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Abstract. The occurrence of forest fires can impact vegeta-
tion in the ecosystem, property, and human health but also in-
directly affect the climate. The Joint UK Land Environment
Simulator – INteractive Fire and Emissions algorithm for
Natural envirOnments (JULES-INFERNO) is a global land
surface model, which simulates vegetation, soils, and fire
occurrence driven by environmental factors. However, this
model incurs substantial computational costs due to the high
data dimensionality and the complexity of differential equa-
tions. Deep-learning-based digital twins have an advantage
in handling large amounts of data. They can reduce the com-
putational cost of subsequent predictive models by extract-
ing data features through reduced-order modelling (ROM)
and then compressing the data to a low-dimensional latent
space. This study proposes a JULES-INFERNO-based digi-
tal twin fire model using ROM techniques and deep learning
prediction networks to improve the efficiency of global wild-
fire predictions. The iterative prediction implemented in the
proposed model can use current-year data to predict fires in
subsequent years. To avoid the accumulation of errors from
the iterative prediction, latent data assimilation (LA) is ap-
plied to the prediction process. LA manages to efficiently
adjust the prediction results to ensure the stability and sus-
tainability of the prediction. Numerical results show that the
proposed model can effectively encode the original data and
achieve accurate surrogate predictions. Furthermore, the ap-
plication of LA can also effectively adjust the bias of the
prediction results. The proposed digital twin also runs 500
times faster for online predictions than the original JULES-
INFERNO model without requiring high-performance com-
puting (HPC) clusters.

1 Introduction

Every year, unwanted wildland fires result in significant eco-
nomic, social, and environmental impacts on a global scale
(Grillakis et al., 2022). In addition, forest fires are especially
sudden, extraordinarily destructive, and notably difficult to
respond to timely (Grillakis et al., 2022). Globally, an aver-
age of more than 200 000 forest fires occur each year, burning
more than 1 % of the world’s forested area (Pais et al., 2021).
Wildfires not only destroy vegetation but can also pose risks
to life and property, impact human health due to smoke pol-
lution, and feed back on climate change through the release
of stored carbon (Kim, 2015; Marlier et al., 2015; Jauhiainen
et al., 2012; Lasslop et al., 2019; Ward et al., 2012). Study-
ing the influence of vegetation and climatic factors on wild-
fire occurrence is critical for anticipating future wildfires and
preparing for their possible impacts on ecosystems and soci-
ety.

Global fire frequency is related to land use, vegetation
type, and meteorological factors. Arid land, hot and dry
weather, and combustible vegetation are all wildfire risk
factors. Therefore, data from validated natural environment
models can predict forest fire risk. Numerous valid and rele-
vant models exist, such as earth system models (Claussen et
al., 2002) and dynamic global vegetation models (DGVMs)
(Prentice and Cowling, 2013). The Joint UK Land Environ-
ment Simulator – INteractive Fire and Emissions algorithm
for Natural envirOnments (JULES-INFERNO) (Best et al.,
2011; Clark et al., 2011) is an example of a DGVM. JULES-
INFERNO simulates fire burnt area and emissions over time
based on geographic features such as population, land us-
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age, and meteorological conditions (Burton, 2019; Mangeon
et al., 2016). However, implementing such a DGVM simula-
tion is time-consuming due to the complexity of the physical
model and the number of associated geographical features.
For example, predicting wildfire occurrence over a 100-year
climate change scenario takes approximately 17 h runtime
using 32 threads on the JASMIN high-performance comput-
ing (HPC) service (JASMIN Site, 2022; Lawrence, 2013)
(100-year runtime estimated as average from four simula-
tions, range of 14.3–19.7 h, using Intel Xeon E5-2640 v4
“Broadwell” or Intel Xeon Gold 5118 “Skylake” processors
with ∼ 7 GB RAM available per thread). This is further lim-
ited by availability and queuing priority of the computer re-
source. Therefore, building an efficient digital twin as a sur-
rogate model is necessary for accelerating the prediction pro-
cess.

The digital twin paradigm combines process-based infor-
mation and data-driven approaches to best estimate complex
systems. An extensive range of scientific problems, including
medical science (Quilodrán-Casas et al., 2022), nuclear en-
gineering (Gong et al., 2022a), and earth system modelling
(Bauer al., 2021), use the digital twin paradigm for mod-
elling. Since the 1990s, researchers have studied the relation-
ship between vegetation and wildfire using machine learn-
ing and artificial intelligence (Nadeem et al., 2020). Recent
research shows that machine-learning-based reduced-order
modelling (ROM) can effectively reduce the computational
cost by constructing surrogate models (Mohan and Gaitonde,
2018). ROM efficiently compresses the raw data into a low-
dimensional space using an encoder and then decompresses
the data using a decoder. Thus, predictions and simulations
can be performed in a low-dimensional latent space before
being decoded into a real physical space. However, predic-
tive models trained using large amounts of data do not nec-
essarily guarantee long-term prediction accuracy. In fact, it-
erative applications of sequence-to-sequence (Seq2seq) fore-
casting models can lead to error accumulation, resulting in
incorrect long-term predictions (Cheng et al., 2022a, b). Re-
searchers have applied data assimilation (DA) methods to ad-
dress this challenge. DA methods correct the predicted data
by combining simulated data with observations through spe-
cific weighting (Gong et al., 2020). Applications of DA in
high-dimensional dynamical systems include weather fore-
casting (Lorenc et al., 2000; Bonavita et al., 2015; Ma et
al., 2014), hydrology (Cheng et al., 2020), and nuclear en-
gineering (Gong et al., 2022b). However, wildfire data from
the increasing number of meteorological satellites have high
data dimensions (Jain et al., 2020). Applying DA operations
on full-size data is computationally expensive, if not pro-
hibitively so, because there are some major challenges in
high-dimensional dynamical system models, such as ROM,
dynamical system identification, and model error correction
(Cheng et al., 2023).

