Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1755-2023
https://doi.org/10.5194/nhess-23-1755-2023
Research article
 | 
12 May 2023
Research article |  | 12 May 2023

Reduced-order digital twin and latent data assimilation for global wildfire prediction

Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci

Related authors

AerChemMIP2 – Unraveling the role of reactive gases, aerosol particles, and land use for air quality and climate change in CMIP7
Stephanie Fiedler, Fiona M. O'Connor, Duncan Watson-Parris, Robert J. Allen, William J. Collins, Paul T. Griffiths, Matthew Kasoar, Jarmo Kikstra, Jasper F. Kok, Lee T. Murray, Fabien Paulot, Maria Sand, Steven Turnock, James Weber, Laura J. Wilcox, and Vaishali Naik
EGUsphere, https://doi.org/10.5194/egusphere-2025-5669,https://doi.org/10.5194/egusphere-2025-5669, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Predicting spatio-temporal wildfire propagation with dynamic firebreaks
Jiahe Zheng, Zhengsen Xu, Rossella Arcucci, Sandy P. Harrison, Lincoln Linlin Xu, and Sibo Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-4007,https://doi.org/10.5194/egusphere-2025-4007, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Estimating future wildfire burnt area over Greece using the JULES-INFERNO model
Anastasios Rovithakis, Eleanor Burke, Chantelle Burton, Matthew Kasoar, Manolis G. Grillakis, Konstantinos D. Seiradakis, and Apostolos Voulgarakis
Nat. Hazards Earth Syst. Sci., 25, 3185–3200, https://doi.org/10.5194/nhess-25-3185-2025,https://doi.org/10.5194/nhess-25-3185-2025, 2025
Short summary
Structural uncertainty in the direct human forcing of future global burned area
Oliver Perkins, Olivia Haas, Matthew Kasoar, Apostolos Voulgarakis, and James D. A. Millington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3728,https://doi.org/10.5194/egusphere-2025-3728, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Mapping the global distribution of lead and its isotopes in seawater with explainable machine learning
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data, 17, 3679–3699, https://doi.org/10.5194/essd-17-3679-2025,https://doi.org/10.5194/essd-17-3679-2025, 2025
Short summary

Cited articles

acse-cz421: DL-WG/Digital-twin-LA-global-wildfire: Reduced-order digital twin and latent data assimilation for global wildfire prediction (v1.1.1), Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.7866704, 2023. 
Amendola, M., Arcucci, R., Mottet, L., Casas, Q. C., Fan, S., Pain, C., Linden, P., and Guo, Y.: Data Assimilation in the Latent Space of a Convolutional Autoencoder, ICCS 2021, Lect. Notes Comput. Sc., 12746, 373–386, https://doi.org/10.1007/978-3-030-77977-1_30, 2021. 
Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of Earth for the green transition, Nat. Clim. Change, 11, 80–83, https://doi.org/10.1038/s41558-021-00986-y, 2021. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Bianchi, F. M., De Santis, E., Rizzi, A., and Sadeghian, A.: Short-Term Electric Load Forecasting Using Echo State Networks and PCA Decomposition, IEEE, 3, 1931–1943, https://doi.org/10.1109/ACCESS.2015.2485943, 2015. 
Download
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Share
Altmetrics
Final-revised paper
Preprint