Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1433-2023
https://doi.org/10.5194/nhess-23-1433-2023
Research article
 | 
20 Apr 2023
Research article |  | 20 Apr 2023

The effect of deep ocean currents on ocean- bottom seismometers records

Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu

Related authors

A sanity check for earthquake recurrence models used in PSHA of slowly deforming regions: the case of SW Iberia
Margarida Ramalho, Luis Matias, Marta Neres, Michele M. C. Carafa, Alexandra Carvalho, and Paula Teves-Costa
Nat. Hazards Earth Syst. Sci., 22, 117–138, https://doi.org/10.5194/nhess-22-117-2022,https://doi.org/10.5194/nhess-22-117-2022, 2022
Short summary
SPATIAL DISTRIBUTION OF FELT INTENSITIES FOR PORTUGAL EARTHQUAKES
C. Catita, M. P. Teves-Costa, L. Matias, and J. Batlló
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 87–92, https://doi.org/10.5194/isprs-archives-XLII-3-W8-87-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-87-2019, 2019
Synthetic tsunami waveform catalogs with kinematic constraints
Maria Ana Baptista, Jorge Miguel Miranda, Luis Matias, and Rachid Omira
Nat. Hazards Earth Syst. Sci., 17, 1253–1265, https://doi.org/10.5194/nhess-17-1253-2017,https://doi.org/10.5194/nhess-17-1253-2017, 2017
Short summary
Performance of coastal sea-defense infrastructure at El Jadida (Morocco) against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunami
R. Omira, M. A. Baptista, F. Leone, L. Matias, S. Mellas, B. Zourarah, J. M. Miranda, F. Carrilho, and J.-P. Cherel
Nat. Hazards Earth Syst. Sci., 13, 1779–1794, https://doi.org/10.5194/nhess-13-1779-2013,https://doi.org/10.5194/nhess-13-1779-2013, 2013
Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence
L. M. Matias, T. Cunha, A. Annunziato, M. A. Baptista, and F. Carrilho
Nat. Hazards Earth Syst. Sci., 13, 1–13, https://doi.org/10.5194/nhess-13-1-2013,https://doi.org/10.5194/nhess-13-1-2013, 2013

Related subject area

Sea, Ocean and Coastal Hazards
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary

Cited articles

Alfred-Wegener-Institut, Helmholtz-Zentrum fur Polar- und Meeresforschung: DEPAS (Deutscher Gerate-Pool fur amphibische Seismologie): German Instrument Pool for Amphibian Seismology, J. Largescale Res. Facil., 3, A122, https://doi.org/10.17815/jlsrf-3-165, 2017. 
Almeida, M. M. and Dubert, J.: The structure of tides in the Western Iberia region, Cont. Shelf Res., 26, 385–400, https://doi.org/10.1016/j.csr.2005.11.011, 2006. 
An, C., Cai, C., Zhou, L., and Yang, T.: Characteristics of low-frequency horizontal noise of ocean-Bottom Seismic data, Seismol. Res. Lett., 93, 257–267, https://doi.org/10.1785/0220200349, 2022. 
Ardhuin, F., Gualtieri, L., and Stutzmann, E.: How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s, Geophys. Res. Lett. 42, 765–772, https://doi.org/10.1002/2014GL062782, 2015. 
Bazin, S., Feuillet, N., Duclos, C., Crawford, W., Nercessian, A., Bengoubou-Valérius, M., Beauducel, F., and Singh, S. C.: The 2004–2005 Les Saintes (French West Indies) seismic aftershock sequence observed with ocean bottom seismometers, Tectonophysics, 489, 91–103, https://doi.org/10.1016/j.tecto.2010.04.005, 2010. 
Download
Short summary
We show that ocean-bottom seismometers are controlled by bottom currents, but these are not always a function of the tidal forcing. Instead we suggest that the ocean bottom has a flow regime resulting from two possible contributions: the permanent low-frequency bottom current and the tidal current along the full tidal cycle, between neap and spring tides. In the short-period noise band the ocean current generates harmonic tremors that corrupt the dataset records.
Share
Altmetrics
Final-revised paper
Preprint