Latent data assimilation (LA), which combines ROM, ma-
chine learning (ML) surrogate models, and DA, was recently

proposed (Peyron et al., 2021) and applied to a wide range
of engineering problems, including air pollution modelling
(Amendola et al., 2021), multiphase fluid dynamics (Cheng
et al., 2022a), and regional wildfire predictions (Cheng et al.,
2022b). In LA, data compression happens before the DA op-
eration (Peyron et al., 2021), significantly reducing the com-
putational cost. Iteration of this prediction assimilation pro-
cess improves the starting point of the next time-level fore-
cast and leads to more robust long-term predictions.

The main objective of this study is to propose a digital
twin model with the same burnt area output as the JULES-
INFERNO system. The digital twin model combines ROM,
machine learning predictive models, and LA. Data from the
JULES-INFERNO simulations are used to train the machine-
learning-based digital twin model. A time series of wildfire-
related data is given as input to predict the occurrence of
wildfires in the following years. The proposed model is tested
on unseen initial conditions to predict subsequent fire condi-
tions. This digital twin can significantly improve prediction
efficiency compared to the physical model.

Two ROM approaches, convolutional autoencoder (CAE)
and principal component analysis (PCA), are chosen to re-
duce data dimensionality. Long short-term memory (LSTM)
forms the main structure for wildfire occurrence probabil-
ity prediction because LSTM is suitable for dealing with
dynamic simulations with long-term temporal correlations
(Graves and Schmidhuber, 2005a). LA is applied to cor-
rect the model results as soon as “observation” data become
available. The “observation” data used here for LA are the
encoded data from the original JULES-INFERNO simula-
tions, which we use as a proof-of-concept substitute for high-
quality observation data. Compared to the traditional DA
in the entire physical space, LA can considerably improve
computational efficiency thanks to the ROM (Graves and
Schmidhuber, 2005a). This research aims to use the initial
months’ output from JULES-INFERNO as input to imple-
ment a global-scale wildfire predictive model that combines
ROM, recurrent neural networks (LSTM), and LA for effi-
cient wildfire forecasting.

To summarize, the main contributions of this study are as
follows.

– This research implements a deep learning digital twin
for wildfire prediction based on the JULES-INFERNO
land surface model. The digital twin can greatly im-
prove the computational efficiency of the physical
model by embedding the input into a low-dimensional
space before prediction.

– We tested and compared two ROM approaches – con-
volutional autoencoder (CAE) and principal component
analysis (PCA) – in terms of reconstruction and pre-
diction accuracy over the simulation period of 1961 to
1990.The objective is to achieve a significant reduction
in data dimensionality to improve the efficiency of sub-
sequent predictions but maintain the original character-
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istics of the data. The digital twin achieves long-term
predictions by making iterative predictions by using the
current predicted results as the next-level input to pre-
dict the situation in the next time step.

– LA is applied to avoid error accumulation. LA com-
pares the predicted values against the original JULES-
INFERNO outputs (considered as observations in this
study) and periodically adjusts the predictions. When
applying unseen scenarios to the developed model, LA
adjusts the predicted values to improve the accuracy of
subsequent predictions. Therefore, LA implemented in
this project can effectively stabilize prediction results.

The paper is organized into the following sections: Sect. 2
explains the original physical model, JULES-INFERNO, and
the dataset of this project. Section 3 describes the dimension-
ality reduction method used in the study (PCA and the con-
structed CAE structure), explains the surrogate model used
in this research for wildfire prediction, and outlines the prin-
ciples and applications of LA. Section 4 discusses the ex-
perimental results and analysis of the study. Finally, Sect. 5
concludes the most important findings of this research and
suggests future directions for enhancement.

