land., 40,
1791–1802, https://doi.org/10.1002/esp.3756, 2015.
Piras, M., Grasso, N., and Abdul Jabbar, A.: UAV Photogrammetric solution
using a Raspberry Pi camera module and smart devices: tests and results,
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W6, 289–296,
https://doi.org/10.5194/isprs-archives-XLII-2-W6-289-2017, 2017.
Prior-Jones, M. R., Bagshaw, E. A., Lees, J., Clare, L., Burrow, S., Werder,
M. A., Karlsson, N. B., Dahl-Jensen, D., Chudley, T. R., Christoffersen, P.,
Wadham, J. L., Doyle, S. H., and Hubbard, B.: Cryoegg: development and field
trials of a wireless subglacial probe for deep, fast-moving ice, J.
Glaciol., 67, 627–640, https://doi.org/10.1017/jog.2021.16, 2021.
Quincey, D. J., Lucas, R. M., Richardson, S. D., Glasser, N. F., Hambrey, M. J.,
and Reynolds, J. M.: Optical remote sensing techniques in high-mountain
environments: application to glacial hazards, Prog. Phys Geog., 29,
475–505, https://doi.org/10.1191/0309133305pp456ra, 2005.
Rosenau, R., Schwalbe, E., Maas, H.-G., Baessler, M., and Dietrich, R.:
Grounding line migration and high-resolution calving dynamics of Jakobshavn
Isbræ, West Greenland, JGR: Earth Surf., 118, 382–395,
https://doi.org/10.1029/2012JF002515, 2013.
Rounce, D., Watson, C., and McKinney, D.: Identification of Hazard and Risk
for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from
2000–2015, Remote Sens., 9, 654, https://doi.org/10.3390/rs9070654,
2017.
Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., Holt, T. O., and Snooke, N.: UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet, The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, 2015.
Schomacker, A.: Expansion of ice-marginal lakes at the Vatnajökull ice
cap, Iceland, from 1999 to 2009, Geomorphology., 119, 232–236,
https://doi.org/10.1016/j.geomorph.2010.03.022, 2010.
Schwalbe, E. and Maas, H.-G.: The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences, Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, 2017.
Shiggins, C. J., Lea, J. M., and Brough, S.: Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems, The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, 2023.
Singh, D. K., Gusain, H. S., Mishra, V., Gupta, N., and Das, R. K.: Automated
mapping of snow/ice surface temperature using Landsat-8 data in Beas River
basin, India, and validation with wireless sensor network data, Arab. J.
Geosci., 11, 136, https://doi.org/10.1007/s12517-018-3497-3, 2018.
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion
photogrammetry in physical geography, Prog. Phys. Geog., 40, 247–275,
https://doi.org/10.1177/0309133315615805, 2016.
Sulak, D. J., Sutherland, D. A., Enderlin, E. M., Stearns, L. A., and Hamilton,
G. S.: Iceberg properties and distributions in three Greenlandic fjords using
satellite imagery, Ann. Glaciol., 58, 92–106,
https://doi.org/10.1017/aog.2017.5, 2017.
Taylor, L. S.: Using a new generation of remote sensing techniques to monitor
Peru's mountain glaciers, PhD Thesis, University of Leeds, uk.bl.ethos.868488, 1–184 pp., 2022.
Taylor, L. S., Quincey, D. J., Smith, M. W., Baumhoer, C. A., McMillan, M., and
Mansell, D. T.: Remote sensing of the mountain cryosphere: Current
capabilities and future opportunities for research, Prog. Phys. Geog.,
45, 931–964, https://doi.org/10.1177/03091333211023690, 2021.
Taylor, L., Quincey, D., and Smith, M.: Dataset for: Evaluation of low-cost Raspberry Pi sensors for photogrammetry of glacier calving fronts, Zenodo [data set], https://doi.org/10.5281/zenodo.6786740, 2022.
Tweed, F. S. and Carrivick, J. L.: Deglaciation and proglacial lakes, Geol.
Today, 31, 96–102, https://doi.org/10.1111/gto.12094, 2015.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Chang., 9, 379–383,
https://doi.org/10.1038/s41558-019-0437-5, 2019.
Vivero, S. and Lambiel, C.: Monitoring the crisis of a rock glacier with
repeated UAV surveys, Geogr. Helv., 74, 59–69,
https://doi.org/10.5194/gh-74-59-2019, 2019.
Wang, W., Zhang, T., Yao, T., and An, B.: Monitoring and early warning system
of Cirenmaco glacial lake in the central Himalayas, Int. J. Disast. Risk
Re., 73, 102914, https://doi.org/10.1016/j.ijdrr.2022.102914, 2022.
Watson, C. S., Quincey, D. J., Smith, M. W., Carrivick, J. L., Rowan, A. V., and
James, M. R.: Quantifying ice cliff evolution with multi-temporal point
clouds on the debris-covered Khumbu Glacier, Nepal, J. Glaciol., 63,
823–837, https://doi.org/10.1017/jog.2017.47, 2017.
Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter, K., and Sugden, D. E.: Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs, Earth Surf. Dynam., 4, 515–529, https://doi.org/10.5194/esurf-4-515-2016, 2016.
Xie, S., Dixon, T. H., Voytenko, D., Holland, D. M., Holland, D., and Zheng,
T.: Precursor motion to iceberg calving at Jakobshavn Isbræ, Greenland,
observed with terrestrial radar interferometry, J. Glaciol., 62,
1134–1142, https://doi.org/10.1017/jog.2016.104, 2016.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G.,
Cobos, G., Dávila, L. R., Granados, H. D., Demuth, M. N., Espizua, L.,
Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund,
P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero,
C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco,
A., Usubaliev, R., and Vincent, C.: Historically unprecedented global glacier
decline in the early 21st century, J. Glaciol., 61, 745–762,
https://doi.org/10.3189/2015JoG15J017, 2015.
Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., and Van Oost, K.: Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection, Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, 2019.
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to...
Altmetrics
Final-revised paper
Preprint