Articles | Volume 23, issue 3
https://doi.org/10.5194/nhess-23-1157-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1157-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
José A. Marengo
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
José Mantovani
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
Luciana R. Londe
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Rachel Lau Yu San
National Institute of Education, Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University (NTU), Singapore
Edward Park
National Institute of Education, Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University (NTU), Singapore
Yunung Nina Lin
Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
Jingyu Wang
National Institute of Education, Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University (NTU), Singapore
Tatiana Mendes
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
Department of Environmental Engineering, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
Ana Paula Cunha
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Luana Pampuch
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
Department of Environmental Engineering, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
Marcelo Seluchi
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Silvio Simões
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
Luz Adriana Cuartas
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Demerval Goncalves
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Klécia Massi
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
Department of Environmental Engineering, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
Regina Alvalá
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Osvaldo Moraes
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Carlos Souza Filho
Institute of Geosciences (IG/Unicamp), University of Campinas, Campinas, Brazil
Rodolfo Mendes
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Carlos Nobre
Graduate Program in Natural Disasters, Unesp/CEMADEN, São José dos Campos, Brazil
Institute of Advanced Studies, University of São Paulo (IEA/USP), São Paulo, Brazil
Related authors
M. B. Nunes, A. P. Dal Poz, E. Alcântara, and M. Curtarelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 231–235, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-231-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-231-2020, 2020
Jennifer Fortes Cavalcante Renk, Tatiana Sussel Gonçalves Mendes, Silvio Jorge Coelho Simões, Marcio Roberto Magalhães de Andrade, Luana Albertani Pampuch Bortolozo, Adriano Martins Junqueira, and Melina Almeida Silva
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 463–470, https://doi.org/10.5194/isprs-annals-X-3-2024-463-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-463-2024, 2024
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Jingyu Wang, Xianfeng Wang, Edward Park, and Yun Lin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-100, https://doi.org/10.5194/nhess-2023-100, 2023
Manuscript not accepted for further review
Short summary
Short summary
Building upon the findings in a preceding study by the authors (Wang et al., 2023), this brief communication successfully applied the soil moisture-based tornado damage track detection method to the 24–25 March 2023 Mississippi outbreak. This study also found that the notable discrepancies between spotter reports and ground survey assessments at the tornado early stage can be reconciled using the new method.
Marcos Roberto Benso, Gabriela Chiquito Gesualdo, Roberto Fray Silva, Greicelene Jesus Silva, Luis Miguel Castillo Rápalo, Fabricio Alonso Richmond Navarro, Patricia Angélica Alves Marques, José Antônio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 23, 1335–1354, https://doi.org/10.5194/nhess-23-1335-2023, https://doi.org/10.5194/nhess-23-1335-2023, 2023
Short summary
Short summary
This article is about how farmers can better protect themselves from disasters like droughts, extreme temperatures, and floods. The authors suggest that one way to do this is by offering insurance contracts that cover these different types of disasters. By having this insurance, farmers can receive financial support and recover more quickly. The article elicits different ideas about how to design this type of insurance and suggests ways to make it better.
M. L. L. Reiss, T. S. G. Mendes, F. F. Pereira, M. R. M. de Andrade, R. M. Mendes, S. J. C. Simões, R. de Lara, and S. F. de Souza
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1077–1083, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1077-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1077-2022, 2022
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Jingyu Wang, Jiwen Fan, Robert A. Houze Jr., Stella R. Brodzik, Kai Zhang, Guang J. Zhang, and Po-Lun Ma
Geosci. Model Dev., 14, 719–734, https://doi.org/10.5194/gmd-14-719-2021, https://doi.org/10.5194/gmd-14-719-2021, 2021
Short summary
Short summary
This paper presents an evaluation of the E3SM model against NEXRAD radar observations for the warm seasons during 2014–2016. The COSP forward simulator package is implemented in the model to generate radar reflectivity, and the NEXRAD observations are coarsened to the model resolution for comparison. The model severely underestimates the reflectivity above 4 km. Sensitivity tests on the parameters from cumulus parameterization and cloud microphysics do not improve this model bias.
M. B. Nunes, A. P. Dal Poz, E. Alcântara, and M. Curtarelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 231–235, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-231-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-231-2020, 2020
Vinicius Buscioli Capistrano, Paulo Nobre, Sandro F. Veiga, Renata Tedeschi, Josiane Silva, Marcus Bottino, Manoel Baptista da Silva Jr., Otacílio Leandro Menezes Neto, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Yoshio Kubota, Julio Pablo Reyes Fernandez, Emanuel Giarolla, Jessica Vial, and Carlos A. Nobre
Geosci. Model Dev., 13, 2277–2296, https://doi.org/10.5194/gmd-13-2277-2020, https://doi.org/10.5194/gmd-13-2277-2020, 2020
Short summary
Short summary
This work represents the product of our recent efforts to develop a Brazilian climate model and helps address some scientific issues on the frontier of knowledge (e.g., cloud feedback studies). The BESM results show climate sensitivity and thermodynamical responses similar to a CMIP5 ensemble. More than that, BESM has the objective of being an additional climate model with the ability to reproduce changes that are physically understood in order to study the global climate system.