2 JULES-INFERNO

The Joint UK Land Environment Simulator (JULES) is sim-
ulating land surface vegetation, carbon stores, and hydrology,
primarily using physical models to simulate the processes
of land use, water and carbon fluxes with the atmosphere,
and climate interactions with vegetation dynamics (Best et
al., 2011; Clark et al., 2011). The INFERNO fire scheme
was constructed based on a simplified parameterization of
fire ignition and vegetation flammability (Pechony and Shin-
dell, 2009). Coupled with JULES, the INFERNO scheme
predicts fire burnt area and carbon emissions based on the
simulated vegetation, as well as vegetation mortality due to
fire, which feeds back on the vegetation distribution (Bur-
ton, 2019; Mangeon et al., 2016). More precisely, the model
calculates flammability based on soil moisture, fuel density,
temperature, humidity, and precipitation and then combines
lightning strikes to estimate the average area burnt. Finally,
emitted atmospheric aerosols and trace gases can be cal-
culated from vegetation-dependent emission factors (Man-
geon et al., 2016). Figure 1 illustrates the input variables
and critical components of JULES-INFERNO. However, this
model involves a large amount of data and number of param-
eters, leading to high computational cost. In the present pa-
per, we propose the use of a surrogate model as a substitute
for the original high-precision simulation model. The surro-
gate model aims to use the same input fields as the original
model and to output a result that approximates the original
INFERNO burnt area output but is less computationally in-
tensive to solve.

This research considered four meteorological boundary
conditions and predicted burnt area (temperature (T ), hu-
midity (H ), rainfall (R), and lightning (L)) and the field
of burnt area fraction (P ) from the JULES-INFERNO
model as input data. We used an ensemble of five JULES-
INFERNO simulations which were forced using meteoro-
logical conditions from the Fire Modeling Intercomparison
Project (FireMIP) last glacial maximum (LGM) scenario
(Rabin et al., 2017), which uses a detrended 1961–1990
re-analysis time series, uniformly shifted to match LGM
global average climate, as the atmospheric boundary con-
ditions. Monthly-mean values were collected for each me-
teorological boundary condition, nominally from 1961–1990
for each simulation. Thus 360 snapshots for each variable are
available, denoted as temperature (Ti, i = 1, 2, · · ·,360), hu-
midity (Hi, i = 1, 2, · · ·,360), rainfall (Ri, i = 1, 2, · · ·,360),
and lightning (Li, i = 1, 2, · · ·,360). JULES-INFERNO was
run with a resolution of 1.25◦ latitude× 1.875◦ longitude,
giving each snapshot a latitude span of 144 units and a lon-
gitude span of 192 units, so the size of each snapshot is
144× 192. We denote the wildfire burnt area predicted by
JULES-INFERNO from each of the five ensemble mem-
bers as Ps, s = 1, 2, · · ·,5). Although each ensemble mem-
ber simulated the same nominal period (1961 to 1990) and
was forced by the same detrended meteorological boundary
conditions, we applied different initial internal states to sam-
ple a range of model internal variability. As shown in Ta-
ble 1, P1 was randomized, and the initial internal states of
the subsequent experimental results were all the last inter-
nal states of the previous one. The burnt area model output
is only diagnosed over latitudes with non-zero land cover,
and so the wildfire burnt area data (Ps,i, s = 1, 2, · · ·,5, i =
1, 2, · · ·,360) only spans 112 latitude units, meaning the fire
snapshot size is 112× 192 rather than 144× 192.

In subsequent experiments, P1,P2, and portion of P3 are
the training set, and another portion of P3 is the validation
set during training. P4 and P5 were used as the test set for all
models built in the study. In addition, to eliminate the adverse
effects of odd sample data in training, this research standard-
ized all training and test sets (climates and fire variables) by
applying Eq. (1) to normalize the data to [0, 1]:

Ps =
Ps−Psmin

Psmax −Psmin

s = 1,2, · · ·,5. (1)

3 Methodology

In this section, we present the main technologies used to
develop the digital twin: ROM, surrogate predictive model,
and LA. The computation of the digital twin starts by con-
structing the ROM for reducing the dimension of JULES-
INFERNO data. The climate and wildfire data are then con-
catenated and processed into time series data and fed into the
training predictive model. Afterwards, iterative forecasting
tests the trained surrogate model. The test uses 12 months of
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Figure 1. The mechanism of JULES-INFERNO.

Table 1. JULES-INFERNO experiments’ initial internal states.

Experiment P1 P2 P3 P4 P5

Initial conditions 1200-year spin-up re-
peating the 1961–1990
time series, originally
initialized from an
arbitrary present-day
JULES run

1 Jan 1991 from P1 1 Jan 1991 from P2 1 Jan 1991 from P3 1 Jan 1991 from P4

Ignitions Lightning Lightning Lightning Lightning Lightning

unseen data as input to predict fires for the next 29 years. LA
periodically adjusts the forecasting process to ensure stabil-
ity, accuracy, and sustainability.

3.1 Reduced-order modelling

Assume that the original data are an n-dimensional vec-
tor denoted as U = {ui} i=1, 2, ···,n; we then denote the com-
pressed variable (k-dimension, k < n) after dimensional-
ity reduction as Ũ = {ũi} i=1, 2, ···,k . The variable that re-
constructs the compressed data to the original size is de-
noted as Û = {ûi} i=1, 2, ···,n. ROM’s primary purpose is
to minimize the expectation of the mean square error
(MSE) of reconstruction, i.e. E[(U − Û )2]. The meteoro-
logical boundary conditions and burnt area data obtained
by dimensionality reduction can therefore be denoted by
T̃i, H̃i, R̃i, L̃i, ˜Ps,i, s = 1,2, · · ·5; i = 1,2, · · ·360, and each
reduced snapshot is k-dimensional. Decoded data are de-
noted as T̂i, Ĥi, R̂i, L̂i, ˆPs,i, s = 1,2, · · ·5; i = 1,2, · · ·360,

and the dimensionality of each element is consistent with the
original data (n-dimension).

