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Abstract. Snow avalanches cause danger to human lives and
property worldwide in high-altitude mountainous regions.
Mathematical models based on past data records can pre-
dict the danger level. In this paper, we are proposing a neu-
ral network model for predicting avalanches. The model is
trained with a quality-controlled sub-dataset of the Swiss
Alps. Training accuracy of 79.75 % and validation accuracy
of 76.54 % have been achieved. Comparative analysis of neu-
ral network and random forest models concerning metrics
like precision, recall, and F1 has also been carried out.

1 Introduction

Accurate prediction of snow avalanches can help ensure peo-
ple’s safety in snow-covered regions. Many countries still
depend on human experts to analyse meteorological data to
forecast avalanche warnings.

The major hurdle in developing machine learning models
is the lack of sufficient and reliable data. This issue has been
resolved to a great extent by the WSL Institute of Snow and
Avalanche Research, Switzerland, by collecting 20 years of
data in avalanche forecasting. This dataset has further been
refined with quality control by experts. The dataset combines
different feature sets with meteorological variables.

This unique dataset has enabled experimentation with ma-
chine learning models like neural networks and has com-
pared its performance with the random forest machine learn-
ing technique.

This paper is organized as follows. Related literature is
briefly overviewed in Sect. 2. The dataset used for the train-
ing of neural networks is described in Sect. 3. After that, in
Sect. 4, we explain the neural network model, tuning of hy-
perparameters, and evaluation metrics. Random forest ma-
chine learning method details applied to the same dataset are
described in Sect. 5. Results from both methods are com-
pared and analysed in Sect. 6. The paper is concluded in
Sect. 7.

2 Related work

Many countries face snow avalanche hazards with snow-clad
mountains. It affects people, facilities, and properties. The
impact of snow avalanches on living, work, and recreation
in Canada is well documented (Stethem et al., 2003). Ev-
ery country generally follows its own avalanche classification
system. However, in this work, we will follow the European
Avalanche Danger Scale (EAWS, 2018).

A comprehensive dataset with the meteorological vari-
ables (resampled 24 h averages) and the profile variables ex-
tracted from the simulated profiles has been created (Pérez-
Guillén et al., 2022a). Weather station data of the IMIS (In-
tercantonal Measurement and Information System) network
in Switzerland for dry-snow conditions are further quality
controlled for creating 29 296 records. Each record has 30
variables.

The benefits and challenges of using machine learning and
AI for avalanche forecasting in Norway and Canada have
been discussed in detail (Horton et al., 2020). Also, ma-
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chine learning algorithms like the random forest has suc-
cessfully been used for the prediction of snow avalanches in
the region of the Swiss Alps (Pérez-Guillén et al., 2022b).
The random forest technique has also been used for fore-
casting snow avalanches in the Himalayan region (Chawla
and Singh, 2021). Numerical modelling techniques (Singh et
al., 2005) and artificial neural networks (Singh and Ganju,
2008) have been used for prediction of snow avalanches in
the Indian Himalayas. Deep learning methodology has also
recently been explored for predicting snow avalanches in Iran
(Chen et al., 2022) and Kazakhstan (Blagovechshenskiy et
al., 2023).

3 Dataset

In this paper, the public dataset provided by Envidat, a Swiss
organization, is used. This data are verified and supported by
the Swiss Data Science Center (grant C18-05 DEEP snow).
More than 20 years of data for avalanche forecasting in the
Swiss Alps are provided. Data cover the Swiss winters from
1997–2017. The data are collected from 182 snow stations
and are used by the Swiss avalanche warning service.

The dataset includes the meteorological variables (resam-
pled 24 h averages) and the profile variables extracted from
the simulated profiles. The dataset contains the danger rat-
ings published in the official Swiss avalanche bulletin us-
ing SNOWPACK simulations. The SNOWPACK simulations
provide two different output files for each station: (i) time
series of meteorological variables and (ii) simulated snow
cover profiles.

This study uses measured, extracted, profiled, and mod-
elled variables. The entire dataset is pre-processed to remove
missing and duplicate values. Further, the dataset is normal-
ized by using a scalar function. Also, categorical variables
used for danger levels are replaced with numerical repre-
sentation for compatibility with neural network training soft-
ware. In addition, some of the irrelevant columns with infor-
mation about the date, the sector ID, the name of the sector
region, the elevation width, the elevation station, and warn-
ing are removed from the dataset. The 30 variables used for
the training of the neural network model for predicting snow
avalanches are shown in Table 1.