Leonardo B. L. Santos, Aurelienne A. S. Jorge, Luciana R. Londe, Regina T. Reani, Roberta B. Bacelar, and Igor M. Sokolov
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-199, https://doi.org/10.5194/nhess-2019-199, 2019
Revised manuscript not accepted
Short summary
Short summary
The measurement and mapping of transportation network vulnerability constitute subjects of global interest. During a flood, some elements of a transportation network can be reached, causing damages directly (to people) and indirect damages (to services) with great economic impacts. The Complex Networks approach may offer a valuable perspective considering the topological vulnerability. Our results can represent an important tool for stakeholders from the transportation sector.
M. L. L. Reiss, T. S. G. Mendes, M. R. M. Andrade, A. M. Amory, R. de Lara, and S. F. Souza
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 567–574, https://doi.org/10.5194/isprs-archives-XLII-2-W13-567-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-567-2019, 2019
Sandro F. Veiga, Paulo Nobre, Emanuel Giarolla, Vinicius Capistrano, Manoel Baptista Jr., André L. Marquez, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Kubota, and Carlos A. Nobre
Geosci. Model Dev., 12, 1613–1642, https://doi.org/10.5194/gmd-12-1613-2019, https://doi.org/10.5194/gmd-12-1613-2019, 2019
Short summary
Short summary
This study evaluates the Brazilian Earth System Model with coupled ocean–atmosphere version 2.5 (BESM-OA2.5) and the effectiveness of reproducing the main characteristics of the atmospheric and oceanic variability in a real-life-based scenario of greenhouse gas increase (the CMIP5 historical protocol). The evaluation specifically focuses on how the model simulates the mean climate state, as well as the most important large-scale climate patterns.
Rodolfo M. Mendes, Márcio Roberto M. de Andrade, Javier Tomasella, Márcio Augusto E. de Moraes, and Graziela B. Scofield
Nat. Hazards Earth Syst. Sci., 18, 15–30, https://doi.org/10.5194/nhess-18-15-2018, https://doi.org/10.5194/nhess-18-15-2018, 2018
Short summary
Short summary
The results showed in this paper confirmed that the occurrence of landslides in the study area cannot be attributed solely and exclusively to the rainfall events of the year 2000. Therefore, numerical modelling results corroborated the fact that the occurrence of landslides was the combination of natural and anthropic factors, with the decisive influence of the latter due to the presence of several cuts along the slope combined with load of constructions and leakage.
Jose A. Marengo, Gilberto F. Fisch, Lincoln M. Alves, Natanael V. Sousa, Rong Fu, and Yizhou Zhuang
Atmos. Chem. Phys., 17, 7671–7681, https://doi.org/10.5194/acp-17-7671-2017, https://doi.org/10.5194/acp-17-7671-2017, 2017
Short summary
Short summary
The onset and demise of the rainy season in Amazonia are assessed in this study using meteorological data from the GoAmazon experiment for the 2014–15 rainy season. The onset of the rainy season was strongly associated with changes in large-scale circulation in the region, and our analyses using regional thermodynamic indices suggest that local changes such the regional thermodynamic characteristics may have been less important on the occurrence of the onset compared to large-scale circulation.
Elisângela Broedel, Celso Von Randow, Luz Adriana Cuartas, Antonio Donato Nobre, Alessandro Carioca de Araújo, Bart Kruijt, Etienne Tourigny, Luiz Antônio Cândido, Martin Hodnett, and Javier Tomasella
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-203, https://doi.org/10.5194/hess-2017-203, 2017
Revised manuscript not accepted
Short summary
Short summary
This work describes the simulation of surface fluxes in two distinct environments along a topographic gradient in a central Amazonian forest using the INLAND Model. The results show that a surface model can capture the small differences related to energy, water and carbon balance between both sites. These confirms the importance to incorporate subgrid scale variability by including relief attributes of topography, soil and vegetation to better representing Terra Firme forests in these models.