3.1.1 PCA

PCA extracts essential information from the data and elim-
inates redundant information by analysing principal compo-
nents. PCA uses the idea of dimensionality reduction to form
new variables by linearly combining multiple parameter in-
dicators and mapping the original n-dimensional features to
k-dimensional features (n > k); k is known as the truncation
parameter in PCA (Bianchi et al., 2015).

The compressed variable ũi can be represented by a linear
combination of u1,u2, . . .,un as shown in Eq. (2) to make the
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global variance after the transformation maximal:

ũ1 = α11u1+α12u2+ ·· ·+α1nun
ũ2 = α21u1+α22u2+ ·· ·+α2nun
ũ3 = α31u1+α32u2+ ·· ·+α3nun
...

ũk = αk1u1+αk2u2+ ·· ·+αknun

, (2)

where αi = [αi1,αi1, · · ·,αin]
T (i = 1, 2, · · ·,k) is the eigen-

vector associated with the eigenvalues λi of the covariance
matrix C.

The covariance matrix C is shown in Eq. (3), and the for-
mula for the covariance is shown in Eq. (4):

C=

 cov(u1,u1) cov(u1,u2) · · · cov(u1,un)
.
.
.

. . .
.
.
.

cov(un,u1) cov(un,u2) · · · cov(un,un)

 , (3)

cov
(
ui,uj

)
= E

(
uiuj

)
−E(ui)E

(
uj
)
i,j = 1,2, · · ·,n, (4)

where E(ui) represents the mathematical expectation of ui .
The contribution rate of each principal component can be

calculated using the principal component explained variance
formula (Eq. 5), and the principal components correspond-
ing to the special eigenvalues λ1,λ2, · · ·,λn are selected in
descending order to construct Ũ . The cumulative explained
variance is referred to in Eq. (6):

αi =
λi∑k
j=1λj

, i,j = 1, 2, · · ·,k, (5)

∑k

i=1
αi =

∑k
j=1λj∑k
j=1λj

, i,j = 1, 2, · · ·,k. (6)

3.1.2 CAE

An autoencoder (AE) is a self-supervised deep learning
method that minimizes the reconstruction error between its
model input and output. The autoencoder optimizes parame-
ters to obtain a low-dimensional data representation of high-
dimensional features (Huang et al., 2017). The feature ex-
traction method used in standard AE is fully connected and
straightforward to implement. However, each neuron con-
nects to all the neurons in the next layer. Thus, standard AE
generates massive parameters, making the computation more
expensive while ignoring some spatial patterns in the im-
age (Masci et al., 2011). A convolutional autoencoder (CAE)
(Masci et al., 2011), a combination of AE and convolutional
neural network (CNN), has been proposed to address the
drawbacks of fully connected AEs. The CAE model inher-
its the self-supervision function of standard AE but replaces
the matrix product operation between hidden neurons with
convolution and pooling operations. Compared to AE, CAE
can capture local spatial patterns of monitoring data (Masci
et al., 2011). Furthermore, extracting features by convolution
can reduce the number of parameters and increase the train-
ing speed.

Figure 2. The CAE model structure.

This study includes climate and fire conditions from var-
ious regions in the form of 2-dimensional images. There-
fore, this research constructed a CAE model using AE re-
construction, dimensionality reduction features, and CNN
local-feature extraction capabilities. The CAE model aims to
achieve self-supervised learning of environmental and wild-
fire features.

The encoder designed for this study uses three convolu-
tional layers, three max pooling layers, and two fully con-
nected layers. The decoder includes four convolutional lay-
ers, three up-sampling layers, and one fully connected layer.
Figure 2 shows the CAE structure of this study with a la-
tent space of dimension 100 and with Conv2d, MaxPool-
ing2D, Dense, and UpSampling2D representing the 2D con-
volutional layer, max pooling layer, fully connected layer,
and up-sampling layer respectively.

Firstly, the sample data, U = {ui} i=1, 2, ···,n, need to be
converted into a 2-dimensional matrix of p rows and q

columns (p · q = n) according to the latitude and longitude
range of the original data, and then each snapshot could be
interpreted as an image. Given the input U , features are ex-
tracted by multiple convolutional kernels to obtain the output
Cl of the lth layer, and then the C′l is obtained by down-
sampling through the subsequent pooling layer to retain the
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main features of the inflow data and prevent over-fitting. The
operational methods are shown in Eqs. (7) and (8):

{
Cl = f (Wl ⊗U + bl) , l = 1
Cl = f

(
Wl ⊗C

′

l−1+ bl
)
, l = 2,3, (7)

C′l−1 =Maxpooling(Cl) , l = 1,2,3, (8)

where Wl and bl are the weights and biases of the layer l
network respectively, f (·) is the rectified linear unit (ReLU)
function, and Maxpooling(·) is the maximum pooling opera-
tion.

