Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1755-2023
https://doi.org/10.5194/nhess-23-1755-2023
Research article
 | 
12 May 2023
Research article |  | 12 May 2023

Reduced-order digital twin and latent data assimilation for global wildfire prediction

Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci

Related authors

A probabilistic approach to wildfire spread prediction using a denoising diffusion surrogate model
Wenbo Yu, Anirbit Ghosh, Tobias Sebastian Finn, Rossella Arcucci, Marc Bocquet, and Sibo Cheng
Geosci. Model Dev., 19, 1027–1054, https://doi.org/10.5194/gmd-19-1027-2026,https://doi.org/10.5194/gmd-19-1027-2026, 2026
Short summary
The Fire Modeling Intercomparison Project (FireMIP) for CMIP7
Fang Li, David Lawrence, Brendan Rogers, Chantelle Burton, Huilin Huang, Yiquan Jiang, Johannes Kaiser, Matthew Kasoar, Hanna Lee, Ruby Leung, Lars Nieradzik, Aihui Wang, Daniel Ward, Ligeer Ce, Yangchun Li, Zhongda Lin, Apostolos Voulgarakis, and Yongkang Xue
EGUsphere, https://doi.org/10.5194/egusphere-2025-6115,https://doi.org/10.5194/egusphere-2025-6115, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
AerChemMIP2 – Unraveling the role of reactive gases, aerosol particles, and land use for air quality and climate change in CMIP7
Stephanie Fiedler, Fiona M. O'Connor, Duncan Watson-Parris, Robert J. Allen, William J. Collins, Paul T. Griffiths, Matthew Kasoar, Jarmo Kikstra, Jasper F. Kok, Lee T. Murray, Fabien Paulot, Maria Sand, Steven Turnock, James Weber, Laura J. Wilcox, and Vaishali Naik
EGUsphere, https://doi.org/10.5194/egusphere-2025-5669,https://doi.org/10.5194/egusphere-2025-5669, 2025
Short summary
Predicting spatio-temporal wildfire propagation with dynamic firebreaks
Jiahe Zheng, Zhengsen Xu, Rossella Arcucci, Sandy P. Harrison, Lincoln Linlin Xu, and Sibo Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-4007,https://doi.org/10.5194/egusphere-2025-4007, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Estimating future wildfire burnt area over Greece using the JULES-INFERNO model
Anastasios Rovithakis, Eleanor Burke, Chantelle Burton, Matthew Kasoar, Manolis G. Grillakis, Konstantinos D. Seiradakis, and Apostolos Voulgarakis
Nat. Hazards Earth Syst. Sci., 25, 3185–3200, https://doi.org/10.5194/nhess-25-3185-2025,https://doi.org/10.5194/nhess-25-3185-2025, 2025
Short summary

Cited articles

acse-cz421: DL-WG/Digital-twin-LA-global-wildfire: Reduced-order digital twin and latent data assimilation for global wildfire prediction (v1.1.1), Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.7866704, 2023. 
Amendola, M., Arcucci, R., Mottet, L., Casas, Q. C., Fan, S., Pain, C., Linden, P., and Guo, Y.: Data Assimilation in the Latent Space of a Convolutional Autoencoder, ICCS 2021, Lect. Notes Comput. Sc., 12746, 373–386, https://doi.org/10.1007/978-3-030-77977-1_30, 2021. 
Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of Earth for the green transition, Nat. Clim. Change, 11, 80–83, https://doi.org/10.1038/s41558-021-00986-y, 2021. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Bianchi, F. M., De Santis, E., Rizzi, A., and Sadeghian, A.: Short-Term Electric Load Forecasting Using Echo State Networks and PCA Decomposition, IEEE, 3, 1931–1943, https://doi.org/10.1109/ACCESS.2015.2485943, 2015. 
Download
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Share
Altmetrics
Final-revised paper
Preprint