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
R. M. S. P. Vieira, J. Tomasella, R. C. S. Alvalá, M. F. Sestini, A. G. Affonso, D. A. Rodriguez, A. A. Barbosa, A. P. M. A. Cunha, G. F. Valles, E. Crepani, S. B. P. de Oliveira, M. S. B. de Souza, P. M. Calil, M. A. de Carvalho, D. M. Valeriano, F. C. B. Campello, and M. O. Santana
Solid Earth, 6, 347–360, https://doi.org/10.5194/se-6-347-2015, https://doi.org/10.5194/se-6-347-2015, 2015
Short summary
Short summary
This study is the first effort to produce a comprehensive diagnosis of the desertification processes for the entire semiarid of Brazil region and combines the existent experience from previous studies in the region with a consolidated methodology.
P. I. M. Camarinha, V. Canavesi, and R. C. S. Alvalá
Nat. Hazards Earth Syst. Sci., 14, 2449–2468, https://doi.org/10.5194/nhess-14-2449-2014, https://doi.org/10.5194/nhess-14-2449-2014, 2014
A. Drumond, J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno
Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, https://doi.org/10.5194/hess-18-2577-2014, 2014
Related subject area
Landslides and Debris Flows Hazards
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Temporal clustering of precipitation for detection of potential landslides
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Optimizing Rainfall-Triggered Landslide Thresholds to Warning Daily Landslide Hazard in Three Gorges Reservoir Area
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Brief Communication: Monitoring slope acceleration and impending failure with very high spatial and temporal resolution space borne Synthetic Aperture Radars
Predicting Deep-Seated Landslide Displacements in Mountains through the Integration of Convolutional Neural Networks and Age of Exploration-Inspired Optimizer
Addressing class imbalance in soil movement predictions
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Assessing landslide damming susceptibility in Central Asia
Invited Perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Evaluation of debris-flow building damage forecasts
Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA
Size scaling of large landslides from incomplete inventories
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Space–time landslide hazard modeling via Ensemble Neural Networks
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Comparison of conditioning factors classification criteria in large scale statistically based landslide susceptibility models
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Limit analysis of earthquake-induced landslides considering two strength envelopes
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard chain that occurred on 30 August 2020 in Ganluo, Southwest China
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Comprehensive landslide susceptibility map of Central Asia
The influence of large woody debris on post-wildfire debris flow sediment storage
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
A data-driven evaluation of post-fire landslide susceptibility
Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models
Brief communication: The northwest Himalaya towns slipping towards potential disaster
Dynamic response and breakage of trees subject to a landslide-induced air blast
Debris-flow surges of a very active alpine torrent: a field database
Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data
Instantaneous limit equilibrium back analyses of major rockslides triggered during the 2016–2017 central Italy seismic sequence
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024, https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
Short summary
This work examines the use of interferometric synthetic-aperture radar (InSAR) alongside in situ borehole measurements to assess the stability of deep-seated landslides for the case study of El Forn (Andorra). Comparing InSAR with borehole data suggests a key trade-off between accuracy and precision for various InSAR resolutions. Spatial interpolation with InSAR informed how many remote observations are necessary to lower error in a remote sensing re-creation of ground motion over the landslide.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024, https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Short summary
The Revised Infinite Slope Model (RISM) is proposed using the equal differential unit method and correcting the deficiency of the safety factor increasing with the slope increasing when the slope is larger than 40°, as calculated using the Taylor slope infinite model. The intensity–duration (I–D) prediction curve of the rainfall-induced shallow loess landslides with different slopes was constructed and can be used in forecasting regional shallow loess landslides.
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-109, https://doi.org/10.5194/nhess-2024-109, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1296, https://doi.org/10.5194/egusphere-2024-1296, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite SAR imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores SAR's potential for timely hazard assessment in remote regions, aiding disaster mitigation efforts effectively.
