Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2523-2023
https://doi.org/10.5194/nhess-23-2523-2023
Research article
 | 
14 Jul 2023
Research article |  | 14 Jul 2023

A neural network model for automated prediction of avalanche danger level

Vipasana Sharma, Sushil Kumar, and Rama Sushil

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024,https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
AscDAMs: Advanced SLAM-based channel detection and mapping system
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
EGUsphere, https://doi.org/10.48550/arXiv.2401.13877,https://doi.org/10.48550/arXiv.2401.13877, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149,https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024,https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary

Cited articles

Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, ISBN 9780198538646, 2005. 
Blagovechshenskiy, V., Medeu, A., Gulyayeva, T., Zhdanov, V., Ranova, S., Kamalbekova, A., and Aldabergen, U.: Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge, Water, 15, 1438, https://doi.org/10.3390/w15071438, 2023. 
Bottou, L.: Stochastic gradient learning in neural networks, in: Proceedings of Neuro-Nîmes'91, Nîmes, France, 4–8 November 1991, EC2, https://leon.bottou.org/papers/bottou-91c (last access: 11 July 2023), 1991. 
Chawla, M. and Singh, A.: A data efficient machine learning model for autonomous operational avalanche forecasting, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2021-106, 2021. 
Chen, Y., Chen, W., Rahmati, O., Falah, F., Kulakowski, D., Lee, S., Rezaie, F., Panahi, M., Bahmani, A., Darabi, H., and Torabi Haghighi, A.: Toward the development of deep learning analyses for snow avalanche releases in mountain regions, Geocarto Int., 37, 7855–7880, 2022. 
Download
Short summary
Snow avalanches are a natural hazard that can cause danger to human lives. This threat can be reduced by accurate prediction of the danger levels. The development of mathematical models based on past data and present conditions can help to improve the accuracy of prediction. This research aims to develop a neural-network-based model for correlating complex relationships between the meteorological variables and the profile variables.
Altmetrics
Final-revised paper
Preprint