4 Proposed neural network: NNM-1

Neural network models allow for the modelling of complex
nonlinear relationships between the multiple input and out-
put variables. It is a network of input, output, and interme-
diate layers (Fig. 1). The outputs are obtained by a linear
combination of the weights with inputs. The weights are se-
lected using a “learning algorithm” that minimizes a “cost
function” (Bishop, 2005).

This study uses multilayer feed-forward networks, where
each layer of nodes receives inputs from the previous layers.

Figure 1. Multilayer neural network model.

The outputs of the nodes in one layer are inputs to the next
layer. For example, the inputs into the hidden neuron in Fig. 1
are combined linearly to give the following output:

zj = bj +

∑
wijxj , (1)

where zj denotes the hypothesis of parameters w and b, and
xj denotes the features in the training set.

A nonlinear function modifies the above outputs of nodes
before being used as inputs by the next layer. The parame-
ters bj and wij are learned from data. The number of hidden
layers and nodes in each hidden layer is specified in advance.

Training of artificial neural networks, also known as su-
pervised learning, involves adjusting weights until the model
is properly fitted with labels indicating the avalanche danger
according to European norms. A total of 30 input variables
are used for training the network. The avalanche threat is cat-
egorized into five zones as follows:

1 – Low

2 – Moderate

3 – Considerate

4 – High

5 – Very high

The model’s performance across the training dataset is de-
scribed by a loss function which computes the difference be-
tween the trained model’s predictions and the actual incident
instances. The loss function would be very high if the gap
between expected and actual results is too large. The loss
function gradually learns to lower the prediction error with
the optimization function (Bottou, 1991). A multi-class clas-
sification cost function is used for avalanche prediction for
each danger level. The average difference between the prob-
ability distributions that were anticipated and that occurred
is calculated.

Cross entropy loss=−
∑5

i=1
yi · log ŷi (2)
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Table 1. Thirty meteorological variables in four categories (measured, extracted, profiled, modelled) (Pérez-Guillén et al., 2022a) used to
develop the neural network model.

(a) Measured variables (b) Extracted variables (c) Profiled variables

Air temperature 3 d wind drift Min critical cut length at a deeper layer of the penetration depth
Wind velocity 7 d wind drift Critical cut length at surface weak layer
Relative humidity 7 d sum of daily height of new snow Natural stability index at surface layer
Wind velocity drift Skier penetration depth

(d) Modelled variable

Sensible heat Sk38 skier stability index Surface temperature
Ground heat at soil interface Diffuse incoming shortwave Solid precipitation rate
Incoming long-wave radiation Depth of Sk38 skier stability index Snow height
Net long-wave radiation Natural stability index 24 h height of new snow
Incoming shortwave radiation Depth of natural stability index 3 d sum of daily height of new snow
Net shortwave radiation Structural stability index 24 h wind drift
Parameterized albedo

Table 2. Range of hyperparameters used for testing neural net-
works.

Hyperparameter Minimum Maximum
value value

Number of hidden layers 1 10
Number of neurons in the hidden layer 5 68

Equation (2) computes cross entropy loss using the target and
predicted danger levels.

In our scenario, the output layer is set up with five nodes
(one for each danger level). The SoftMax activation function
is used to compute the probability for each danger class zj :

SoftMax
(
zj

)
=

ezi∑
j e

zj
. (3)

Equation (3) transforms the raw outputs of the neural net-
work into probabilities (Christopher, 2005).

The gradient descent method has been used to update the
weights and bias through backpropagation. The Adam (adap-
tive moment estimation) optimizer is used for optimization. It
performs the search process using an exponentially decreas-
ing moving average of the gradient.

The performance of a neural network mainly depends on
the number of hidden layers and the number of neurons in
the respective hidden layer. Table 2 shows the range of hy-
perparameters used for testing different neural networks. The
upper limit on the number of neurons has been set according
to the number of raw variables in the original dataset.

After exhaustive testing of neural networks with hyperpa-
rameters (Table 2), networks are ranked according to train-
ing accuracy (Table 3). However, after plotting of training
and validation curves (Fig. 2a, c, e, g), it is observed that
validation accuracy was reduced though training accuracy
was increased, thus indicating over-fitting of the neural net-

work models. To address this problem, dropout layers are in-
cluded and tested with different dropouts. Figure 2b, d, f, h
shows that dropout regularization successfully resolved over-
fitting and significantly improved validation accuracy. Maxi-
mum validation accuracy is observed for NNM no. 3 with a
dropout of 0.2, 0.1, and 0.1 on three hidden layers (Fig. 3).