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-86, https://doi.org/10.5194/nhess-2024-86, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing eight years of data from Taiwan's Lushan Mountain, improving early warnings and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024, https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Short summary
With a simplified formula linking rainfall and groundwater level, the rise of the phreatic surface within the slope can be obtained. Then, a global analysis method that considers both seepage and seismic forces is proposed to determine the safety factor of slopes subjected to the combined effect of rainfall and earthquakes. By taking a slope in the Three Gorges Reservoir area as an example, the safety evolution of the slope combined with both rainfall and earthquake is also examined.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Benjamin B. Mirus, Thom A. Bogaard, Roberto Greco, and Manfred Stähli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1219, https://doi.org/10.5194/egusphere-2024-1219, 2024
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024, https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Short summary
We mapped potential for heavy rainfall to cause landslides in part of the central mountains of Puerto Rico using new tools for estimating soil depth and quasi-3D slope stability. Potential ground-failure locations correlate well with the spatial density of landslides from Hurricane Maria. The smooth boundaries of the very high and high ground-failure susceptibility zones enclose 75 % and 90 %, respectively, of observed landslides. The maps can help mitigate ground-failure hazards.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Oliver Korup, Lisa Luna, and Joaquin Ferrer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-55, https://doi.org/10.5194/nhess-2024-55, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain most uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources, and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental setting.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024, https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide and found that the contact surface model with high strength parameters combines advantages of the intact rock mass model in simulating the deformation of slopes with rock bridges and the modeling advantage of the Jennings model. The results help in choosing a rock bridge model to simulate landslide stability and reveal the influence laws of rock bridges on the stability of landslides.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024, https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Short summary
We performed field investigations on a rockfall near Jiguanshan National Forest Park, Chengdu. Vital information was obtained from an unmanned aerial vehicle survey. A finite element model was created to reproduce the damage evolution. We found that the impact kinetic energy was below the design protection energy. Improper member connections prevent the barrier from producing significant deformation to absorb energy. Damage is avoided by improving the ability of the nets and ropes to slide.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-29, https://doi.org/10.5194/nhess-2024-29, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with five statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024, https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Short summary
Rainfall intensity–duration (ID) thresholds can aid in the prediction of natural hazards. Large-scale sediment disasters like landslides, debris flows, and flash floods happen frequently in the Himalayas because of their propensity for intense precipitation events. We provide a new framework that combines the Weather Research and Forecasting (WRF) model with a regionally distributed numerical model for debris flows to analyse and predict intense rainfall-induced landslides in the Himalayas.
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024, https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary
Short summary
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across landscapes, but their scaling is often arbitrarily set and can require significant computing power to delineate. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved understanding of landslide potential and can help reduce the impacts of landslides worldwide.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Di Wu, Yuke Wang, and Xin Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2318, https://doi.org/10.5194/egusphere-2023-2318, 2023
Short summary
Short summary
This paper proposed 3D limit analysis for seismic stability of soil slopes to address the influence of earthquake on slope stabilities with nonlinear and linear criteria. Comparison results illustrated that the use of linear envelope leads to the non-negligible overestimation of steep slope stability and this overestimation will be significant with the increasing earthquake. Earthquake has a smaller influence on slope slip surface with nonlinear envelope than that with linear envelope.
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023, https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Short summary
A 3D stability analysis method is proposed for biased rockfall with external erosion. Four failure modes are considered according to rockfall evolution processes, including partial damage of underlying soft rock and overall failure of hard rock blocks. This method is validated with the biased rockfalls in the Sichuan Basin, China. The critical retreat ratio from low to moderate rockfall susceptibility is 0.33. This method could facilitate rockfall early identification and risk mitigation.
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023, https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Short summary
Rockfalls and their hazards are typically treated as statistical events based on rockfall catalogs, but only a few complete rockfall inventories are available today. Here, we present new results from a Doppler radar rockfall alarm system, which has operated since 2018 at a high frequency under all illumination and weather conditions at a site where frequent rockfall events threaten a village and road. The new data set is used to investigate rockfall triggers in an active rockslide complex.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023, https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Short summary
Landslides are often observed on coastlines following large earthquakes, but few studies have explored this occurrence. Here, statistical modelling of landslides triggered by the 2016 Kaikōura earthquake in New Zealand is used to investigate factors driving coastal earthquake-induced landslides. Geology, steep slopes, and shaking intensity are good predictors of landslides from the Kaikōura event. Steeper slopes close to the coast provide the best explanation for a high landslide density.
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023, https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Short summary
Debris flows are common hazards in Taiwan, and debris-flow early warning is important for disaster responses. The rainfall thresholds of debris flows are analyzed and determined in terms of rainfall intensity, accumulated rainfall, and rainfall duration, based on case histories in Taiwan. These thresholds are useful for disaster management, and the cases in Taiwan are useful for global debris-flow databases.
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023, https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Li Wei, Kaiheng Hu, Shuang Liu, Nan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md Abdur Rahim
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-75, https://doi.org/10.5194/nhess-2023-75, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) buried by debris flow and inundated by dam-burst flood sequentially. The threshold of the impact pressures in Zones II and III where vulnerability is equal to 1 are 88 kPa and 106 kPa, respectively. Heavy damage occurs at an impact pressure greater than 40 kPa, while slight damage occurs below 20 kPa.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Yaspal Sundriyal, Vipin Kumar, Neha Chauhan, Sameeksha Kaushik, Rahul Ranjan, and Mohit Kumar Punia
Nat. Hazards Earth Syst. Sci., 23, 1425–1431, https://doi.org/10.5194/nhess-23-1425-2023, https://doi.org/10.5194/nhess-23-1425-2023, 2023
Short summary
Short summary
The NW Himalaya has been one of the most affected terrains of the Himalaya, subject to disastrous landslides. This article focuses on two towns (Joshimath and Bhatwari) of the NW Himalaya, which have been witnessing subsidence for decades. We used a slope stability simulation to determine the response of the hillslopes accommodating these towns under various loading conditions. We found that the maximum displacement in these hillslopes might reach up to 20–25 m.