As shown in Fig. 2, during the network training process,
the encoder acquires the feature mapping of the input data
layer by layer. It obtains the k-dimensional latent space data
after the flatten and dense layers. In contrast, the decoder in-
puts the latent space data and reconstructs the data by con-
volution, up-sampling, etc., and evaluates the reconstruction
performance of CAE on climate and wildfire data by the loss
function (MSE). Equation (9) shows the square error of one
sample (L(·)) and mean error for the training set (J (·)), sup-
posing the training set is Ptr with Ntr snapshots:

{
L(U,Û)= (U − Û )2

J (Ptr, P̂tr)=
1
Ntr

∑Ntr
i=1L(Ptr,i, P̂tr,i)

. (9)

3.2 Surrogate predictive model

After data compression, the proposed digital twin model
combined the climate and fire data as inputs for the predic-
tive surrogate model, denoted as Z = {Zs}s=1,2,···5 and Zs ={
Zs,i

}
s=1,2,···5; i=1,2,···360 = [

˜Ps,i T̃i H̃i R̃i L̃i], where “s = 1,
2,..5” indicates the five fire respective datasets (i.e. JULES-
INFERNO simulations). The data are normalized before be-
ing fed into the model.

Here we aim to use ML techniques to surrogate the origi-
nal physical predictive model. The recurrent neural network
(RNN) is a reference method for time series prediction prob-
lems. The LSTM network, a variant of RNN, constructed the
wildfire predictive model in the reduced latent space using
the encoded JULES-INFERNO climate and fire data as in-
puts. Figure 3 shows the basic structure of the whole surro-
gate model.

The seq2seq prediction based on the LSTM network is im-
plemented in this study with tin time steps as input and tout
time steps as output. Here, each time step represents a month
of simulation time. The length of the input and output se-
quences is fixed as tin = tout = 12. . .Ztrain = Z1

⋃
Z2
⋃
Z3,

and the test set consists of Ztest = Z4
⋃
Z5. The input of the

LSTM training can be obtained by shifting the initial time of
each time series, as shown in Eq. (10). The model uses MSE

loss function to evaluate the training performance:

[Z1,1,Z1,2, · · ·,Z1,tin ]

LSTM train
−→ [Z1,tin+1,Z1,tin+2, · · ·,Z1,tin+tout ],

[Z1,2,Z1,3, · · ·,Z1,tin+1]

LSTM train
−→ [Z1,tin+2,Z1,tin+3, · · ·,Z1,tin+tout+1]

...

[Z1,360−tin−tout+1, · · ·,Z1,360−tout ]

LSTM train
−→ [Z1,360−tout+1,Z1,360−tout+2, · · ·,Z1,360]

...

[Z3,360−tin−tout+1, · · ·,Z3,360−tout ]

LSTM train
−→ [Z3,360−tout+1,Z3,360−tout+2· · ·,Z3,360]. (10)

As for the iterative predictions in the test dataset, the trained
model uses the current predictive result as the input of the
next prediction. The output of the predictive model can be
denoted as Z′test = Z

′

4 ∪Z
′

5. The first-year data of the test set
is used as model input, and the prediction result set only con-
tains data from the following 29 years. At each iteration, the
model can predict the global wildfire risk for the next year,
as shown in Eq. (11):

[Z4,1,Z4,2, · · ·,Z4,12]
LSTM predict
−→ [Z′4,13,Z

′

4,14, · · ·,Z
′

4,24],

[Z′4,13,Z
′

4,14, · · ·,Z
′

4,24]

LSTM predict
−→ [Z′4,25,Z

′

4,26, · · ·,Z
′

4,36]

...

[Z′4,337,Z
′

4,338, · · ·,Z
′

4,348]

LSTM predict
−→ [Z′4,349,Z

′

4,350, · · ·,Z
′

4,360],

[Z5,1,Z5,2, · · ·,Z5,12]

LSTM predict
−→ [Z′5,13,Z

′

5,14, · · ·,Z
′

5,24]

...

[Z′5,337,Z
′

5,338, · · ·,Z
′

5,348]

LSTM predict
−→ [Z′5,349,Z

′

5,350, · · ·,Z
′

5,360]. (11)

Thanks to the gate structure, LSTM networks are effi-
cient in dealing with long-term temporal correlations that
standard RNNs cannot handle (Graves and Schmidhuber,
2005b). More precisely, the essence of the gate structure
of the LSTM is to use the sigmoid activation function so
that the fully connected network layer outputs a value be-
tween 0 and 1, describing the proportion of the informa-
tion quantity passed. The forget gate indicates the propor-
tion of the output information quantity forgotten at the last
moment, and the input gate represents the proportion of the
input information quantity retained at the current moment,
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Figure 3. The surrogate model structure.