The proposed neural network architecture based on the
above study is shown in Table 4. It has three hidden layers
and has been trained for 100 epochs. The model achieved
a training accuracy of 79.75 % and a validation accuracy of
76.54 %. A confusion matrix for the proposed NNM-1 is
shown in Fig. 4 predicting a considerate danger level; out
of 1000 cases, 806 cases are true positives, and 194 cases are
false positives.

Evaluation matrix for NNM-1

Table 5 shows the various evaluation metrics like accuracy,
precision, recall, and F1 score for the neural network model.
The proposed neural network correctly predicted 76 clas-
sifications for every 100 forecasts made. The macro- and
weighted averages of precision, recall, and the F1 score are
shown in Table 5. The macro-average is computed without
considering the proportion of labels in different classes of
danger levels. It may be noted that the weighted average takes
into account a low number of labels for high and very high
danger level classes. The proposed neural network model
achieved a macro- and weighted average F1 score of 0.69
and 0.75, respectively.

5 Random forest

A random forest is a meta-estimator that employs averag-
ing to increase predictive accuracy and reduce over-fitting
after fitting numerous decision tree (DT) classifiers to differ-
ent dataset subsamples (Kroese et al., 2019). A subset of the
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Figure 2. Effect of dropout on training and validation accuracy. (a) NNM no. 1 without a dropout; (b) NNM no. 1 with a dropout of 0.2, 0.1,
and 0.1 on three hidden layers; (c) NNM no. 2 without a dropout; (d) NNM no. 2 with a dropout of 0.2, 0.1, and 0.1 on three hidden layers;
(e) NNM no. 3 without a dropout; (f) NNM no. 3 with a dropout of 0.2 and 0.1 on two hidden layers; (g) NNM no. 4 without a dropout; and
(h) NNM no. 4 with a dropout of 0.1, 0.1, and 0.1 on three hidden layers.

Table 3. Neural network models ranked according to training accuracy with a learning rate of 0.001 for 100 epochs and a batch size of 64.

Number of Number of nodes in Number of nodes Training Validation
hidden the first layer in remaining accuracy accuracy
layers layers (%) (%)

NNM no. 1 3 50 25, 16 84.90 72.15
NNM no. 2 3 48 24, 16 79.19 74.11
NNM no. 3 2 48 24 79.09 73.06
NNM no. 4 3 36 24, 16 78.70 72.64

training data is randomly chosen by the random forest clas-
sifier to construct a set of decision trees. It simply consists of
a collection of decision trees from a randomly chosen sub-
set of the training set, which is subsequently used to decide
the final prediction. The confusion matrix for the random for-
est classifier is shown in Fig. 5. The dataset (2920 records)
used for validating the neural network model is applied to the
computing performance matrix. Several decision trees make
up the random forest model, which is trained with the Clas-
sification and Regression Tree (CART) algorithm. Table 6

shows the various evaluation metrics like precision, recall,
and F1 score for the random forest model.

6 Results and discussion

Testing of the proposed model has been carried out with 2920
records for which ground truth labels are available. The data
for the high and very high avalanche threats are less com-
pared to low, moderate, and considerate threats. This sce-
nario in a dataset where samples of data in one class are
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Table 4. Proposed neural network model (NNM-1) architecture.

Number Number Number Learning Epoch Batch Dropout Number of
of inputs of hidden of nodes rate size outputs

layers in layers

30 3 48, 24, 16 0.001 100 64 0.2, 0.1, 0.1 5

Figure 3. Improvement in validation accuracy of neural network
models with dropout regularization. Maximum validation accuracy
was achieved with NNM no. 2 with a dropout of 0.2, 0.1, and 0.1
on three hidden layers.

Table 5. Parametric evaluation metrics for the proposed neural net-
work model.

Class Danger level Precision Recall F1 Support

0 Low 0.85 0.86 0.86 909
1 Moderate 0.67 0.69 0.68 885
2 Considerate 0.76 0.81 0.78 1000
3 High 0.50 0.13 0.21 116
4 Very high 0.67 0.20 0.31 10
Accuracy = 0.76 2920
Macro-avg 0.69 0.54 0.57 2920
Weighted avg 0.75 0.76 0.75 2920

much higher compared to that of the other class is a skewed
dataset. In this case, the higher data sample class (low, mod-
erate, and considerate avalanche threat) becomes the major
class. The class consisting of relatively fewer data samples
(high and very high avalanche threat) is labelled as a minor
class. Hence, the overall neural network performance is af-
fected, thereby generating less accurate results for the minor
class.