Yu Zhuang, Aiguo Xing, Perry Bartelt, Muhammad Bilal, and Zhaowei Ding
Nat. Hazards Earth Syst. Sci., 23, 1257–1266, https://doi.org/10.5194/nhess-23-1257-2023, https://doi.org/10.5194/nhess-23-1257-2023, 2023
Short summary
Short summary
Tree destruction is often used to back calculate the air blast impact region and to estimate the air blast power. Here we established a novel model to assess air blast power using tree destruction information. We find that the dynamic magnification effect makes the trees easier to damage by a landslide-induced air blast, but the large tree deformation would weaken the effect. Bending and overturning are two likely failure modes, which depend heavily on the properties of trees.
Suzanne Lapillonne, Firmin Fontaine, Frédéric Liebault, Vincent Richefeu, and Guillaume Piton
Nat. Hazards Earth Syst. Sci., 23, 1241–1256, https://doi.org/10.5194/nhess-23-1241-2023, https://doi.org/10.5194/nhess-23-1241-2023, 2023
Short summary
Short summary
Debris flows are fast flows most often found in torrential watersheds. They are composed of two phases: a liquid phase which can be mud-like and a granular phase, including large boulders, transported along with the flow. Due to their destructive nature, accessing features of the flow, such as velocity and flow height, is difficult. We present a protocol to analyse debris flow data and results of the Réal torrent in France. These results will help experts in designing models.
Carlos Millán-Arancibia and Waldo Lavado-Casimiro
Nat. Hazards Earth Syst. Sci., 23, 1191–1206, https://doi.org/10.5194/nhess-23-1191-2023, https://doi.org/10.5194/nhess-23-1191-2023, 2023
Short summary
Short summary
This study is the first approximation of regional rainfall thresholds for shallow landslide occurrence in Peru. This research was generated from a gridded precipitation data and landslide inventory. The analysis showed that the threshold based on the combination of mean daily intensity–duration variables gives the best results for separating rainfall events that generate landslides. Through this work the potential of thresholds for landslide monitoring at the regional scale is demonstrated.
Luca Verrucci, Giovanni Forte, Melania De Falco, Paolo Tommasi, Giuseppe Lanzo, Kevin W. Franke, and Antonio Santo
Nat. Hazards Earth Syst. Sci., 23, 1177–1190, https://doi.org/10.5194/nhess-23-1177-2023, https://doi.org/10.5194/nhess-23-1177-2023, 2023
Short summary
Short summary
Stability analyses in static and seismic conditions were performed on four rockslides that occurred during the main shocks of the 2016–2017 central Italy seismic sequence. These results also indicate that specific structural features of the slope must carefully be accounted for in evaluating potential hazards on transportation infrastructures in mountainous regions.
Cited articles
Albuquerque, J. P. D., Herfort, B., and Eckle, M.: The Tasks of the Crowd: A Typology of Tasks in Geographic Information Crowdsourcing and a Case Study in Humanitarian Mapping, Remote Sens., 8, 1–22, https://doi.org/10.3390/rs8100859, 2016.
Ansari, H., Zan, F. D., and Bamler, R.: Efficient Phase Estimation for Interferogram Stacks, IEEE T. Geosci. Remote, 56, 4109–4125, 10.1109/TGRS.2018.2826045. 2018.
Avelar, A. S., Netto, A. L. C., Lacerda, W. A, Becker, L. B., and Mendonça, M. B.: Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil, in: Landslide science and practice. Springer, Berlin Heidelberg, 265–270, ISBN 978-3-642-31337-0-34, 2013.
Ávila, F. F., Alvalá, R. C., Mendes, R. M., and Amore, D. J.: The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models, Nat. Hazards, 105, 1139–1161, https://doi.org/10.1007/s11069-020-04324-x, 2021.
Brasil: Lei no 12.651, de 25 de maio de 2012, https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (last access: 1 May 2022), 2012.
Carvalho-Filho, A., Lumbreras, J. F., and Santos, R. D.: Os Solos do Estado do Rio de Janeiro, CPRM, Brasília, Brazil, 36 pp., https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1090208/os-solos-do-estado-do-rio-de-janeiro (last access: 6 May 2022), 2000.