both updating the state value together. Finally, the output
gate represents the proportion of the new state output. Sup-
pose xt (x0 = [Zs,i,Zs,i+1, · · ·,Zs,i+tin−1], s = 1,2,3, i =
1,2, · · ·,349) are the current inputs, ht−1 is the output of last
moment, ct is the value of the new state, and ct−1 is the state
value of last moment. Equations (12), (13), (14), (15), (16),
and (17) represent the inner principal of the LSTM:

Input state: zt = tanh(Wzxt +Qzht−1+ bz) , (12)
Input gate: it = σ (Wixt +Qiht−1+ bi) , (13)
Forget gate: ft = σ

(
Wf xt +Qf ht−1+ bf

)
, (14)

Current state: ct = ft · ct−1+ it · zt , (15)
Output gate: ot = σ (Woxt +Qoht−1+ bo) , (16)
Current output: ht = ot · tanh(ct ) , (17)

where Wz,Wi,Wf , and Wo are input weighting matrix;
Qz,Qi,Qf , and Qo are loop weights; bz,bi,bf , and bo are
bias values; and σ(·) is the sigmoid function.

3.3 Latent data assimilation

The basic principle of DA is the combination of numerical
models with observation data to improve the forecast of the
system under study (Vallino, 2000). When applying the de-
veloped predictive model to unseen initial conditions, we ap-
ply the DA method periodically to enhance the current pre-
diction results with the help of the observation data. The ob-

servation data in this research is considered the original out-
put of the JULES-INFERNO model so that we can simulate
the situation where high-quality real-time observation data
are available. As periodic corrections are made to the forecast
data, DA allows for a more stable and accurate long-term pre-
diction. In this study, LA was applied, which combines ROM
with DA, i.e. reducing the dimensionality of the data before
applying the DA method (Peyron et al., 2021). In addition,
ROM could reduce the parameters for subsequent operations,
which allows LA to have a significant advantage in terms of
computational efficiency compared to the classical full-space
DA.

Both DA and LA can be summarized as a problem of solv-
ing the minimization of an objective function JDA(·) char-
acterizing the deviation between the analysis field (optimal
state Żtest) and the observation field (actual state Ztest), as
well as the background field (predicted state Z′test), as shown
in Eq. (18):

JDA (żt )=
1
2

(
żt − z

′
t

)TB−1 (żt − z′t)
+

1
2

[zt −H (żt )]TO−1 [zt −H (żt )] , (18)

where t indicates the temporal index (the t th predicted year),
żt is the analysis variable of DA, z′t is the background vari-
able, and zt is the observation (original) variable. B and O
represent the background and observation error covariance
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Figure 4. The predictive model with LA.

matrix. The modelling of these covariances determines the
weight of prediction and observation in the objective func-
tion, which is crucial for DA approaches (Lawless et al.,
2005). H(·) is the state-observation function in latent space,
which maps the analysis variable to the observation variable.
In this study, since we are assimilating the compressed output
of the original JULES-INFERNO model,H(·) is the identity
function.

The latent analysis field Żtest,t could be obtained by opti-
mizing the objective function (Eq. 18):

Żtest,t = argmin(JDA (żt )) . (19)

Equation (18) can be solved by the best linear unbiased
estimator (Fulton, 2000), since the transformation operator
H =H is a linear function in the latent space:

Żtest,t = z
′
t +BH

T
(
HBH T

+O
)−1 (

zt −H
(
z′t
))
. (20)

The obtained analysis state Żtest,t can be used as an ini-
tial point for the next-level prediction, as shown in Fig. 4,
and the predicted field in the latent space could be Żtest,t
(when applying LA at t time index) or Z′test,t (LSTM pre-
diction at t time index). These processes can be repeated
periodically to consistently improve the prediction perfor-
mance. Furthermore, in Fig. 4, the final predicted sequence
of the digital twin is the combination of {Żtest,t }nε[0,29] and
{Z′test,m}m∈[0,29] (m 6= n), which could be denoted as Z′opt.

4 Numerical results

In this section, we evaluate the proposed digital twin model’s
performance regarding prediction accuracy and computa-
tional efficiency when the digital twin model faces unseen
initial conditions.

Figure 5. PCA-explained variances with different dimensions.

Table 2. PCA and CAE performances.

CAE Latent Test set Average MSE
space loss

PCA 20 P4+P5 0.000245768
PCA 100 P4+P5 0.000176458
CAE 20 P4+P5 0.000213044
CAE 100 P4+P5 0.000164788

4.1 ROM results

To set an optimal dimension of the latent space, we exam-
ined the explained variance of PCA for the training dataset.
The training dataset consists of P1, P2, and P3 with different
numbers of principal components, as shown in Fig. 5. Ac-
cording to the work of Li et al. (2021), 85 % to 95 % of the
explained variance can reflect most data information while
effectively reducing the original data dimensionality. There-
fore, to reduce the latent space dimension and the compu-
tational cost of subsequent processing, we chose in this re-
search the 100-dimension latent space with 87 % explained
variance, as shown in Fig. 5. In addition, we also chose the
20-dimensional latent space for both PCA and CAE for com-
parison purposes.