We trained multiple neural network models with a variety
of hyperparameters. The model NNM-1 (Table 4) used for
the comparative analysis is without over-fitting and has max-
imum validation accuracy. Another random forest model RF-
A (Möhle et al., 2014) is also tested with the same datasets.

Table 6. Evaluation for the random forest model (RF-A).

Class Danger level Precision Recall F1 Support

0 Low 0.88 0.88 0.88 895
1 Moderate 0.72 0.73 0.72 933
2 Considerate 0.74 0.82 0.78 962
3 High 0.44 0.09 0.15 123
4 Very high 0.33 0.14 0.20 7
Accuracy= 0.76 2920
Macro-avg 0.69 0.54 0.57 2920
Weighted avg 0.75 0.76 0.75 2920

Both models (NNM-1 and RF-A) achieved the same overall
accuracy (0.76) as RF-1, which is slightly less than RF-2’s
accuracy (0.78). F1 scores for low, medium, and consider-
ate classes are equal for NNM-1 and RF-A models (Table 6).
However, the low F1 value for the high and very high class
for NNM-1 and RF-A is attributed to skewed data distribu-
tion. Weighted average values (Table 5) are more appropriate
compared to macro-average values, as these consider a low
number of labels for classes 3 and 4.

7 Conclusion

A neural network model to predict avalanche danger levels
has been developed. The model is validated by using 20 years
of meteorological measurements and extracted and modelled
variables of the Swiss Alps. Extensive testing has been car-
ried out for tuning hyperparameters, like the number of hid-
den layers and neurons. The data used for testing the neural
network model are also applied to the random forest model
for the evaluation of performance metrics (Table 7). The de-
veloped model has achieved a training accuracy of 79.75 %
and a validation accuracy of 76.54 %, which is the same as
RF-1 and RF-A but with 2.56 % less accuracy than RF-2.

Appendix A: Formulas for the evaluation metrics

Performance indicators like accuracy, precision, recall, and
F1 score are used for assessing the effectiveness of the
avalanche prediction model. The notations used are

– TP (true positive), the number of points that are positive
and predicted to be positive;
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Figure 4. Confusion matrix for NNM-1.

Figure 5. Confusion matrix for evaluating random forest classification.

– FN (false negative), the number of points that are posi-
tive but predicted to be negative;

– FP (false positive), the number of points that are nega-
tive but predicted to be positive;

– TN (true negative), the number of points that are nega-
tive and predicted to be negative.

The accuracy of classification is the ratio of correct pre-
dictions to the total number of input samples.

Accuracy=
Number of predictions

Total number of predictions
(A1)

Precision is the total number of successfully classified posi-
tive classes to the total number of anticipated positive classes.

Precision=
TP

TP+FP
(A2)

Recall is the total number of correctly classified positive
classes to the total number of positive classes.

Recall=
TP

TP+FN
(A3)
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Table 7. Various parametric values of some existing models and proposed NNM-1 for snow avalanche prediction.

Model DL Prec. Recall F1 Support Model Prec. Recall F1 Support

(a) NNM-1 Low 0.85 0.86 0.86 909 (b) RF-A 0.88 0.88 0.88 895

Medium 0.67 0.69 0.68 885 (Random Forest 0.72 0.73 0.72 933

Considerate 0.76 0.81 0.78 1000 Model) 0.74 0.82 0.78 962

High + Very high 0.51 0.13 0.21 126 0.42 0.09 0.15 130

Accuracy = 0.76 2920 Accuracy = 0.76 2920

(c) RF-1 Low 0.93 0.78 0.85 1400 (d) RF-2 0.87 0.90 0.88 1400

(Pérez-Guillén Medium 0.67 0.70 0.68 1316 (Pérez-Guillén 0.73 0.67 0.70 1316

et al., 2022b) Considerate 0.73 0.84 0.78 1223 et al., 2022b) 0.76 0.78 0.77 1223

High + Very high 0.64 0.65 0.64 133 0.56 0.71 0.63 133

Accuracy = 0.76 4072 Accuracy = 0.78 4072

The F1 score is the harmonic mean of precision and recall.
Mathematically, it can be expressed as

F1= 2 ·
1

1
Precision +

1
Recall

. (A4)

The formulas used for calculating the macro- and weighted
average are as follows:

Weighted average=
∑5

i=1wixi∑5
i=1wi

, (A5)

where wi denotes the weights of the five classes, and xi de-
notes the value, and

Macro-average=
∑5

i=1xi

5
, (A6)

where xi denotes the value, and 5 is the number of the target
variables.
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