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues, Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, 2013.
Chau, K. T. and Chan, J. E.: Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island, Landslides, 2, 280–290, https://doi.org/10.1007/s10346-005-0024-x, 2005.
Chen, C. W. and Zebker, H. A.: Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, J. Opt. Soc. Am. A, 18, 338–351, https://doi.org/10.1364/JOSAA.18.000338, 2001.
Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., and Ma, J.: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility, Catena, 151, 147–160, https://doi.org/10.1016/j.catena.2016.11.032, 2017.
Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain), Nat. Hazards Earth Syst. Sci., 12, 327–340, https://doi.org/10.5194/nhess-12-327-2012, 2012.
CPRM (Geological Survey of Brazil): Avaliação técnica pós-desastre, Petropolis, RJ 2022, Ministry of Mines and Energy MME, 9 pp., https://rigeo.cprm.gov.br, last access: 1 May 2022.
Dai, F. C. and Lee, C. F.: Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213–228, https://doi.org/10.1016/s0169-555x(01)00087-3, 2002.
Dean, W.: A ferro e fogo: a história e a devastação da Mata Atlântica brasileira, Companhia das Letras, São Paulo, ISBN 9788571645905, 1996.
Dembélé, M. and Zwart, S. J.: Evaluation and Comparison of Satellite-Based Rainfall Products in Burkina Faso, West Africa, Int. J. Remote Sens., 37, 3995–4014, https://doi.org/10.1080/01431161.2016.1207258, 2016.
Dias, H. C., Hölbling, D., and Grohmann, C. H.: Landslide Susceptibility Mapping in Brazil: A Review, Geosciences, 11, 1–15, https://doi.org/10.3390/geosciences11100425, 2021.
Dias, M. C. A., Saito, S. M., Alvalá, R. C., Stenner, C., Pinho, G., Nobre, C. A., Fonseca, M. R. S., Santos, C., Amadeu, P., Silva, D., Lima, C. O., Ribeiro, J., Nascimento, F., and Corrêa, C. O.: Estimation of exposed population to landslides and floods risk areas in Brazil, on intra-urban scale, Int. J. Disast. Risk Re., 31, 449–459, https://doi.org/10.1016/j.ijdrr.2018.06.002, 2018.
Dourado, F., Arraes, T. C., and Silva, M. F.: The “Megadesastre” in the Mountain Region of Rio de Janeiro State – Causes, Mechanisms of Mass Movements and Spatial Allocation of Investments for Reconstruction Post Disaster, Anuário do Instituto de Geeociências, 35, 43–54, https://doi.org/10.11137/2012_2_43_54, 2012.
Fattahi, H., Agram, P. S., Tymofyeyeva, E., and Bekaert, D. P.: FRInGE; Full-Resolution InSAR time series using Generalized Eigenvectors, American Geophysical Union, Fall Meeting 2019, 9–13 December 2019, San Francisco, CA, USA, abstract #G11B-0514, https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/497561 (last access: 6 May 2022), 2019.
FIRJAN: Firjan estima perda de R$ 665 milhões no PIB de Petrópolis após a forte chuva da última semana, FIRJAN, https://firjan.com.br/noticias/firjan-estima-perda-de-r-665-milhoes-no-pib-de-petropolis-apos-a-forte-chuva-da-ultima-semana-1.htm, last access: 20 March 2022.
Fonseca, M. J. G., Derze, G. R., Barreto, A. M., and Williams, G. H.: Mapa Geológico do Estado do Rio de Janeiro, Technical report, Departamento Nacional de Produção Mineral (DPMN), Rio de Janeiro, Brazil, 141 pp., http://www.cprm.gov.br/publique/Gestao-Territorial/Geologia%2C-Meio-Ambiente-e-Saude/Projeto-Rio-de-Janeiro-3498.html (last access: 6 May 2022), 1998.
Fundação SOS Mata Atlântica: Atlas dos Remanescentes Florestais da Mata Atlântica período 2016–2017, Technical report, Fundação SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais, São Paulo, https://cms.sosma.org.br/wp-content/uploads/2021/05/SOSMA_Atlas-da-Mata-Atlantica_2019-2020.pdf(last access: 6 May 2022), 2018.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Galarneau, T. J. and Bosart, L. F.: Ridge Rollers: Mesoscale disturbances on the periphery of cutoff anticyclones, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, 28 July–5 August 2005, Atlanta, GA, USA, Amer. Meteor. Soc., 3.2, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_94414.htm (last access: 2 May 2022), 2006.