In terms of performance evaluation, the scenarios P1 ∪

P2 ∪P3 are used as the training set and P4 ∪ P5 are con-
sidered as the test set. The number of training epochs for
the CAE models is fixed at 1000. The MSEs between re-
constructed and original simulations for different models are
shown in Table 2. To quantify the mismatch between the
JULES-INFERNO output P and decoded prediction P ′, we
compute the MSE averaged by the number of pixels, i.e.

∈
MSE
=

√∑
||Pi,j −P ′i,j ||

2
2/(112 · 192).

According to Table 2, for both PCA and CAE with 100-
dimensional latent space, the reconstruction error is signif-
icantly lower compared to 20-dimensional. Furthermore, it
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can be evaluated from the experimental results that the CAE
reconstruction MSE is lower compared to PCA. As previ-
ously described, CAE can capture feature information in
2-dimensional images during the encoding process, while
PCA, which performs compression in 1-dimension space,
may ignore these spatial patterns. In summary, CAE with
100-dimensional latent space has the best reconstruction per-
formance in these experiments. As for the compression of
climatic conditions T ,H,R, and L, 83 % of data are used for
PCA and CAE model training, and the rest of the data are
used for model testing, where PCA and CAE have a similar
performance.

4.2 Predictive model and latent data assimilation

After completing the ROM, the original JULES-INFERNO
data are compressed into specific latent spaces, considerably
reducing the number of parameters in the predictive model.
The concatenated wildfire burnt area field and the four cli-
mate variables act as inputs to the surrogate model. Thus,
the surrogate model achieves the same inputs as JULES-
INFERNO. The predictive model (LSTM) trains separately
using encoded data from different ROMs. Similar to the
ROM, P1, P2, and P3 are used as the training set, while P4
and P5 are used as the test set to evaluate the model per-
formance. Each LSTM model has been trained over 10 000
epochs. As explained in Sect. 3.2, iterative predictions are
used for the proposed digital twin. In other words, we first in-
put the first year (12 snapshots) data and then use the current
predicted result for the next-level prediction, until the 30th
year’s total burnt area is predicted. The MSEs for different
combinations of ROM and LSTM are shown in Table 3.

Table 3 shows that the predictions obtained using PCA
down to 20 and 100 dimensions and CAE reduced to 20 di-
mensions are similar, with an MSE close to 2.7×10−4. Same
as ROM, the best performance in LSTM prediction is ob-
tained by applying CAE with 100-dimensional latent space,
with an MSE loss of approximately 2.5× 10−4.

Comparing the results shown in Tables 2 and 3, there is a
gap between the MSE of the predictive model and the ROM
reconstruction, mainly because of the accumulation of errors
during the iterative prediction process. Therefore, we period-
ically used the observations (raw data) and LA to adjust the
forecast results to stabilize subsequent forecasts. LA is im-
plemented every 5 years during the prediction phase in this
study. According to Table 3, there is a steady reduction in
forecast MSE after correction by LA. The most significant
reduction in MSE is obtained with 100-dimensional CAE
compared to other approaches.

To better illustrate the evolution of the prediction error, we
display the MSE of the prediction against time in different
predictive models. In this study, the existing climate and fire
data in 1961 (provided by JULES-INFERNO) with different
initial conditions are given to predict the subsequent 29 years
of fire. Figure 6 shows the MSE per prediction for the differ-

ent surrogate models (in red when without LA and in green
when with LA) evaluated on the P4 test set, and we plotted
the ROM MSE (in blue) for comparison.

According to Fig. 6, using LA can effectively reduce the
prediction error, as the vast majority of red points are sig-
nificantly lower than the corresponding green points. Fur-
thermore, CAE-based surrogate models can better adapt the
LA, stabilizing the predictions afterwards and reducing the
accumulation of errors. When applying the LA to the PCA-
based surrogate models to reduce the error after the simula-
tion, there may still be a sharply increasing forecast error in
the subsequent year, as seen in Fig. 6a and b. On the other
hand, CAE-based models manage to maintain the improve-
ment in DA for future time steps, as shown in Fig. 6c and d.
These results demonstrate the advantage of CAE compared
to PCA in terms of generalizability when applied to unseen
data. This effect has also been highlighted in the work of
Peyron et al. (2021). Comparing the four cases presented in
Fig. 6, the 100-dimensional CAE demonstrates the strength
of both the original prediction and the assimilated one.

Figure 7 displays the output of the 100-dimensional CAE-
based digital twin model of the years 1983 and 1988 (1 year
after LA is implemented): the assimilated results (m, n, o,
p) are compared with the original simulation (a, b, c, d), the
CAE reconstruction (e, f, g, h), and the decoded image pre-
dicted by the LSTM model (i, j, k, l). In addition, the total
burnt areas shown in Fig. 7 are normalized to the range 0
to 1. The horizontal and vertical coordinates in Fig. 7 repre-
sent latitude and longitude, and the colour values in the figure
represent the grid box which indicates estimated burnt area
fraction. The brighter the colour is, the larger the value is,
and the colour bar is shown at the bottom of Fig. 7. It can be
seen from Fig. 7 that forest wildfires in January are mainly
in the Southern Hemisphere, such as Oceania (Fig. 7a) and
South America in (Fig. 7c). On the other hand, the forest fires
in July are mainly in the Northern Hemisphere, such as con-
tinental Europe in Fig. 7b and d.

As observed in Fig. 7, CAE and LSTM without LA can
effectively reconstruct most of the features in the original im-
age. Furthermore, comparing the LSTM-predicted images (i,
j, k, l) and the optimization results after applying LA (m, n,
o, p), it is found that the assimilation results are significantly
closer to the JULES-INFERNO output.

Overall, in this research, we implemented four ROMs
based on PCA and CAE, and the comparison reveals that
the 100-dimensional CAE has the best reconstruction per-
formance. Then, after combining the ROMs with predictive
models (LSTM), a gap between the prediction results and the
ROM reconstruction results is noticed. Eventually, the pre-
dictions of the surrogate model are made more stable after
regular applications of LA to adjust the prediction outputs.

Table 4 compares the prediction time costs of the sur-
rogate models using PCA and CAE downscaled to a 100-
dimensional latent space without and with LA respectively.
The prediction time of JULES-INFERNO in HPC is also
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Table 3. Surrogate models’ performance.

ROM Latent Test set LSTM prediction LSTM with LA
space MSE loss (avg) MSE loss (avg)

PCA 20 P4+P5 0.000272979 0.000256832
PCA 100 P4+P5 0.000273276 0.000239031
CAE 20 P4+P5 0.000276496 0.000237333
CAE 100 P4+P5 0.000256757 0.000196481

Figure 6. Evolution of MSE through the years in different surrogate models: (a) 20-dimensional PCA-based model, (b) 100-dimensional
PCA-based model, (c) 20-dimensional CAE-based model, and (b) 100-dimensional CAE-based model.

shown as a reference. As can be seen in Table 4, the differ-
ence between PCA and CAE on the running time of the mod-
els is not significant; the application of LA slows down the
prediction but still reduces the computing time cost signifi-
cantly (around 500 times) compared to the original JULES-
INFERNO fire predictive model.

In this study, the training of CAE and LSTM is performed
with one NVIDIA P100 GPU (16 GB VRAM) in the Google
Colab environment. All the online computations, including
decoding, prediction and assimilation, are performed with
Google Colab Intel CPUs as shown in Table 4. It is impor-
tant to highlight that the application of such a digital twin
does not require any HPC or GPU resources. Thus, a per-
sonal laptop can also run the model successfully.

5 Conclusion and future work

This study implemented a deep-learning-based digital twin
for global wildfire prediction using the same input and out-
put fields to replace the physical wildfire model JULES-
INFERNO. The proposed model builds ROMs to encode the
data into latent space to reduce subsequent processes’ com-
putational costs. Then it makes use of the compressed data to
train a predictive model based on RNN. Finally, it applies LA
to stabilize the prediction results when using the predictive
model for iterative prediction to avoid error accumulation.
According to the numerical results, the digital twin built us-
ing CAE is more accurate compared to the ones using PCA
and can effectively capture the features of the original im-
age for encoding and decoding. Applying LA periodically to
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Figure 7. The normalized output of 100-dimensional CAE-based digital twin: (a, b, c, d) the normalized output of original burnt area fraction,
and their corresponding dates are January 1983, July 1983, January 1988, and July 1988; (e, f, g, h) the reconstructed output of the CAE
model, and their corresponding dates are January 1983 , July 1983, January 1988, and July 1988; (i, j, k, l) the predicted output of CAE with
the LSTM model, and their corresponding dates are January 1983, July 1983, January 1988, and July 1988; (m, n, o, p) the predicted output
of CAE with the LSTM and LA models, and their corresponding dates are January 1983, July 1983, January 1988, and July 1988.

Table 4. Time efficiency comparison.

Online computational time PCA-100 surrogate CAE-100 surrogate PCA-100 LA CAE-100 LA JULES-INFERNO

3.41 s 2.96 s 35.09 s 36.62 s ≈ 5 h

optimize the prediction results can address the issue of error
accumulation and achieve stable long-term predictions. Ulti-
mately the research achieved a much more efficient wildfire-
prediction digital twin based on JULES-INFERNO. The pro-
posed model takes only 35 s on a laptop to predict 30 years
of burnt area fractions, compared to ∼ 5 h using the origi-
nal physical model on a 32-thread HPC node. The present
research clearly brings additional insight to the computing
of reduced-order digital twins for high-dimensional dynami-
cal systems. Future work can consider further improving the
generalizability of the proposed approach, by, for instance,
training the model with scenarios of different time periods
or fine tuning the model when the initial conditions are out-
side the range of the training set. In addition, it is reported in
recent works (Teckentrup et al., 2019) that long-term pre-
dictions of JULES-INFERNO can introduce forecast bias.
Further efforts can be considered to apply a latent data as-

similation framework developed in this paper with real-time
satellite observations.
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