Goldblatt, R., Jones, N., and Mannix, J.: Assessing OpenStreetMap Completeness for Management of Natural Disaster by Means of Remote Sensing: A Case Study of Three Small Island States (Haiti, Dominica and St. Lucia), Remote Sens., 12, 1–25, https://doi.org/10.3390/rs12010118, 2020.
Gonçalves, L. F. H.: Avaliação e Diagnóstico da Distribuição Espacial e Temporal dos Movimentos de Massa com a Expansão da Área Urbana em Petrópolis-RJ, PhD Thesis, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil, 1998.
Guerra, A.: Catastrophic events in Petrópolis city (Rio de Janeiro state), between 1940 and 1990, GeoJournal, 37, 349–354, https://doi.org/10.1007/BF00814015, 1995.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/s0169-555x(99)00078-1, 1999.
Hermance, J. F. and Sulieman, H. M.: Adequacy of the daily TMPA 3B42 high-resolution satellite precipitation product for monitoring hydrometeorological hazards in the Southeast Sahel of Africa, Int. J. Remote Sens., 39, 2579–2596, https://doi.org/10.1080/01431161.2018.1430405, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., and Xie, P.: Satellite Precipitation Measurement: Volume 1, edited by: Levizzani, V., Kidd, C., Kirschbaum, D. B., Kummerow, C. D., Nakamura, K., and Turk, F. J., 343–353, Springer Cham, ISBN 978-3030245672, 2020.
IBGE: Cidades, Instituto Brasileiro de Geografia e Estatística, https://cidades.ibge.gov.br/brasil/retropolisis/panorama, last access: 25 September 2018.
Janowiak, J., Joyce, B., and Xie, P.: NCEP/CPC L3 Half Hourly 4km Global (60S – 60N) Merged IR V1, edited by: Savtchenko, A., Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/P4HZB9N27EKU, 2017.
Jiang, L. and Bauer-Gottwein, P.: How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China, J. Hydrol., 572, 486–500, https://doi.org/10.1016/j.jhydrol.2019.03.042, 2019.
Jolivet, R., Agram, Piyush, S., Lin, Y. N., Simons, M., Doin, M.-P., Peltzer, G., and Li, Z.: Improving InSAR geodesy using Global Atmospheric Models, J. Geophys. Res.-Sol. Ea., 119, 2324–2341, https://doi.org/10.1002/2013JB010588, 2014.
Kanwal, S., Atif, S., and Shafiq, M.: GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins, Geomat. Nat. Hazards Risk, 8, 348–366, https://doi.org/10.1080/19475705.2016.1220023, 2017.
Lambin, E. F. and Ehrlich, D.: The surface temperature-vegetation index space for land cover and land-cover change analysis, Int. J. Remote Sens., 17, 463–487, https://doi.org/10.1080/01431169608949021, 1996.
Li, H., Herfort, B., Huang, W., Zia, M., and Zipf, A.: Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique, ISPRS J. Photogramm., 166, 41–51, https://doi.org/10.1016/j.isprsjprs.2020.05.007, 2020.
Maddox, R. A., Hoxit, L. R., Chappell, C. F., and Caracena, F.: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods, Mon. Weather Rev., 106, 375–389, 1978.
Marchezini, V. and Wisner, B.: Challenges for vulnerability reduction in Brazil: Insights from the PAR framework, in: Reduction of vulnerability to disasters: From knowledge to action, edited by: Marchzini, V., Wisner, B., Londe, L., RIMA, ISBN 978-85-7656-050-0, 2017.
Marengo, J. A. and Alves, L. M.: The 2011 intense rainfall and floods in Rio de Janeiro, B. Am. Meteorol. Soc., 93, S176, https://doi.org/10.1175/2012BAMSStateoftheClimate.1, 2012.
Martinotti, M. E., Pisano, L., Marchesini, I., Rossi, M., Peruccacci, S., Brunetti, M. T., Melillo, M., Amoruso, G., Loiacono, P., Vennari, C., Vessia, G., Trabace, M., Parise, M., and Guzzetti, F.: Landslides, floods and sinkholes in a karst environment: the 1–6 September 2014 Gargano event, southern Italy, Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, 2017.
Mendes, R. M., Andrade, M. R. M., Graminha, C. A., Prieto, C., Ávila, F. F., Camarinha, P. I.: Stability Analysis on Urban Slopes: Case Study of an Anthropogenic-Induced Landslide in São José dos Campos, Brazil, Geotech. Geol. Eng., 36, 599–610, https://doi.org/10.1007/s10706-017-0303-z, 2018a.
Mendes, R. M., de Andrade, M. R. M., Tomasella, J., de Moraes, M. A. E., and Scofield, G. B.: Understanding shallow landslides in Campos do Jordão municipality – Brazil: disentangling the anthropic effects from natural causes in the disaster of 2000, Nat. Hazards Earth Syst. Sci., 18, 15–30, https://doi.org/10.5194/nhess-18-15-2018, 2018b.
Minghini, M. and Frassinelli, F.: OpenStreetMap history for intrinsic quality assessment: Is OSM up-to-date?, Open Geospatial Data Softw. Stand., 4, 1–17, https://doi.org/10.1186/s40965-019-0067-x, 2019.
Mitchell, M. J., Arritt, R. W., and Labas, K.: A climatology of the warm season Great Plains low-level jet using wind profiler observations, Weather Forecast., 10, 576–591, https://doi.org/10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2, 1995.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., and Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403, 853–858, https://doi.org/10.1038/35002501, 2000.
Nehren, U., Schlüter, S., Raeding, C., Sattler, D., and Hissa, H. (Eds.): Strategies and Tools for a Sustainable Rural Rio de Janeiro, Springer Series on Environmental Management, https://doi.org/10.1007/978-3-319-89644-1_20, 2018.
Ohlmacher, G. C.: Plan curvature and landslide probability in regions dominated by Earth flows and Earth Slides, Eng. Geol., 91, 117–134, https://doi.org/10.1016/j.enggeo.2007.01.005, 2007.
Parida, B. R., Collado, W. B., Borah, R., Hazarika, M. K., and Samarakook, L.: Detecting drought-prone areas of rice agriculture using a MODIS-derivd soil moisture index, GIScience and Remote Sensing, 45, 109–129, 2008.
Penha, M. M., Ferrari, A. L., Junho, M. C. B., Souza, S. L. A., and Brennes, T. L.: Projeto Carta Geológica do Estado do Rio de Janeiro: Folha Itaipava, Technical report, vol. 1, Convênio DRM/IG-UFRJ, Rio de Janeiro, Brazil, http://www.cprm.gov.br/publique/Gestao-Territorial/Geologia%2C-Meio-Ambiente-e-Saude/Projeto-Rio-de-Janeiro-3498.html (last access: 3 May 2022), 1981.
Pisano, L., Zumpano, V., Malek, Z., Rosskopf, C. M., and Parise, M.: Variations in the susceptibility to landslides, as a consequence of land cover changes: a look to the past, and another towards the future, Sci. Total Environ., 601–602, 1147–1159, 2017.
Reichenbach, P., Rossi, M., Malamud, B., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Reis, A. A., Fernandes, W. S., and Ramos, M.-H.: Assessing two precipitation data sources at basins of special interest to hydropower production in Brazil, Brazilian Journal of Water Resources, 25, 1–16, https://doi.org/10.1590/2318-0331.252020190068, 2020.
Rosi, A., Canavesi, V., Segoni, S., Nery, T. D., Catani, F., and Casagli, N.: Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds, Geosciences, 9, 1–15, https://doi.org/10.3390/geosciences9050203, 2019.
Schlossmacher, E. J.: An Iterative Technique for Absolute Deviations Curve Fitting, J. Am. Stat. Assoc., 68, 857–859, https://doi.org/10.2307/2284512, 1973.
Silva, R. F. B., Batistella, M., Moran, E. F., and Liu, D.: Land changes fostering Atlantic Forest transition in Brazil: Evidence from the Paraíba Valley, Prof. Geogr., 69, 80–93, https://doi.org/10.1080/00330124.2016.1178151, 2017.
Souza Jr., C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C.,G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., Weber, E. J., Lenti, F. E. B., Paternost, F. F., Pareyn, F.,G.,C., Siqueira, J. V., Viera, J. L., Neto, L. C. F., Saraiva, M. M., Sales, M. H., Salgado, M. P. G., Vasconcelos, R., Galano, S., Mesquita, V. V., and Azevedo, T.: Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine, Remote Sens., 12, 1–17, https://doi.org/10.3390/rs12172735, 2020.
Wang, J., Dong, X., Kennedy, A., Hagenhoff, B., and Xi, B.: A regime-based evaluation of southern and northern great plains warm-season precipitation events in WRF, Weather Forecast., 34, 805–831, 2019.
Zhan, Z., Qin, Q., and Wang, X.: The Application of LST/NDVI Index for Monitoring Land Surface Moisture in Semiarid Area, Geoscience and Remote Sensing, IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, 20–24 September 2004, Anchorage, AK, USA, IEEE, 3, 1551–1555, https://doi.org/10.1109/IGARSS.2004.1370609, 2004.
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains...
Altmetrics
Final-revised paper
Preprint